Skip to main content

Advertisement

Log in

Characterization of High-Hydrostatic-Pressure Effects on Fresh Produce Using Chlorophyll Fluorescence Image Analysis

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

High hydrostatic pressure has the potential to affect food-related enzymes and microorganisms while retaining the produce’s characteristic properties. Although many studies on effects of high pressure on quality attributes of fruit and vegetables have been published, experimental results on the impact of high-pressure treatment on the physiological activity of products are rare. To characterize changes of the samples fast and noninvasive methods as well as a sensitive biological model system are required for this purpose. In this study, fresh lamb’s lettuce (Valerianella olitoria Poll.) was used as a model produce. For each treatment, two leaves were carefully inserted to small plastic pouches, sealed and then subjected to pressure (up to 7.5 min at 200 MPa) or thermal treatment (up to 1 min at 50°C). Chlorophyll fluorescence imaging was applied to measure the local and temporal dynamics of the physiological postprocessing effects. Measurements of the maximum photochemical efficiency F v/F m allows the immediate evaluation of photosynthetic activity as an indicator for cell and tissue vitality. Thermal treatment at pressure below 125 MPa and temperatures lower than 45°C showed minor fully reversible effects but a pronounced decline in the maximum photochemical efficiency was obtained after pressure treatment of 150 MPa and temperatures of 45°C or higher values. These changes were irreversible within 24 h of recovery time. Above these thresholds, high pressure and heat treatment may not be applicable for mild processing of highly perishable fresh produce. Chlorophyll fluorescence analysis has been proven to be a valuable tool for the rapid and comprehensive evaluation of postharvest processing of green perishables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott, J. A. (1999). Quality measurement of fruits and vegetables. Postharvest Biology and Technology, 15, 207–225. doi:10.1016/S0925-5214(98)00086-6.

    Article  Google Scholar 

  • Angersbach, A., Heinz, V., & Knorr, D. (2002). Evaluation of process-induced dimensional changes in the membrane structure of biological cells using impedance measurement. Biotechnology Progress, 18(3), 597–603. doi:10.1021/bp020047j.

    Article  CAS  Google Scholar 

  • Aro, E. M., McCaffery, S., & Anderson, J. M. (1994). Recovery from photoinhibition in peas (Pisum sativum L.) acclimated to varying growth irradiances. Plant Physiology, 104, 1033–1041.

    CAS  Google Scholar 

  • Arroyo, G., Sanz, P. D., & Prestamo, G. (1997). Effect of high pressure on the reduction of microbial populations in vegetables. Journal of Applied Microbiology, 82, 735–742. doi:10.1046/j.1365-2672.1997.00149.x.

    Article  CAS  Google Scholar 

  • Basak, S., & Ramaswamy, H. S. (1998). Effect of high pressure processing on texture of selected fruit and vegetables. Journal of Texture Studies, 29, 587–601. doi:10.1111/j.1745-4603.1998.tb00185.x.

    Article  Google Scholar 

  • Bilger, H. W., Schreiber, U., & Lange, O. L. (1984). Determination of leaf heat resistance: Comparative investigation of chlorophyll fluorescence changes and tissue necrosis methods. Oecologia, 63, 256–262. doi:10.1007/BF00379886.

    Article  Google Scholar 

  • Björkman, O., & Demmig, B. (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origin. Planta, 170, 489–504. doi:10.1007/BF00402983.

    Article  Google Scholar 

  • DeEll, J. R., van Kooten, O., Prange, R. K., & Murr, D. P. (1999). Application of chlorophyll fluorescence techniques in postharvest physiology. Horticultural Reviews (American Society of Horticultural Science), 23, 69–107.

    CAS  Google Scholar 

  • DeEll, J. R., Vigneault, C., & Lemerre, S. (2000). Water temperature for hydro cooling field cucumbers in relation to chilling injury during storage. Postharvest Biology and Technology, 18, 27–32. doi:10.1016/S0925-5214(99)00057-5.

    Article  Google Scholar 

  • Eggleston, V., & Tanner, D. J. (2005). Are carrots under pressure still alive?—The effect of high pressure processing on respiration rate of carrots. Acta Horticulture, 687, 371–374.

    Google Scholar 

  • Enami, I., Kitamura, M., Tomo, T., Isokawa, Y., Ohta, H., & Katoh, S. (1994). Is the primary cause of thermal inactivation of oxygen evolution in spinach PS II membranes release of extrinsic 33 kDa protein or of Mn. Biochimica et Biophysica Acta, 1186, 52–58. doi:10.1016/0005-2728(94)90134-1.

    Article  CAS  Google Scholar 

  • Georgieva, K., & Yordanov, I. (1993). Temperature dependence of chlorophyll fluorescence parameters of pea seedlings. Journal of Plant Physiology, 142, 151–155.

    CAS  Google Scholar 

  • Haltia, T., & Freire, E. (1995). Forces and factors that contribute to the structural stability of membrane bound proteins. Biochimica et Biophysica Acta, 1228, 1–27. doi:10.1016/0005-2728(94)00161-W.

    Article  Google Scholar 

  • Havaux, M. (1992). Stress tolerance of photosystem II in vivo. Antagonistic effects of water, heat, and photoinhibition stresses. Plant Physiology, 100, 424–422.

    Article  CAS  Google Scholar 

  • Herppich, W. B. (2000). Interactive effects of light and drought stress on photosynthetic activity and photoinhibition under (sub-) tropical conditions. Acta Horticulture, 531, 135–142.

    Google Scholar 

  • Herppich, W. B. (2002). Application potential of chlorophyll fluorescence imaging analysis in horticultural research. In M. Zude, B. Herold, & M. Geyer (Eds.), Fruit, nut and vegetable production engineering, Proceedings of the 6th International Symposium (pp. 609–614). Potsdam: Institut für Agrartechnik Bornim e.V. ISBN:3-00-008305-7.

    Google Scholar 

  • Herppich, W. B., Midgley, G. F., Herppich, M., Tüffers, A., Veste, M., & von Willert, D. J. (1998). Interactive effects of photon fluence rates and drought on CAM-cycling in Delosperma tradescantioides (Mesembryanthemaceae). Physiologia Plantarum, 102, 148–154. doi:10.1034/j.1399-3054.1998.1020119.x.

    Article  CAS  Google Scholar 

  • Herppich, W. B., Geyer, M., & Linke, M. (2001). Influence of lighting in retail on atmospheric composition in vegetable packaging. Acta Horticulture, 553(2), 693–694.

    Google Scholar 

  • Indrawati, I., Ludikhuyze, L. R., van Loey, A. M., & Hendrickx, M. E. (2000). Lipoxygenase inactivation in green beans (Phaseolus vulgaris L.) due to high pressure treatment at subzero and elevated temperatures. Journal of Agricultural and Food Chemistry, 48(5), 1850–1859. doi:10.1021/jf990937n.

    Article  CAS  Google Scholar 

  • Kalchayanand, N., Frethem, C., Dunne, P., Sikes, A., & Ray, B. (2002). Hydrostatic pressure and bacteriocin-triggered cell wall lysis of Leuconostoc mesenteroides. Innovative Food Science and Emerging Technologies, 3, 33–40. doi:10.1016/S1466-8564(02)00004-8.

    Article  CAS  Google Scholar 

  • Knorr, D. (1993). Effects of high-hydrostatic-pressure processes on food safety and quality. Food Technology, 47(6), 156–161.

    Google Scholar 

  • Knorr, D. (1995). High pressure effects on plant derived foods. In D. A. Ledward, D. E. Johnston, R. G. Earnshaw, & A. P. M. Hastings (Eds.), High pressure processing of foods (pp. 123–135). Loughborough: Nottingham University Press.

    Google Scholar 

  • Knorr, D., Heinz, V., & Buckow, R. (2006). High pressure application for food biopolymers. Biochimica et Biophysica Acta—Proteins and Proteomics, 1764(3), 619–631.

    CAS  Google Scholar 

  • Krause, G. H., & Weis, E. (1991). Chlorophyll fluorescence and photosynthesis: The basics. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 313–349. doi:10.1146/annurev.pp.42.060191.001525.

    Article  CAS  Google Scholar 

  • Ludikhuyze, L., & Hendrickx, M. E. G. (2002). Effects of high pressure on chemical reactions related to food quality. In M. E. G. Hendrickx, & D. Knorr (Eds.), Ultra high pressure treatments of foods (pp. 23–51). New York: Kluwer Academic/Plenum.

    Google Scholar 

  • Lullien-Pellerin, V., & Balny, C. (2002). High-pressure as a tool to study some proteins’ properties: conformational modification, activity and oligomeric dissociation. Innovative Food Science and Emerging Technologies, 3, 209–221. doi:10.1016/S1466-8564(02)00045-0.

    Article  CAS  Google Scholar 

  • Luscher, C., Schlüter, O., & Knorr, D. (2005). High pressure–low temperature processing of foods: Impact on cell membranes, texture, color and visual appearance of potato tissue. Innovative Food Science and Emerging Technologies, 6, 59–71. doi:10.1016/j.ifset.2002.05.001.

    Article  Google Scholar 

  • Maheswari, M., Joshi, G. K., Saha, R., Nagarajan, S., & Gambhir, P. N. (1999). Transverse relaxation time of leaf water protons and membrane injury in wheat (Triticum aestivum L.) in response to high temperatures. Annals of Botany (London), 84, 741–745. doi:10.1006/anbo.1999.0974.

    Article  CAS  Google Scholar 

  • Mathys, A., Kallmeyer, R., Heinz, V., & Knorr, D. (2008). Impact of dissociation equilibrium shift on bacterial spore inactivation by heat and pressure. Food Control, 19(12), 1165–1173. doi:10.1016/j.foodcont.2008.01.003.

    Article  CAS  Google Scholar 

  • Matschke, J., Amenda, R., & Herppich, W. B. (1996). Fluoreszenzmessungen an Zierpflanzen. Gärtnerbörse, 23, 1099–1102.

    Google Scholar 

  • Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51, 659–668. doi:10.1093/jexbot/51.345.659.

    Article  CAS  Google Scholar 

  • Moll, S., Serrano, P., & Boyle, C. (1995). In vivo chlorophyll fluorescence in rust-infected bean plants. Journal of Applied Botany, 69, 163–168.

    CAS  Google Scholar 

  • Naus, J., Dvorak, L., Kuropatwa, R., & Maslan, M. (1992). Transition in the thylakoid membranes of barley leaves studied by chlorophyll fluorescence temperature curve. Photosynthetica, 27(4), 563–570.

    CAS  Google Scholar 

  • Nedbal, L., Soukupova, J., Kaftan, D., Whitmarsh, J., & Trtılek, M. (2000a). Kinetic imaging of chlorophyll fluorescence using modulated light. Photosynthesis Research, 66, 3–12. doi:10.1023/A:1010729821876.

    Article  CAS  Google Scholar 

  • Nedbal, L., Soukupova, J., Whitmarsh, J., & Trtılek, M. (2000b). Postharvest imaging of chlorophyll fluorescence from lemons can be used to predict fruit quality. Photosynthetica, 38, 571–579. doi:10.1023/A:1012413524395.

    Article  CAS  Google Scholar 

  • Norton, T., & Sun, D. W. (2008). Recent advances in the use of high pressure as an effective processing technique in the food industry. Food Bioprocess Technology, 1, 2–34. doi:10.1007/s11947-007-0007-0.

    Article  Google Scholar 

  • Ohlsson, T. (2000). Minimal processing of foods with thermal methods. In G. V. Barbosa-Cánovas, & G. W. Gould (Eds.), Innovations in food processing (pp. 123–140). Lancaster: Technomic.

    Google Scholar 

  • Palou, E., Lopez-Malo, A., Barbosa-Canovas, G. V., Welti-Chanes, J., & Swanson, B. G. (1999). High-pressure treatment in food preservation. In M. S. Rahman (Ed.), Handbook of food preservation (pp. 533–575). New York: Marcel Dekker.

    Google Scholar 

  • Pastenses, C., & Horton, P. (1999). Resistance of photosynthesis to high temperature in two bean varieties (Phaseolus vulgaris L.). Photosynthesis Research, 62, 197–203. doi:10.1023/A:1006391113097.

    Article  Google Scholar 

  • Schreiber, U., Schliwa, U., & Bilger, W. (1986). Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research, 10, 51–62. doi:10.1007/BF00024185.

    Article  CAS  Google Scholar 

  • Tewari, G., Jayas, D. S., & Holley, R. A. (1999). High pressure processing of foods: An overview. Sciences des Aliments, 19, 619–661.

    Google Scholar 

  • Thakur, B. R., & Nelson, P. E. (1998). High-pressure processing and preservation of food. Food Reviews International, 14(4), 427–447.

    Article  Google Scholar 

  • Trejo Araya, X., Hendrickx, M., Verlinden, B. E., Van Buggenhout, S., Smale, N. J., Stewart, C., et al. (2007). Understanding texture changes of high pressure processed fresh carrots: A microstructural and biochemical approach. Journal of Food Engineering, 80, 873–884. doi:10.1016/j.jfoodeng.2006.08.014.

    Article  Google Scholar 

  • von Willert, D. J., Matyssek, R., & Herppich, W. B. (1995). Experimentelle Pflanzenökologie, Grundlagen und Anwendungen. Stuttgart: Georg Thieme Verlag.

    Google Scholar 

  • Weis, E., & Berry, J. A. (1988). Plants and high temperature stress. In S. P. Long, & F. I. Woodward (Eds.), Plants and temperature (pp. 329–346). Cambridge: Society for Experimental Biology.

    Google Scholar 

  • Winter, R., & Czelik, C. (2000). Pressure effects on the structure of lyotropic lipid mesophases and model biomembrane systems. Zeitschrift für Kristallographie, 215, 454–474. doi:10.1524/zkri.2000.215.8.454.

    Article  CAS  Google Scholar 

  • Yamada, M., Hidaka, T., & Fukamachi, H. (1996). Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Scientia Horticulturae (Amsterdam), 67, 39–48. doi:10.1016/S0304-4238(96)00931-4.

    Article  CAS  Google Scholar 

  • Yu, Y., Tian, S. M., Ruan, K. C., & Xu, C. H. (2001). The release of extrinsic polypeptides and manganese cluster from photosystem 2 membranes under high hydrostatic pressure. Photosynthetica, 39, 115–117. doi:10.1023/A:1012460322657.

    Article  CAS  Google Scholar 

  • Zude-Sasse, M., Hartmond, U., & Lüdders, P. (2001). Pyridine nucleotide charge reduces photosynthesis under short-term oxygen deficiency. Journal of the American Society for Horticultural Science, 126, 703–709.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Schlüter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlüter, O., Foerster, J., Geyer, M. et al. Characterization of High-Hydrostatic-Pressure Effects on Fresh Produce Using Chlorophyll Fluorescence Image Analysis. Food Bioprocess Technol 2, 291–299 (2009). https://doi.org/10.1007/s11947-008-0143-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-008-0143-1

Keywords

Navigation