Skip to main content
Log in

Physicochemical and Enzymatic Properties of Five Kiwifruit Cultivars during Cold Storage

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Samples of Abbot, Alison, Bruno, Monty, and Hayward cultivars of kiwifruit (Actinidia deliciosa) were obtained from the Iran Research Center of Citrus (Tonekabon, located in north of Iran) and their physicochemical properties were studied during cold storage (at T = 1 ± 1 °C, RH = 80 ± 5%) at 0-, 9-, and 18-week intervals. The mean chemical composition of the fruits were as follows: ash = 0.66–0.96%, moisture = 75.2–84.7%, starch = 0.3–7.0%, and ascorbic acid = 54.8–261.0; K = 125.0–372.0 mg 100 g−1 fresh weight, Mg = 18.0–32.0 mg 100 g−1 fresh weight, Na = 1.4–3.1 mg 100 g−1 fresh weight, Fe = 0.17–0.52 mg 100 g−1 fresh weight, Cu = 0.04–0.24 mg 100 g−1 fresh weight, Zn = 0.16–0.49 mg 100 g−1 fresh weight, Mn = 0.04–0.10 mg 100 g−1 fresh weight, and P = 25.2–49.3 mg 100 g−1 fresh weight; glucose = 0.7–2.39%, fructose = 1.20–3.13%, and sucrose = 0.0–5.8%. At the same time, the values of the parameters °Brix = 6.5–14.8% and acidity = 1.8–2.5% of the studied cultivars (mutual effects of cultivar and storage time) were investigated. The increase in peroxidase (POX = 0.0–6.65 U ml−1) and the decrease in pectinesterase (PE; poor activity to 0) activities were also determined. The statistical analysis showed that the Bruno cultivar had the highest content of ascorbic acid (115.0–261.0 mg 100 g−1 fresh weight), which is an important compound in fruits during storage, while Hayward had the best overall quality particularly with regards to its resistance to softening. This study confirms that long-term cold storage at 1 ± 1 °C and 80 ± 5% RH is suitable for maintaining the highest quality of Iranian grown cultivars of kiwifruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adao, R. C., Beatriz, M., & Gloria, A. (2005). Bioactive amines and carbohydrate changes during ripening of Prata banana (Musa acuminate×M. Balbisiana). Food Chemistry, 90, 705–711. doi:10.1016/j.foodchem.2004.05.020.

    Article  CAS  Google Scholar 

  • Agar, I. T., Massantini, R., Hess, B. P., & Kadar, A. A. (1999). Postharvest CO2 and ethylene production and quality maintenance of fresh-cut kiwifruit slices. Journal of Food Science, 64, 433–440. doi:10.1111/j.1365-2621.1999.tb15058.x.

    Article  CAS  Google Scholar 

  • Anonymous. (2006). FAO Corporate Document Repository. The pacific islands food composition tables (2nd ed.). Agriculture Department PDF version more details.

  • Antunes, M. D. C., & Sfakiotakis, E. M. (2002). Ethylene biosynthesis and ripening behaviour of Hayward kiwifruit subjected to some controlled atmospheres. Postharvest Biology and Technology, 26, 167–179. doi:10.1016/S0925-5214(02)00040-6.

    Article  CAS  Google Scholar 

  • AOAC. (1990). Official methods of analysis. Association of Official Analytical Chemists (15th ed.). In K. Helriched (ed). Washington, DC, USA: AOAC.

  • Bernardez, M. M., Miguelez, D. M., & Queijeiro, J. G. (2004). HPLC determination of sugars in cultivars of chestnut fruits from Galicia (Spain). Journal of Food Composition and Analysis, 17, 63–67. doi:10.1016/S0889-1575(03)00093-0.

    Article  CAS  Google Scholar 

  • Burdon, J., Mcleond, D., Lallu, N., Gamble, J., Petley, M., & Gunson, A. (2004). Consumer evaluation of Hayward kiwifruit of different at-harvest dry matter contents. Postharvest Biology and Technology, 34, 245–255. doi:10.1016/j.postharvbio.2004.04.009.

    Article  Google Scholar 

  • Castaldo, D., Lo Vio, A., Trifiro, A., & Gherardi, S. (1992). Composision of Italian kiwi (Actinidia chinensis) puree. Journal of Agricultural and Food Chemistry, 40, 594–598. doi:10.1021/jf00016a013.

    Article  CAS  Google Scholar 

  • Cotter, R. L., Macrae, E. A., Feruson, A. R., McMath, K. L., & Brennan, C. J. (1991). A comparison of the ripening, storage and sensory qualities of 7 cultivars of kiwifruit. Journal of Horticultural Science, 66, 291–300.

    Google Scholar 

  • Esti, M., Messia, M. C., Bertocchi, P., Sinesio, F., Moneta, E., Nicotra, A., et al. (1998). Chemical compounds and sensory assessment of kiwifruit (Actinidia chinensis (planch) var. chinensis): electrochemical and multivariate analyses. Food Chemistry, 61, 293–300. doi:10.1016/S0308-8146(97)00052-6.

    Article  CAS  Google Scholar 

  • Fuster, C., Prestamo, G., & Cano, M. P. (1994). Drip loss, peroxidase & sensory changes in kiwifruit slices during frozen storage. Journal of the Science of Food and Agriculture, 64, 23–29. doi:10.1002/jsfa.2740640105.

    Article  CAS  Google Scholar 

  • Gallego, P. P., & Zarra, I. (1998). Cell wall autolysis during kiwifruit development. Annals of Botany, 81, 91–96. doi:10.1006/anbo.1997.0536.

    Article  Google Scholar 

  • Hendrik, V. G., Chingying, L., Eduordo, L. K., Mirjam, S., & Adel, A. K. (1992). Compositional characterization of prune juice. Journal of Agricultural and Food Chemistry, 40, 784–789. doi:10.1021/jf00017a016.

    Article  Google Scholar 

  • Jordan, R. B., Walton, E. F., Klages, K. U., & Seelye, R. J. (2000). Postharvest fruit density as an indictor of dry matter and ripened soluble solids of kiwifruit. Postharvest Biology and Technology, 20, 163–173. doi:10.1016/S0925-5214(00)00125-3.

    Article  Google Scholar 

  • Kimball, D. A. (1999). Citrus processing, a complete guide (p. 450, 2nd ed.). Gaithersburg, Maryland: Chapman and Hall Food Science Book.

    Google Scholar 

  • Llano, K. M., Haedo, A. S., Gerschenson, L. N., & Rojas, A. M. (2003). Mechanical and biochemical response of kiwifruit tissue to steam blanching. Food Research International, 36, 767–775. doi:10.1016/S0963-9969(03)00071-1.

    Article  CAS  Google Scholar 

  • Mainland, C. M. (1998). Kiwifruit. North Carolina Cooperative Extension Service. Retrieved from http://www.ces.ncsu.edu.

  • Manolopoulou, H., & Papadopoulou, P. (1998). A study of respiratory and physico-chemical changes of four kiwifruit cultivars during cold-storage. Food Chemistry, 63, 529–534. doi:10.1016/S0308-8146(98)00017-X.

    Article  CAS  Google Scholar 

  • Marangoni, A. G., Jackman, R. L., & Stanley, D. W. (1995). Chilling-associated softening of tomato fruit is related to increased pectinmethylesterase activity. Journal of Food Science, 60, 1277–1281. doi:10.1111/j.1365-2621.1995.tb04572.x.

    Article  CAS  Google Scholar 

  • Marsh, K., Attanayake, S., Walker, S., Gunson, A., Boldingh, H., & Macrae, E. (2004). Acidity and taste in kiwifruit. Postharvest Biology and Technology, 32, 159–168. doi:10.1016/j.postharvbio.2003.11.001.

    Article  Google Scholar 

  • Park, Y. S., Jung, S. T., & Gorinstein, S. (2006). Ethylene treatment of Hayward kiwifruits (Actinidia deliciosa) during ripening and its influence on ethylene biosynthesis and antioxidant activity. Scientia Horticulturae, 108, 22–28. doi:10.1016/j.scienta.2006.01.001.

    Article  CAS  Google Scholar 

  • Perez-Tello, G. O., Silva-Espinoza, B. A., Vargas-Arispuro, I., Briceno-Torres, B. O., & Martinez-Tellez, M. A. (2001). Effect of temperature on enzymatic and physiological factors related to chilling injury in Carambola fruit (Averrhao carambola L.). Biochemical and Biophysical Research Communications, 287, 841–851.

    Google Scholar 

  • Plaza, P. V., Tenorio, S. M., & Torija, A. (1992). Mineral content of exotic fruits increasingly eaten in Spain: kiwifruits. Alimentaria, 229, 59–61.

    Google Scholar 

  • Regina, C. A., & Beatrize, A. G. (2005). Bioactive amino and carbohydrate changes during of Prata banana. Food Chemistry, 90, 705–711. doi:10.1016/j.foodchem.2004.05.020.

    Article  Google Scholar 

  • Sahari, M. A., Boostani, M., & Hamidi, E. Z. (2004). Effect of low temperature on the ascorbic acid content and quality characteristics of frozen strawberry. Food Chemistry, 86, 357–363. doi:10.1016/j.foodchem.2003.09.008.

    Article  CAS  Google Scholar 

  • Sahari, M. A., Barzegar, M., & Radfar, R. (2007). Effect of varieties on the composition of dates (Phoenix dactylifera L.). Food Science and Technology International, 13(4), 269–275. doi:10.1177/1082013207082244.

    Article  CAS  Google Scholar 

  • Tavarani, S., Degl’Innocenti, E., Remorini, D., Massai, R., & Guidi, L. (2008). Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Harward kiwifruit. Food Chemistry, 107, 282–288. doi:10.1016/j.foodchem.2007.08.015.

    Article  Google Scholar 

  • Thorp, T. G., Jie, Z., & Layyee, M. (1990). Horticultural characteristics of 7 pistillate and 3 staminate New Zealand cultivars of kiwifruit. New Zealand Journal of Crop and Horticultural Science, 18(4), 233–240.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Sahari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zolfaghari, M., Sahari, M.A., Barzegar, M. et al. Physicochemical and Enzymatic Properties of Five Kiwifruit Cultivars during Cold Storage. Food Bioprocess Technol 3, 239–246 (2010). https://doi.org/10.1007/s11947-008-0114-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-008-0114-6

Keywords

Navigation