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Abstract Significant advances have been made in under-
standing the genetic basis of systemic sclerosis (SSc) in recent
years. Genomewide association and other large-scale genetic
studies have identified 30 largely immunity-related genes
which are significantly associated with SSc. We review these
studies, along with genomewide expression studies, proteo-
mic studies, genetic mouse models, and insights from rare
sclerodermatous diseases. Collectively, these studies have be-
gun to identify pathways that are relevant to SSc pathogenesis.
The findings presented in this review illustrate how both ge-
netic and genomic aberrations play important roles in the de-
velopment of SSc. However, despite these recent discoveries,
there remain major gaps between current knowledge of SSc, a
unified understanding of pathogenesis, and effective treat-
ment. To this aim, we address the important issue of SSc
heterogeneity and discuss how future research needs to ad-
dress this in order to develop a clearer understanding of this
devastating and complex disease.
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Introduction

Systemic sclerosis (SSc, the systemic form of scleroderma) is
a complex disease with features that include autoimmunity,
vasculopathy, and fibrosis. The disease is more common in
women (4:1 female to male ratio) [1, 2]. There is significant
clinical heterogeneity between SSc patients which remains
poorly understood [3], and there remain critical gaps in under-
standing of the biologic basis of SSc. The core signs and
symptoms of SSc are Raynaud’s phenomenon, skin thicken-
ing, and serum autoantibody production, but patients have
different patterns of internal organ involvement with variable
presentations and outcomes [4, 5]. SSc patients overall have
an estimated 66 % 10-year survival rate, which decreases to
38 % for those with significant internal organ involvement [6,
7]. Pulmonary fibrosis and pulmonary artery hypertension
(PAH) are leading causes of death and affect approximately
15 % of SSc patients [8]. Cardiac disease including left- and
right-sided heart failure, conduction system abnormalities, ar-
rhythmias, or pericardial disease affects 15–35 % of patients
[9–12]. Skin involvement causes significant disability and al-
so correlates directly with increased mortality [13]. The pres-
ence of cardiac involvement portends a poor prognosis with
70 % 5-year mortality [14] contributing to roughly 25 % of
SSc-related deaths [15].

SSc is a rare disease with an estimated 50 to 300 cases per
million, and while the overall genetic burden is modest (only
2.6 % of SSc patients’ siblings develop SSc), evidence from
familial, twin, and epidemiologic studies has implicated ge-
netic predisposition for disease [16–19]. A positive family
history raises relative risk by 15- to 19-fold in siblings relative
to the general population, and first-degree relatives also have
increased risk for developing Raynaud’s phenomenon and
interstitial lung disease [20, 21]. However, the genomic vari-
ants identified to date only account for approximately half of
the genetic burden of SSc; environmental and epigenetic
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factors are thought to play a major role in this Bmissing heri-
tability,^ and recent work has implicated multiple different
epigenetic risk factors [22–24].

Likemost autoimmune diseases, the genetic contribution to
scleroderma is not due to a single rare genetic mutation but
rather derives from many common genetic variants which
predispose patients to disease. As an autoimmune disease, it
has been well established that SSc is associated with HLA
loci, and these studies have been recently reviewed elsewhere
[24, 25]. Through the use of high-throughput technologies
including genomewide association studies (GWAS), re-
searchers have identified and confirmed over 25 additional
non-HLA SSc-associated genetic loci. The vast majority of
these regions overlap with those that have been implicated
in other autoimmune diseases. In this review, we will first
briefly review this rapidly expanding area and then discuss
other approaches that have implicated genetic pathways in
SSc in an attempt to better understand disease pathogenesis.

Immune Genes Implicated by Large-Scale Genetic Studies

Prior to the past 10 years, beyond the HLA region, no clear SSc
genetic susceptibility loci had been identified. However, with
the advent of advances in genetic technologies and the devel-
opment of national and multinational case–control cohorts,
there have been an increasing number of studies that have iden-
tified significant genetic associations with systemic sclerosis. In
this review, we will focus on loci that have been identified as
genomewide significant and those that have been replicated.

Using genetic association results obtained for other auto-
immune diseases including systemic lupus erythematosus and
rheumatoid arthritis to identify candidate genes, significant
associations have been identified between SSc and single nu-
cleotide polymorphisms in the BANK1, BLK, CD226, IL2RA,
IL12RB, KCNA5, IRF5, STAT4, TNFAIP3, TNFSF4, and
TLR2 genes [26–40].

The advent of GWAS allowed for confirmation of previ-
ously reported associations with the MHC region, IRF5, and
STAT4 [41–43], and identified CD247 as a disease-associated
locus [44]. Subsequent GWAS and GWA follow-up studies
have identified IRF8 [43, 44], PSORS1C1 [45], IL12RB1 [46,
47], IL12RB2 [35], and CSK [39] loci as genomewide signif-
icant. In addition to these loci, at least two studies have con-
firmed significant association (p<1*10−4) at the TNFAIP3,
TNFSF4, ATG5, SCHIP1-IL12A, and DNASE1L3 loci
(Table 1). While the evidence confirming their association is
not yet available, studies have now identified an additional 17
loci that have been demonstrated to have associations with
SSc (p*10−4>p>5*10−8). These associations are summarized
in Table 2, while Fig. 1 illustrates how many of these poly-
morphisms may contribute to disease pathogenesis.

While most of these studies have been extensively
reviewed elsewhere [48, 49], three new studies in the past year
have shed additional insights into the immunogenetics of SSc.
In one of the largest genetic studies to date, Mayes et al. ge-
notyped 1833 SSc cases and 3466 controls with the
Immunochip, a custom SNP genotyping array that provides
high-density mapping of autoimmune disease-associated loci
[50]. Using this approach, the authors identified novel

Table 1 Confirmed genomewide significant non-HLA associations or studies with two independent replications with p<5*10−4

Symbol Gene name Locus SNP Approach Case/control SSc phenotype OR p value

ATG5 [50] Autophagy-related 5 6q25 rs9373839 Immunochip 1833/3466 SSc 1.19 3.8*10−8

CD247 [44, 45] T cell receptor zeta-chain 1q22 rs2056626 GWAS 2296/5171 SSc 0.82 3.4*10−9

CSK [39] c-src 15q24 rs1378942 GWA FU 5270/8326 SSc 1.20 5.0*10−12

DNASE1L3 [50] Deoxyribonuclease I-like 3 3p14 rs35646470 Immunochip 1833/3466 ACA (and all) 2.03 4.3*10−31

IL12RB1 [47] IL-12 receptor beta-1 19p13 rs2305743 GWA FU 8697/5032 SSc 0.81 4.3*10−10

IL12RB2 [35] IL-12 receptor beta-2 1p31 rs3790567 GWA FU 3344/3848 SSc 1.17 2.8*10−9

IRF5 [44, 45] Interferon response factor 5 7q32 rs10488631 GWAS 2296/5171 SSc 1.49 3.8*10−14

IRF8 [64] Interferon response factor 8 7p12 rs11642873 GWAS 3360/10,143 lcSSc 0.75 2.3*10−12

PSORS1C1 [45] Psoriasis susceptibility 1 candidate 1 6p21 rs3130573 GWAS 564/1776 SSc 1.25 5.7*10−10

SCHIP1-IL12A [50] Schwannomin interacting protein
1/interleukin 12 alpha

3q25 rs77583790 Immunochip 1833/3466 SSc (lcSSc) 2.57 1.2*10−11

STAT4 [44, 45] Signal Transducer and activator
of transcription 4

2q32 rs3821236 GWAS 2296/5171 SSc 1.30 3.9*10−9

TNFAIP3 [28, 37] TNF-associated interacting protein 3 6q23 rs5029939 CG 1202/1196 SSc 2.08 1.2*10−7

TNFSF4 [9, 31, 93] TNF superfamily member 4 1q25 rs2205960 CG 1031/1014 ACA+ 1.33 1.3*10−5

Genes that have been shown to be significant in two or more studies are in italics

lcSSC limited cutaneous systemic sclerosis, SNP single nucleotide polymorphism, OR odds ratio, CG candidate gene, GWAS genomewide association
study, GWA FU GWAS follow-up study, SSc systemic sclerosis, ATA anti-topoisomerase I antibody, ACA anti-centromere antibody, SScPAH SSc-
associated pulmonary arterial hypertension
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associations at the DNASE1L3, SCHIP1-IL12A, and ATG5
loci [50]. Additionally, this work allowed dense HLA
mapping stratified by antibody status (centromere and
topoisomerase); using this large collection, and employing
imputation and conditional analysis, they were able to
identify a model composed of six polymorphic amino acid
positions and seven SNPs which explains all observed
associations in the HLA region in SSc and its serological
subphenotypes. In a second study by Martin et al., the
authors performed a meta-analysis of previous GWAS in-
cluding both SSc and systemic lupus erythematosus (SLE)
patients for a total of 6835 cases and 14,274 controls [51].
After replication of top hits in an independent SSc case–con-
trol study, this study identified novel SSc associations at
KIAA0319L and the previously described SLE susceptibility
loci PXK and JAZF1. An additional GWA follow-up study
identified a genomewide significant association of SSc with
polymorphism near PPAR-γ [52], a gene implicated in metab-
olism, immunity, and protection from fibrosis [53].

Pathways and Potential Biomarkers Implicated
by Human Transcriptomic and Proteomic Studies

While genomic technologies have yielded major insights into
genetic predisposition, utilization of other Bomics^ ap-
proaches, including transcriptomics and proteomics, has

yielded additional important insights into pathways activated
during SSc and in different patient subsets.

Microarray Intrinsic Subsets

Given the availability of skin as a target tissue in SSc, tran-
scription profiling of skin biopsies from scleroderma patients
has been undertaken and has yielded significant insights into
scleroderma.Microarray studies have identified pathways that
are activated in patients with disease and also identified novel
patient subsets based on molecular expression patterns. Be-
yond the clinical classification of limited and diffuse SSc, the
lack of biomarkers to explain patient heterogeneity has been a
major limitation in identifying patients with different progno-
ses, and skin microarray has identified novel ways of evaluat-
ing SSc patients. Furthermore, the gene expression pattern has
been shown to serve as a genetic biomarker for skin severity as
a 44-gene subset can predict patients’ modified Rodnan skin
score (MRSS), a validated SSc-specific skin disease severity
score [54, 55].

Skin biopsy microarrays are not only able to distinguish
SSc from normal skin but also have proven helpful to classify
SSc patients into fibroproliferative, inflammatory, limited, and
normal-like subsets based on a core set of genes known as an
Bintrinsic subset^ [54]. Michael Whitfield and colleagues
have subsequently confirmed the validity of these subsets
[55–58] and utilized them to better understandmolecular strat-
ification of patients.

Table 2 Additional SSc genetic associations with one study with p value between 5*10−4 and 5*10−8

Symbol Gene name Locus SNP Approach Case/control SSc
phenotype

OR p value

BANK1 [27, 94] B cell scaffold protein with ankyrin repeats 1 4q24 rs10516487 CG 1295/1137 dcSSc 1.30 4.0*10−4

BLK/C8orf13 [32, 85] B lymphocyte kinase/chromosome 8
open reading frame 13

8p23 rs2736349 CG 1639/1416 SSc 1.27 6.8*10−5

CD226 [33] Cluster of differentiation 226 18q22 rs763361 CG 1990/1642 SSc 1.22 5.7*10−5

GRB10 [64] Growth factor receptor-bound protein 10 7p12 rs12540874 GWAS 3360/10,143 lcSSc 1.15 1.3*10−6

IL2RA [40] IL-2 receptor alpha 10p15 rs2104286 CG 3023/2735 ACA+ 1.30 2.1*10−4

JAZF1 [51] JAZF zinc finger 1 7p15 rs1685352 GWAS 2761/3720 SSc 1.14 3.6*10−5

KCNA5 [30] Potassium voltage-gated channel,
shaker-related subfamily, member 5

12p13 rs10744676 CG 1576/1033 SScPAH 0.64 3.0*10−4

KIAA0319L [51] KIAA0319L 1p34 rs2275247 GWAS 2761/3720 SSc (lc) 1.46 3.9*10−6

NKFB1 [39] Nuclear factor kappa beta 1 4q24 rs1598859 GWA FU 5270/8326 SSc 1.14 1.0*10−6

PPARG [52] Peroxisome proliferator-activated
receptor gamma

3p25 rs310746 GWA FU 2921/6963 SSc 1.25 5.0*10−7

PSD3 [39] Pleckstrin and Sec7 domain-containing 3 8p22 rs10096702 GWA FU 5270/8326 SSc 1.18 3.0*10−7

PXK [51] PX domain-containing serine/threonine kinase 3p14 rs2176082 GWAS 2761/3720 SSc (ACA) 1.21 4.4*10−7

RHOB1 [45] Ras homolog family B 2p24 rs13021401 GWAS 564/1776 SSc 1.21 3.7*10−6

RPL41 [64] Ribosomal protein L41 12q13 rs11171747 GWAS 1699/10,143 dcSSc 1.23 6.0*10−8

SOX5 [64] Sex-determining region Y-box 5 12p12 rs11047102 GWAS 1791/10,143 ACA+ 1.36 1.4*10−7

TLR2 [36] Toll-like receptor 2 4q32 rs5743704 CG 1622/1462 SSc 2.24 3.0*10−4

TNIP1 [45] TNFAIP3 interacting protein 1 5q32 rs2233287 GWA FU 4389/7611 SSc 1.19 1.9*10−4
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The inflammatory group, marked by genes from the
immune system response and inflammatory response
Gene Ontology pathways, also includes upregulation of
interferon-inducible genes, genes involved in vasculature
development, and genes associated with fibrosis [54,
55]. This group tends to include patients with aggressive skin
disease but more robust response to immunosuppressive treat-
ment (mycophenolate mofetil) [58]. In contrast, the
fibroproliferative group expresses genes from the mitosis,
chromosome segregation, and DNA metabolic process path-
ways and tends to be more treatment refractory [54, 55, 58].
While initially thought to be intrinsic and identifying sta-
ble disease subsets [55], subsequent studies have shown
that individual patients can change subsets both over time
and in response to treatment with mycophenolate mofetil
[58]. While not the primary pathway identified in unbi-
ased analyses, the TGF-β pathway has been shown to be
activated in patients with a fibroproliferative intrinsic sub-
set; this also correlates with downregulation of the
PPAR-γ pathway [56, 59].

Interferon-Inducible Signature

In peripheral blood and PBMCs, microarray studies have
identified that roughly half of SSc patients possess an inter-
feron signature similar to that seen in SLE and other autoim-
mune diseases [60–62]. Other studies have shown that
plasmacytoid dendritic cells (pDCs) are the primary source
of the interferon [63]. Given this finding, along with the asso-
ciation of SSc with polymorphisms in interferon regulatory
factors IRF5 and IRF8 [44, 64], the interferon pathway may
be playing a critical role in modulating SSc pathogenesis [65].
One study demonstrated that the plasma interferon score was
higher in SSc patients than controls and correlated with
Medsger disease severity index and pulmonary function pa-
rameters [66].

CXCL4

Proteomic analysis is still in its infancy but holds tremendous
promise for the identification of potential biomarkers. In a

Fig. 1 Schematic of cellular roles for molecules genetically implicated in
SSc pathogenesis. Tissue injury leads to release of self antigens and
subsequent cell-mediated (via MHC) and innate (via TLRs) immune ac-
tivation. Cells implicated in SSc and molecules genetically implicated in

SSc (italicized, boxed) are emphasized. Cell interaction and cell products
lead to immune-mediated fibroblast activation and subsequent tissue
fibrosis
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recent study, proteomewide analysis showed that CXCL4 is
the predominant protein secreted by pDCs in SSc, both in
circulation and in skin [67]. The levels seen in SSc patients
were substantially higher than those seen in other autoimmune
diseases such as SLE and ankylosing spondylitis, higher in
diffuse cutaneous than limited cutaneous disease, and higher
in earlier dcSSc than in long-standing disease. Furthermore,
levels correlated with skin and lung fibrosis and with pulmo-
nary arterial hypertension, indicating that this may represent a
novel disease-specific biomarker with prognostic
significance.

In another study which used proteomics from pDCs to
identify novel biomarkers, plasma levels of the Toll-like re-
ceptor agonist S100A8/9 were found to be elevated in SSc
patients compared to controls [68].

Insights From Rare Sclerodermatous Diseases

Cancer-Associated RNA Polymerase III Antibody SSc

Anti-RNA polymerase 3 antibodies are observed in roughly
10 % of SSc patients although prevalence is variable based on
genetics and geography [69]. Joseph et al. performed an ele-
gant study to determine whether RNA polymerase III antibod-
ies may derive from cancer among the subset of SSc patients
who develop them [70]. In previous studies, RNA pol III
patients have been identified as being at a significantly in-
creased risk of cancer and also of having a cancer diagnosis
prior to or near the time of SSc diagnosis [71, 72]. Joseph et al.
successfully isolated tumor DNA from histologic slides and
identified mutations in the POLR3 gene or loss of heterozy-
gosity in six of eight patients with cancer and RNA polymer-
ase III antibodies and no patients with SSc and cancer with
other autoantibodies [70]. Furthermore, immunologic charac-
terization of the CD4+ T cells from patients with POLR3 tu-
mor mutations demonstrated the presence of Tcells reactive to
the RPC1 peptide (an RNA polymerase III subunit encoded
by POLR3) that are patient, peptide, and HLA specific.

Stiff Skin Syndrome

The stiff skin syndrome (SSS) is a rare Mendelian disorder
caused by mutations in the fibrillin gene, the same gene re-
sponsible for Marfan syndrome, which is associated with
highly elastic connective tissue. Unlike SSc, SSS does not
portend other internal organ manifestations and is not associ-
ated with autoimmunity or vasculopathy [73]. Gerber et al.
[74] attempted to recapitulate this disease utilizing a knock-
in strategy to create a strain of mice carrying a mutated
fibrillin-1 allele identified in patients with SSS and another
mutant mouse strain (D1545E) harboring an integrin mutation
predicted to disrupt integrin binding to fibrillin-1. Bothmutant

mice strains developed dermal fibrosis accompanied by ex-
cess collagen deposition as well as progressive loss of intra-
dermal adipose tissue. In addition to skin fibrosis, the trans-
genic mice spontaneously developed marked cutaneous in-
flammation, with accumulation of pDCs, Th2- and Th17-
skewed T helper cells, and plasma cells. Moreover, these mice
developed circulating anti-topoisomerase I antibodies. Because
fibrillin-1 is known to modulate TGF-β signaling and because
the SSS fibrillin-1 mutations specifically affect the integrin-
binding domain, the authors speculated that the stiff skin phe-
notype might be due to unchecked TGF-β activation and in-
creased TGF-β signaling [74]. Interestingly, treatment of the
mutant mice with a neutralizing antibody to TGF-β, as well
as alpha-1 integrin-activating antibody, was able to reverse the
fibrotic process and mitigate the immune dysregulation.

Insights From Genetic Mouse Models of Scleroderma

The most commonly utilized mouse model of scleroderma
remains the bleomycinmodel which nicely recapitulates many
of the seminal features of the disease, including fibrosis and
inflammation. However, because this is a chemical injury
model with largely unknown molecular mechanism(s), multi-
ple attempts have been made to engineer or discover genetic
mouse models that may yield important insights into disease
pathogenesis. While none of the genetic models to date ade-
quately recapitulates all disease features, the growing diversity
of models enables researchers to study different aspects of
disease and determine the effects of modulation of multiple
relevant pathways on outcomes important in SSc. In Table 3,
we summarize 11 different genetic models which appear to
recapitulate important aspects of SSc.

Tsk1 and Stiff Skin Syndrome Models: Fibrillin-1

The tight skin mouse, which shows prominent spontaneous
fibrosis of the hypodermis, has been widely used as a genetic
mouse model of SSc, although exactly how this model corre-
sponds with human disease has been difficult to explain. The
Tsk1mouse has now been shown to be caused bymutations in
the fibrillin gene [75–77]. In the recent model by Gerber et al.
discussed in BStiff Skin Syndrome,^ knock-in human fibrillin-
1 mutations were introduced and the mice demonstrated a
phenotype that included dermal fibrosis, inflammation, and
autoimmunity. It is interesting that previous descriptions of
human SSS have not described either a significant inflamma-
tory component in the skin lesions nor described the autoim-
munity that is seen in the mice. Whether this represents poor
clinical characterization of human SSS due to its rarity or
whether the mouse model more closely resembles SSc than
SSS, the mouse model clearly recapitulates aspects of human
fibrotic skin disease. It is not clear, however, whether it is a
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model of SSS, SSc, or a unique murine entity that lacks a
human correlate.

Tsk2

The Tsk2 mouse may more closely mimic human disease (it
spontaneously displays fibrosis, inflammation, and autoim-
munity); while the ENU-induced locus is on chromosome 1,
genetic studies are ongoing to elucidate the genetic lesion in
this model [78].

TGF-β pathway

TGF-β is widely cited as the pathogenic molecule in SSc and
other forms of fibrosis. Mice with an inducible constitutively
active TGF-β receptor I (TGF-β RI) mutation driven by a
fibroblast-specific promoter have been generated and demon-
strate fibrosis of the dermis and fibrotic thickening of small
blood vessel walls in the lung and kidney [79]. Primary skin
fibroblasts from these mice showed elevated expression of
downstream TGF-β targets, reproducing the hallmark bio-
chemical phenotype of explanted SSc dermal fibroblasts.
Constitutive activation of TGF-β in fibroblasts is therefore
sufficient to induce a fibrotic phenotype.

Wnt and PPAR-γ pathways

The Wnt pathway is a key developmental and homeostatic
pathway in multiple tissues, and alterations in the pathway
have been shown to be pro-fibrotic. Patients with SSc have
increased fibroblast levels of β-catenin, a key Wnt mediator.
Mice with fibroblast-specificβ-catenin ablation rapidly devel-
op skin fibrosis [80], while pharmacologic treatment withWnt
antagonists can reverse skin fibrosis [81]. Transgenic mice
expressing Wnt-10b in adipose tissue showed not only pro-
gressive loss of subcutaneous adipose tissue but also dermal
fibrosis, increased collagen deposition, fibroblast activation,
and myofibroblast accumulation [82]. Wnt activity correlated
with collagen gene expression in these biopsy specimens. This
suggests that Wnt-10b switches differentiation of mesenchy-
mal cells towardmyofibroblasts by inducing a fibrogenic tran-
scriptional program while suppressing adipogenesis.

Fibroblast-specific deletion of PPAR-γ, the master regula-
tor of adipogenesis, results in enhanced susceptibility to
bleomycin-induced skin fibrosis and enhanced sensitivity of
fibroblasts to TGF-β1 in PPAR-γ-deficient mice. These re-
sults indicate that PPAR-γ suppresses fibrogenesis [83].

Fra-2 and sUPAR: Models of SSc Vasculopathy

The expression of the transcription factor Fra-2 is upregulated
in SSc patients and in different mouse models of SSc. Fra-2
transgenic mice have been shown to develop spontaneous skinT
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and lung fibrosis and vasculopathy (including skin
microvasculopathy and pulmonary artery enlargement consis-
tent with pulmonary hypertension) which are mediated by
TGF-β and PDGF [84]. This is particularly important because
most other mouse models (both genetic and inducible) do not
demonstrate significant vasculopathy which is a key clinical
feature of SSc [86].

Urokinase-type plasminogen activator receptor (uPAR) has
been implicated in SSc microvasculopathy. Mice deficient in
soluble uPAR demonstrate skin fibrosis as well as decreased
microvessels which were shown to have undergone apoptosis
[87]. While these mice did demonstrate lung disease, it was
more reminiscent of chronic pneumonia than of pulmonary
fibrosis.

SSc Heterogeneity and Genetics

Nearly all of the genetic associations reviewed in BImmune
Genes Implicated by Large-Scale Genetic Studies^ represent
genes involved in immunity, and associations with the same
genes have been reported in multiple other autoimmune dis-
eases. Despite the prominent fibrotic features of SSc, genetic
studies to date have not identified major risk factors related to
genes involved in the process of fibrosis [88]. Interestingly,
recent studies have looked at SSc lung disease and idiopathic
pulmonary fibrosis (IPF) and found little genetic overlap, sug-
gesting that the fibrosis in SSc and ILD may be distinct [89,
90]. One explanation for the lack of fibrotic genes identified
may be that the design of many of the studies, including the
recent Immunochip and SSc–SLE pan-meta-GWAS, was bi-
ased toward identification of immune system loci. Because a
core set of known fibrotic genes has not yet been identified, a
similar strategy to enhance the identification of fibrotic genes
is not as easily achievable. Furthermore, if fibrosis is second-
ary to either epigenetic changes or a process secondary to an
aberrant immune response (see Fig. 1), that could explain the
lack of fibrotic genes identified in otherwise largely agnostic
GWAS.

Identification of genetic variants that contribute to SSc has
been complicated by the complexity and heterogeneity of the
disease. SSc behaves more like a syndrome than a unified
disease as SSc patients can have multiple different clinical
phenotypes and patterns of organ involvement. As personal-
ized medicine advances, we may learn that there are in fact
multiple or even numerous unique disease entities that are all
currently classified as SSc. Cancer-associated RNA polymer-
ase III antibody-associated SSc [70] is probably one example
of molecularly defined disease that has a novel pathogenesis
and may respond differently to treatment. For the purpose of
understanding disease, heterogeneity likely hampers scien-
tists’ ability to identify genetic risk loci because cases repre-
sent patients with a multitude of SSc-related conditions.

The contribution of race/ethnicity represents another com-
plicating factor; there are genetic differences between and
across ethnicities which affect prevalence and relative impor-
tance of genetic susceptibility loci. Furthermore, Caucasian
and Asian populations have been well represented in genetic
studies compared to African-Americans, who have more se-
vere SSc manifestations. Indeed, all of the large-scale genetic
studies reviewed in BImmune Genes Implicated by Large-
Scale Genetic Studies^ have focused on Caucasian popula-
tions, and further analysis of other ethnic groups may yield
new genetic insights, as has been seen in other diseases [91].

Attempts to subclassify patients are frequently made on the
basis of skin disease (limited versus diffuse cutaneous dis-
ease), autoantibodies, and organ involvement (particularly
lung disease [3, 92]). There has already been substantial work
to determine whether genetic associations are present only in
certain SSc subtypes (mostly lcSSc/dcSSc and ATA/ACA).
However, limited clinical phenotyping makes it difficult to
study homogeneous SSc patient groups that represent disease
endophenotypes and may have more distinct and clear-cut
genetic predispositions.

More recently, the use of skin biopsy microarray intrinsic
subsets as a way of classifying disease has been proposed as
identifying disease endophenotypes [92]. Identification of ad-
ditional novel biomarkers may further enable biological clas-
sification into subtypes, and that should hopefully contribute
to better understanding of patients’ genetic susceptibility to
SSc. With functional studies such as gene expression analysis,
another challenge for understanding SSc is studying specific
classes of SSc cells and tissues. Because SSc has multiple
diverse manifestations, it is difficult to determine which cell
type is most appropriate for investigation. A great deal of
focus has been on dermal fibroblasts, but whether these cells
are primary or secondary in disease pathogenesis remains un-
clear. Similarly, while immune cells are clearly relevant, it
remains unclear whether lymphocytes, dendritic cells,
macrophages, or other cell types are most relevant. While
the vasculature and lungs are clearly important, these tis-
sues remain difficult to acquire. Skin biopsy remains an
important tissue which is accessible and is of diagnostic/
prognostic significance, but because skin is very hetero-
geneous (keratinocytes, dermal fibroblasts, immune cells,
adipocytes, vessels), analysis of gene expression may be
obscured by genetic Bnoise^ from multiple cell types. As
cell-based assays and systems biology approaches devel-
op further, it will be increasingly important to identify
which cells to study and to study them in isolation in
order to understand the biological relevance of SSc genet-
ic associations. Figure 1 illustrates which cell types the
identified genetic variants affect and how these may con-
tribute to the pathogenesis of SSc.

With the advent of next-generation sequencing, there
is also a movement toward personalized genomics.
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Despite the recent identification of a number of suscep-
tibility loci in SSc as reviewed in BImmune Genes Im-
plicated by Large-Scale Genetic Studies,^ other than
HLA, the variants identified are not likely to be the causative
variants. This is because GWAS utilize common (with the
minor allele >5 % in the population) single nucleotide poly-
morphisms that are in linkage disequilibrium with implicated
causative genetic variants. Furthermore, the total contribution
of susceptibility loci discovered by GWA and follow-up stud-
ies explains only a fraction of the Bheritability^ of the disease.
These concepts lead many to believe that there exist many rare
variants with relatively large effects, which, in aggregate, ac-
count for the remaining prevalence of the disorder. These so-
called private mutations can be identified with exome or
whole genome sequencing and may be able to explain indi-
vidual patients’ genetic predisposition for disease. While such
private mutations may be present in only one or very few
affected individuals, identification of multiple private muta-
tions within genes or in common pathways may also help
elucidate disease pathogenesis that is more broadly relevant
and inform the development of therapies that may help classes
of patients.

While genetics clearly contributes importantly to SSc path-
ogenesis, it does not fully explain disease susceptibility. En-
vironmental factors and associated epigenetic changes likely
contribute importantly as well [23]. In addition to better epi-
demiologic studies to identify exposures such as chemicals
and viruses that may influence disease risk, studies of epige-
netic DNAmodifications may also be crucial to understanding
the molecular processes central to SSc.

SSc remains one of the most mysterious and difficult to
treat diseases in modern medicine. While many studies have
provided novel insights into genetic risk factors and pathways
that are dysregulated, there remains a huge gap between cur-
rent knowledge, understanding of pathogenesis, and the iden-
tification of effective treatments. The heterogeneity of SSc
complicates its understanding, but modern omics technologies
and better clinical phenotyping are contributing toward the
goal of SSc being a disease that can be understood with sys-
tems biology tools and more effectively treated with a person-
alized medicine approach.
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