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Abstract Arterial hypertension is the most prevalent control-
lable disease world-wide. Yet, we still need to further improve
blood pressure control, deal with resistant hypertension, and
we hope to reduce risk Bbeyond blood pressure.^ The number
of candidate molecules aspiring for these aims is constantly
declining. The new possible approaches to combat high blood
pressure include neprilysin/neutral endopeptidase (NEP) inhi-
bition, particularly when combined with an angiotensin recep-
tor blockade (such as the ARNI, LCZ696), phosphodiesterase
5 (PDE5) inhibition (KD027/Slx-2101), natriuretic agents
(PL3994), or a long-lasting vasointestinal peptide (VIP) ana-
logue (PB1046). Other options exploit the protective arm of
the renin-angiotensin-aldosterone system by stimulating the
angiotensin AT2 receptor (compound 21), the Mas receptor
(AVE-0991), or the angiotensin converting enzyme 2. Finally,
we review the possibilities how to optimize the use of the
available treatment options by using drug combinations or
by tailoring therapy to each patient’s angiotensin peptide
profile.
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Introduction

Arterial hypertension is a wide-spread but controllable disease
affecting as much as 30–45 % of general population [1]. De-
spite the broad spectrum of the already available pharmaco-
logical (as well as nonpharmacological) means for blood pres-
sure control, there is no evidence for a change in average
blood pressure values over the past decades [1]. Moreover,
the rate of stroke (as an indirect indicator of blood pressure
levels in the population) tends to increase in eastern European
countries [2]. Thus, there is an obvious medical demand for
novel approaches to treat high blood pressure.

At the first glance, there is a huge interest in the develop-
ment of novel pharmacological agents. The latest available
Pharmaceutical Research and Manufacturers of America
(PhRMA) report lists 17 new drugs for hypertension in clini-
cal development in 2013 [3]. However, a closer look reveals
that the prospects to see a new drug entering the rink are much
less promising. From the 17 compounds in development, two
deal with preeclampsia, two represent clinical studies of al-
ready approved drugs (aliskiren and azilsartan medoxomil) in
pediatric population, and six are a fixed-dose combination of
already established agents. There have been six novel mole-
cules approved by the FDA for the treatment of hypertension
in this millennium (valsartan in 2001, eplerenone in 2002,
olmesartan in 2003, aliskiren in 2007, clevidipine in 2008,
and azilsartan medoxomil in 2011). With other words, the last
new first-in-class (maybe for some time the only in class) for
hypertension, aliskiren, was approved 7 years ago, and the last
new molecule, azilsartan, was approved 3 years ago. These
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numbers are in contrast with the large pipeline for heart failure
which lists 30 drugs in development, or in contrast with the
five novel anticoagulants (three different modes of action),
four new antiplatelets (two different modes of action), or five
new molecules for the treatment of pulmonary hypertension
(four modes of action) having been approved in the same time
period by the FDA [4].

The reluctance to invest in the development of novel mol-
ecules for hypertension can be explained by the highly com-
petitive pharma-environment (several established drug clas-
ses, some with dozen of compounds, and a large number of
generics) in the field of high blood pressure treatment. This
situation prompted the interest in nonpharmacological means
for high blood pressure reduction. Yet, after some promising
trials and large hopes with nonpharmacological therapies, the
previously recognized drivers for new treatment approaches
still remain in place. We need to improve blood pressure con-
trol, deal with resistant hypertension, and we are still on the
outlook for the BHoly Grail^: risk reduction beyond blood
pressure reduction [5]. With these needs in mind, the prospect
of seeing a new antihypertensive molecule to enter the scene
might not look so gloomy. Although few, the compounds in
development listed by PhRMA provide an exciting range of
modes of action: neprilysin/neutral endopeptidase (NEP) in-
hibitor (alone/combined with an angiotensin (AT1) receptor
blocker (ARB)), a phosphodiesterase 5 (PDE5) inhibitor, na-
triuretic agents, and a long-lasting vasointestinal peptide (VIP)
analogue. Of course, the list is not all-inclusive. The discov-
eries of the Bprotective renin-angiotensin-aldosterone system
(RAAS)^ have triggered the interest in angiotensin AT2 re-
ceptor (AT2 receptor) agonists, angiotensin converting en-
zyme (ACE) 2 stimulators, or Mas receptor agonists. Al-
though those are still in the preclinical phase, they are good
candidates for a putative new antihypertensive in the near
future.

In the present review, we are going to review the recent
development and the therapeutic potential of these candidate
molecules (Table 1).

Vasopeptidase Inhibitors

Dual ACE/NEP Inhibition

NEP, neprilysin, or membrane metallo-endopeptidase is a
metalloprotease which hydrolyses several peptide hormones
rendering them inactive. Among its substrates are
vasoconstritive (Ang I, II, endothelin) as well as vasodilative
(natriuretic peptides, kinins) mediators [6]. The enhancement
of natriuretic peptides concentrations by NEP inhibition was
hypothesized to be able to augment the blood pressure-
lowering properties of RAAS inhibition. The first dual inhib-
itors were combining NEP and ACE inhibition. Sampatrilat

lowered blood pressure in hypertensive patients poorly con-
trolled by ACE inhibitors [7]. Omapatrilat showed promising
results not only in hypertensive patients in the OCTAVE trial
but also in the heart failure OVERTURE trial as well. How-
ever, both of these trials reported higher occurrence of angio-
edema in patients treated with omapatrilat [8, 9]. Next-
generation NEP/ACE inhibitor, ilepatril, (AVE7688) was de-
signed to have improved specificity and prolong the ACE
inhibition. Ilepatril dose-dependently reduced blood pressure
in mild to moderate hypertensive patients in the phase IIb
RAVEL-1 trial [10, 11]. Although a phase III trial was expect-
ed, no results were reported yet and no such trial is being listed
on clinicaltrials.org.

Dual Angiotensin (AT1) Receptor/NEP Inhibition

Another drug class combines NEP inhibition with an ARB
moiety, so-called ARNI. LCZ696 combines the ARB
valsartan moiety with the prodrug NEP inhibiting moiety
sacubitril (AHU377). A breakthrough study for LCZ696
was its phase II, randomized, double-blind, placebo- and
active-controlled clinical trial in 1328 patients with mild to
moderate essential hypertension [12••]. After 8 weeks of treat-
ment, 200 and 400 mg LCZ696 reduced sitting systolic and
diastolic blood pressure more than the corresponding 160 and
320 mg valsartan doses. Moreover, 200 mg LCZ696 led to
better blood pressure control and larger pulse pressure reduc-
tion compared to valsartan. Especially the safety results,
which in contrast to the previous vasopeptidase inhibitors
did not report any angioedema in this study [12••], have
boosted further development of this compound. A smaller
placebo-controlled study in 457 patients from Asia confirmed
a significant blood pressure reduction after 8 weeks of treat-
ment for 100, 200, and 400 mg LCZ696 and no occurrence of
angioedema [13]. In addition, the effects of LCZ696 were
investigated in the setting of heart failure or organ protection.
First, LCZ696 achieved greater reduction in N-terminal pro b-
type natriuretic peptide (NT-ProBNP) levels and preserva-
tion of estimated glomerular filtration rate compared to
valsartan in the phase II PARAMOUNT trial in heart fail-
ure patients with preserved ejection fraction [14, 15].
Moreover, these effects of LCZ696 were independent of
the systolic blood pressure reduction [16]. Second, the
PARADIGM-HF trial in patients with heart failure with
reduced ejection fraction was halted prematurely due to an
overwhelming effect of LCZ696. Compared to enalapril
treatment, LCZ696 reduced the primary end-point by
20 %, all-cause mortality by 16 %, and cardiovascular
mortality by 20 % [17•]. In addition, LCZ696 reduced
NT-ProBNP levels and slowed clinical progression more
effectively than enalapril [18]. By indirect comparison,
the all-cause mortality reduction translated to a striking
26–28 % reduction over putative placebo on the

42 Page 2 of 13 Curr Hypertens Rep (2015) 17: 42



background of β-blocker and mineralocorticoid receptor
antagonist (MRA) treatment [19]. In the PARADIGM-HF
trial, angioedema developed in 10 out of 4187 patients in
the LCZ696 group (compared to 5/4212 in the enalapril
group), but there were fewer treatment discontinuations
with LCZ696 compared to enalapril [17•]. Finally, bene-
ficial effects of LCZ696 might comprise the attenuation of
cardiac remodeling and dysfunction after myocardial

infarction as suggested by a small animal study [20] or
the improvement of aortic stiffness and central aortic he-
modynamics as being currently investigated in the PARA
METER trial [21]. While LCZ696 is proceeding in clini-
cal development for hypertension as well as heart failure
[3], another putative ARNI, the VNP489, seems to be put
on hold [22].

Dual NEP/Endothelin Inhibition and Angiotensin (AT1)
Receptor/Endothelin Blockade

Endothelin (predominantly endothelin-1, ET-1) via its recep-
tors (ETA and/or ETB) triggers vasoconstriction (both system-
ic as well as pulmonary), promotes inflammation, oxidative
damage, fibrinogenesis, and atherosclerosis, and is involved
in salt and water regulation [23–25]. The development of most
studied endothelin receptor antagonist (selective ETA antago-
nist, darusentan) for systemic hypertension was discontinued.
Darusentan significantly reduced blood pressure in placebo-
and active-controlled trials in hypertension DAR-311
(DORADO) and DAR-312 (DORADO-AC), but its tolerance
was compromised by salt and water retention and the occur-
rence of peripheral edema [26, 27]. Another ETA antagonist,
TBC3711, which was previously investigated for resistant hy-
pertension [5], has not been investigated further for the treat-
ment of high systemic blood pressure. Several endothelin re-
ceptor antagonists are established in the treatment of pulmo-
nary arterial hypertension. In this indication, even two new
molecules, ambrisentan (2007) and macitentan (2013), have
been approved by the FDA recently [4]. Their high selectivity
for the pulmonary vasculature, which is desired in pulmonary
hypertension treatment, renders them unlikely to be investi-
gated for arterial hypertension.

Two different approaches were implemented in order to
take advantage of ET-1 antagonism in the treatment of sys-
temic hypertension: to combine ET-1 receptor antagonism
with ARB or to combine endothelin converting enzyme
(ECE) inhibition with NEP inhibition. For both of these ap-
proaches, some promising data were released, but both seem
to be currently suspended. ARB/ETA blockade was combined
in PS433540, which in a phase IIb trial in stage 1–2 hyperten-
sive patients reduced blood pressure compared to placebo and
for the highest investigated dose (800 mg) also compared to
irbesartan [22]. Dual ECE/NEP inhibition was combined in
SLV306 (daglutril, prodrug for KC12615), SLV336, and
SLV338. For SLV338, only preclinical data are available. It
significantly reduced the incidence of stroke and improved
survival in stroke-prone spontaneously hypertensive rats
(spSHR), however, in a blood pressure-independent manner
[28]. On the other hand, besides having reduced proteinuria
and glomerulosclerosis in streptozotocin-induced diabetic rats
similarly to captopril [29], daglutril attenuated pulmonary and
right atrial pressure in patients with congestive heart failure

Table 1 Molecules currently or previously in development for
hypertension treatment

Mode of
action

Compound(s) (phase of clinical investigation)

Investigation for hypertension (active/inactive)

Angiotensin converting enzyme/neprilysin inhibitors

Inactive Sampatrilat (III), omapatrilat (III),
ilepatril (AVE-7688, IIb/III)

Angiotensin (AT1) receptor/neprilysin inhibitors (ARNI)

Active LCZ696 (Sacubitril, AHU377) (III for HT and HF)

Inactive VNP489 (I)

Endothelin receptor blockers

Inactive Darusentan (III), TBC3711 (II), Ambrisentan
(2007 approved for PAH), Macitentan
(2013 approved for PAH)

Endothelin receptor/angiotensin (AT1) receptor blockers

Inactive PS433540 (IIb)

Endothelin converting enzyme/neprilysin inhibitors

Active SLV336 (PC), SLV338 (PC), SLV306
(daglutril, KC126115) (II)

Phosphodiesterase 3 inhibitors

Inactive Cilostazol (1999 approved for IC)

Phosphodiesterase 5 inhibitors

Active KD027 (Slx-2101) (II)

Inactive Vardenafil (2003 approved for PAH),
Tadalafil (2009 approved for PAH; II for HT)

Vasoactive intestinal peptide analogue

Active PB1046 (II further studies probably in HF and PAH)

Natriuretic peptide and natriuretic molecules

Active PL3994 (IIa)

Inactive MK-7145 (Ib), MK-8150 (Ib)

Angiotensin AT2 receptor agonists

Active Compound 21 (PC)

Inactive LP2 (PC), CGP42112A (PC)

Mas receptor agonists

Inactive AVE-0991 (PC), NorLeu3-Ang (1–7) (PC),
CGEN-856 (PC), PanCyte Ang (1–7) (PC)

Active Hydroxypropyl-Ang (1–7) (PC)

Angiotensin converting enzyme 2 supplementation/activators

Active rhACE2 (APN01) (II further studies in acute lung injury)

Inactive XNT (PC), diaminazene (DIZI) (PC)

HF heart failure, HT hypertension, IC intermittent claudication, PAH
pulmonary arterial hypertension, PC pre-clinical phase
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[30]. The interest in daglutril might be revived by the recently
published randomized, crossover, double-blind, placebo-
controlled trial in hypertensive patients with type 2 diabetes
and nephropathy. In this trial, daglutril improved blood pres-
sure control and showed an acceptable safety profile. On the
other hand, albuminuria in these patients remained unaffected
by daglutril treatment [31, 32••].

Phosphodiesterase Inhibition

Phosphodiesterases (PDE) inhibit the degradation of cyclic
monophosphates. Of clinical significance are PDE3 and
PDE5. The inhibition of PDE3 prevents the degradation of
cyclic adenosine monophosphate (cAMP) and cyclic guano-
sine monophosphate (cGMP) preferentially in thrombocytes.
A PDE3 inhibitor, cilostazol, is used to improve walking dis-
tance in patients with intermittent claudication. Cilostazol also
attenuated pulmonary hypertension in rats [33] and improved
right ventricle function and reduced pulmonary artery pressure
in patients with right heart failure or moderate pulmonary
arterial hypertension [34]. Due to its selectivity, cilostazol
does not exert an influence on systemic blood pressure [35]
and is not investigated for the treatment of hypertension. How-
ever, cilostazol reduces arterial compliance [35] and might
improve cardiovascular risk in certain groups of patients [36,
37] suggesting some potential for its use as concomitant ther-
apy in patients with arterial hypertension.

Even more research was focused on PDE5. PDE5 inhibi-
tors reduce the degradation of cGMP, with the subsequent
vasodilatory, antiproliferative, and antiaggregation effects.
Due to the selective expression of PDE5, they have become
established in the treatment of pulmonary arterial hyperten-
sion and erectile dysfunction. Since 2000, two new PDE5
inhibitors have joined sildenafil as approved drugs for pulmo-
nary arterial hypertension: vardenafil (2003) and tadalafil
(2009) [4]. Previously, sildenafil produced a 10/8 mmHg
acute blood pressure reduction in a small study of six subjects
with resistant hypertension. The effects were remarkably aug-
mented by the combination of sildenafil with isomononitrate
[38]. Tadalafil as well has previously been in the clinical phase
II of investigation for arterial hypertension [5]. The blood
pressure-lowering effect of tadalafil in the studies was low
(−1.6/−0.8 mmHg) [39], and the drug has not been filed for
approval in systemic hypertension. Nevertheless, in hyperten-
sive patients, when tadalafil was added to metoprolol,
bendrofluorothiazide, or an ARB (but not enalapril or
amlodipine), it produced mild but significant blood pressure
reduction [40]. Moreover, some recent studies suggested a
positive, blood pressure-independent effect of tadalafil on left
ventricular diastolic function in patients with resistant hyper-
tension [41, 42]. Tadalafil is very unlikely to become a first- or
second-line treatment for hypertension. Yet, due to its

pleiotropic cardiovascular effects [43] in exceptional cases
of resistant hypertension, its trial use might be warranted.
Similar fate is likely to expect another PDE5 inhibitor,
KD027 (Slx-2101). Slx-2101 is being investigated in phase
II studies (NCT00562549, NCT00562614) for hypertension
treatment, but no data on these trials have been published yet.

Vasoactive Intestinal Peptide Agonist

Vasoactive intestinal peptide (VIP) is a neuropeptide hormone
produced in many tissues, such as the intestine, pancreas, and
hypothalamic nuclei. However, VIP potently modulates car-
diovascular function as well. It stimulates contractility in the
heart, causes vasodilation, increases glycogenolysis, lowers
arterial blood pressure, and relaxes the smooth muscle of the
trachea, stomach, and gall bladder. In humans, the VIP is
encoded by the VIP gene. It shows vasodilation and positive
inotropic properties via its vasoactive intestinal polypeptide
receptors 1 and 2 (VPAC1 and VPAC2, respectively). The
VIP levels were shown to be reduced in several models of
hypertension and to correlate closely with left ventricular fi-
brosis [44]. However, the use of VIP in clinical situation is
limited by its short half-life, low bioavailability, and VPAC1-
mediated side effects. The VPAC2 selective, long-lasting VIP
analogue, PB1046, enhanced myocardial contractility and re-
duced the demand of the myocardium in dogs [45•]. The va-
sodilation effects of PB1046 have been demonstrated in pa-
tients with essential hypertension. In two single-dose ascend-
ing studies (NCT01523067, NCT01873885), PB1046 was
well-tolerated and produced a prolonged, dose-dependent ef-
fect on blood pressure [46]. In addition, further clinical devel-
opment of the compound is planned for pulmonary hyperten-
sion and heart failure.

Natriuretic Peptide Receptor A Agonists

Natriuretic peptides, such as the atrial and brain natriuretic
peptides (ANP and BNP, respectively), provide natriuretic,
vasodilatant, and antiproliferative effects via the natriuretic
peptide receptor A (NPRA) and subsequent cGMP accumu-
lation. Therefore, they might be considered for the treatment
of hypertension, heart failure, nephrosclerosis, or stroke [47].
PL3994, MK-7145, and MK-8150 were reported to be in the
clinical phase of development for hypertension [3]. PL3994 is
a cyclic peptide ligand of the NPRA, which is however resis-
tant to degradation by NEP [48]. PL3994 dose-dependently
increased cGMP levels, reduced blood pressure, and induced
natriuresis in healthy volunteers [49] and in patients with ad-
equately controlled essential hypertension, in particular those
treated with an ACE inhibitor [50]. While some development
for PL3994 seems to continue, the results for a MK-7145
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phase Ib study in hypertension (NCT01370655) are not avail-
able, and a study in heart failure patients (NCT01558674) was
terminated. Similarly, two dosing studies (NCT01590810 and
NCT01656408) were performed for MK-8150, but no results
are available and neither of the Merck compounds is being
listed in the Merck pipeline [51] anymore.

The Protective RAAS

The inhibition of RAAS at various levels provides the current
cornerstone for antihypertensive and cardioprotective thera-
pies, such as ACE inhibitors, ARBs, renin inhibitors, miner-
alocorticoid receptor (MR) antagonists (MRAs), or even β-
blockers [52]. However, besides the deleterious components
of RAAS, such as ACE, Ang II, AT1 receptor, aldosterone,
and theMR, there is also a Bprotective arm of the RAAS.^ The
backbone of the protective RAAS is represented by the effects
of the AT2 receptor and Mas receptor stimulation. While the
AT2 receptor is naturally stimulated by the Ang II, the inher-
ent Mas receptor agonist is Ang (1–7) which is formed by
cleavage of Ang II by ACE2 [53]. The discovery of these
components has brought upon the concept of protective
RAAS stimulation, which could supplement the inhibition of
the deleterious arm of RAAS.

Angiotensin AT2 Receptor Agonists

Unlike the AT1 receptor, the expression of the AT2 receptor is
low in the adult vasculature but is upregulated in hypertension
and vascular injury. The action of the AT2 receptor is partly
opposing the AT1 receptor-mediated effects by triggering
antiproliferation, regression of cardiovascular remodeling,
and vasodilation [54]. The signaling pathways include the
activation of protein phosphatases that inactivate the
profibrotic mitogen-activated protein kinases (MAPKs) or
the antiapoptotic Bcl-2 [55], NO/cGMP activation [56], and
phospholipase A2 stimulation [57]. The first AT2 receptor
agonists such as CGP42112A and LP2 were peptides, with
lower specificity for AT2 receptor and not orally available.
Therefore, the possibility to directly investigate the effects of
direct pharmacological AT2 receptor stimulation has been ful-
filled by the development of the first nonpeptide, orally avail-
able, specific, and selective AT2 receptor agonist, compound
21 [58].

The stimulation of the AT2 receptor does not produce va-
sodilation or blood pressure changes, unless the AT1 receptor
is blocked as well [59]. Despite this fact, compound 21 might
be useful in the condition of high blood pressure due to its
immune modulatory properties. The stimulation of the AT2
receptor was demonstrated to lead to inhibition of nuclear
factor κB (NF-κB) activity by epoxidation of 11,12-
epoxyeicosatrienoic acid [60] with subsequent direct and

indirect anti-inflammatory action with augmented interleukin
(IL)-10 production [61, 62] and T cell differentiation to the
Treg phenotype [63].

It is being hypothesized that anti-inflammatory therapy, in
particular IL-10 and transforming growth factor β (TGF-β)
guided Treg-mediated immunosuppression, might provide an
innovative strategy for the treatment of high blood pressure
[64]. Compound 21 might represent a prototype and proof of
this concept. Six-week treatment with compound 21 alone or
in combination with an ARB was investigated in spSHR rats
[65••] and L-Nω-Nitroarginine Methyl Ester (L-NAME)-in-
duced hypertensive rats [66••]. In both studies, compound
21 reduced collagen content in the mesenteric arteries or in
the aorta and improved the elastic properties of the vessels.
The effect on the vascular wall properties elicited by com-
pound 21 was comparable to the changes in the ARB-treated
animals yet without any blood pressure effect. Moreover,
when compound 21 was combined with an ARB, the collagen
content was further reduced, without any additional signifi-
cant blood pressure effect. It was postulated that de-stiffening
strategies aimed at altering collagen and elastin balance and
preventing premature aging are at the forefront of the search
for target organ damage protection beyond the effects of blood
pressure reduction. Such interventions could include the
breaking of collagen cross-links or preventing their formation
[67]. The available data on compound 21 suggest that it might
confer such properties.

Compound 21 improved myocardial function after myo-
cardial infarction in short-term [68] as well as extended [69•]
treatment. These studies reported complex modulation of ma-
trix metalloproteinase activities and collagen content via the
modulation of TGF-β release. Selective AT2 receptor stimu-
lation has demonstrated renoprotective effects in doxorubicin-
induced chronic kidney disease [70], 2-kidney-1-clip hyper-
tension [71], and in a high dose also in spSHR-fed high-salt
diet [72]. In the kidneys, compound 21 affects the sodium/
hydrogen exchanger 3 (NHE 3) and the Na+/K+-ATPase in
the proximal tubules, leading to natriuretic effects [73]. Other
beneficial effects of compound 21 include the prevention of
cognitive decline when added to N-methyl-D-aspartate
(NMDA) receptors blockadein type II diabetic mice [74] and
neuroprotective effects after spinal cord injury [75] or autoim-
mune encephalitis [63]. Compound 21 is currently undergoing
the required toxicology studies to enter in the clinical phase of
investigation.

The ACE2/Ang (1–7)/Mas Receptor Axis Agonists

Another receptor belonging to the Bprotective RAAS^ is the
Mas receptor. Similarly to the AT2 receptor, the Mas receptor
mediates effects such as antifibrosis, anti-inflammation,
antiproliferation, or NO release. The blockade of either AT2
receptor orMas receptor seems to block the effects of the other
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receptor, probably due to their hetero-dimerization [76••].
While the natural ligand for the AT2 receptor is Ang II, for
the Mas receptor, it is the Ang (1–7). The possible strategies
exploiting the Mas receptor stimulation include the develop-
ment of peptide analogues, the protection of Ang (1–7), the
development of a nonpeptide Mas receptor agonist, or to en-
hance endogenous Ang (1–7) production by recombinant
ACE2 or by ACE2 activators [77].

The peptide Ang (1–7) analogues include NorLeu3-Ang 1–
7, CGEN-856, and the cyclic Ang (1–7) analogue PanCyte.
Most data for antihypertensive effects are available for
CGEN-856, which dilated isolated aortic rings, reduced
ischemia-reperfusion arrhythmias, and attenuated the blood
pressure in spontaneously hypertensive rats [78]. The other
peptide analogues were tested in conditions of pulmonary hy-
pertension and pulmonary diseases.

To improve oral bioavailability, Ang (1–7) can be protected
by hydroxyl-propyl β-cyclodextrin encapsulation. The encap-
sulated Ang (1–7) was recently shown to reduce blood pres-
sure, heart rate, and myocardial hypertrophy in SHR [79••],
inflammation in carotid atherosclerotic plaques [80], and ame-
liorated type 2 diabetes [81] in rats. It is expected to enter the
clinical phase of development soon.

Very promising experimental data are available for the only
available nonpeptide Mas receptor agonist, AVE-0991. In
DOCA-salt-induced hypertension in rats, AVE-0991 did not
only decreased mean arterial pressure when given alone but
also when it was given on top of aliskiren treatment [82].
Besides blood pressure-lowering effects, AVE-0991 seems
to exert blood pressure-independent renoprotective effects as
well [83, 84]. Nevertheless, the development of AVE-0991 is
currently suspended.

Finally, a mean to enhance Mas receptor stimulation is to
increase endogenous Ang (1–7) levels by ACE2 supplemen-
tation or activation. The advantage of this approach is the
simultaneous increase in Ang II degradation with subsequent
attenuation of AT1 receptor stimulation.

Indeed, the spSHR have been shown to have reduced levels
of ACE2. Moreover, the overexpression of ACE2 in these
animals attenuated vasoconstriction, improved endothelium-
dependent vasodilation, and reduced blood pressure [85]. This
concept was tested in ACE2 knockout mice treated with Ang
II infusion +/− recombinant humanACE2 (rhACE2). rhACE2
prevented cardiac remodeling including hypertrophy, myocar-
dial fibrosis, increased procollagen I and II expression,
TGF-β1, and fibronectin expression in Ang II-treated
ACE2-knockout mice [86]. Apeiron Biologics brought
rhACE, designated as APN01 (100 to 1200 μg/kg), to a phase
1 study in healthy volunteers. APN01 dose-dependently re-
duced the Ang II levels and increased Ang (1–7) and Ang (1–
5) levels, the latter in a dose-dependent manner. On the other
hand, there were no significant blood pressure or heart rate
effects of ANP01 (except for small numeric reduction of

systolic and diastolic blood pressure and heart after 800 and
1200 μg/kg ANP01 at the end of the infusion, which were
only transient) [87••]. Thus, APN01 is unlikely to be investi-
gated further for the treatment of high blood pressure. Instead,
it is now licensed toGlaxo-Smith-Klinewith the aim to enter a
multicenter phase IIa study in patients with acute lung injury
[77]. It was also hypothesized that rhACE2 might provide an
interesting strategy for heart failure treatment [88].

Similarly to rhACE2, the stimulation of the endogenous
ACE2 activity provides protective effects against target organ
damage. In SHR, ACE2 activator, XNT, prevented renal [89]
and myocardial [90] hydroxyproline accumulation. XNT
prevented pulmonary vascular remodeling and right heart hy-
pertrophy and fibrosis in monocrotaline-induced pulmonary
hypertension [91]. The pharmacokinetic properties of
XNT, however, are quite unfavorable [89]. Moreover,
recent study demonstrated blood pressure-lowering ef-
fects of XNT but without any association with the mod-
ulation of plasmatic or renal ACE2 activity or Ang II
breakdown ex vivo [92]. Therefore, it remains to be de-
termined, whether XNT (or another ACE2 activator,
diaminazene, DIZI) really affect ACE2 or whether they
imply a different mechanism of action.

Old Dogs, New Tricks

Despite the broad range of new possible therapeutic targets for
hypertension, described above, it is apparently difficult to de-
vise a new molecule that could be advanced to later phases of
clinical investigation and that could successfully compete with
the existing therapeutics. Nevertheless, there is a large oppor-
tunity to take the advantage of already broad choice of mole-
cules and to optimize their usage.

Drug Combinations

The use of combination therapy for the treatment of hyperten-
sion is already established in the practice and in the current
guidelines [1]. Two or more antihypertensive molecules are
combined together in the hope for superior blood pressure
reduction or for the check-out of each other’s negative side
effects (e.g., peripheral edema in calcium-channel blocker +
ARB combination; or potassium loss in diuretic + ARB com-
bination) [22]. The high number of possible combinations of
antihypertensive drugs, some of them recommended, some
without evidence, and some to be avoided, challenges the
prescribing process for a thoughtful physician and compli-
cates the adherence for the patient. Therefore, an increasing
number of fixed-dose combinations are being introduced. Pre-
viously, we have reported that between 2000 and 2011, 10
new fixed-dosed double-combinations and three triple-
combinations were approved were approved by the FDA [4,
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22, 93]. Since then, two new double combinations (azilsartan
medoxomil + chlorthalidone and perindopril + amlodipine)
were approved [4] and five more (nebivolol + valsartan,
amiloride + spironolactone, atorvastatin + losartan,
amlodipine + losartan, candesartan + nifedipine) are pending
[3] (Table 2). As previously expected [22], chlorthalidone (in
addition to hydrochlorothiazide) is being introduced as a di-
uretic among these new combinations. When azilsartan was
combined with chlorthalidone, its blood pressure-lowering ef-
fect and the achievement of target blood pressure levels was
higher in comparison to fixed-dose combination with hydro-
chlorothiazide [94, 95]. A novel combination is the combina-
tion of an ARB + β-blocker, valsartan + nebivolol, adding to
the available ACE inhibitor + β-blocker combination
(lisinopril + carvedilol) (Fig. 1).

From the numerous theoretically possible combinations,
those blocking two steps within the RAAS should be avoided
[1]. These recommendations are based on the results of the
ALTITUDE and ONTARGET trials. In ALTITUDE, the ad-
dition of aliskiren to conventional antihypertensive treatment
(an ACE inhibitor or an ARB) in patients with type 2 diabetes
and renal impairment led to an increase in almost all primary
end-point components (cardiovascular death, nonatal myocar-
dial infarction, nonfatal stroke, resuscitated sudden death,
doubling of serum creatinine, end stage renal disease/renal
death) with exception of hospitalization for heart failure. The
study was halted prematurely [96]. Based on the previous
ONTARGET study results, dual RAAS inhibition with an
ACE inhibitor + ARB is also not favorable in clinical condi-
tions and should be discouraged [97]. With respect to preclin-
ical studies, the result of the ALTITUDE study has been sur-
prising; in particular, a renoprotective effect was expected
from the aliskiren + ACE inhibitor/ARB combination. In fact,
this combination therapy reduced proteinuria to a great extent.
An increased incidence of hypotensive effects and renal ad-
verse effects was likely reported due to the recruitment of
high-risk patients with advanced renal injury and well-
controlled blood pressure. The results of the ALTITUDE trial
might have discouraged further development of other renin
inhibitors. Several of them were previously in the pipelines,
such as SPP635, SPP676, SPP1148, SPP1234, and VTP2799
[5]. New data were published only for VTP2799, which, how-
ever, has been shown to have different mode of action from
aliskiren, with different pharmacokinetic and pharmacody-
namic properties [98].

Individually Tailored Therapy for Hypertension Based
on Angiotensin Profile

Importantly, the ALTITUDE and ONTARGET results have
also generated some hypotheses concerning the complex
RAAS modulation by dual RAAS blockade. Single RAAS
blockade by ACE inhibition or ARB leads to renin feedback

resulting in the activation of the protective RAAS arm. Phar-
macologic renin inhibition on top of ACE inhibition or ARB
treatment might therefore abrogate the beneficial effects me-
diated by the alternative RAAS. The resulting decrease of the
Ang (1–7)/Ang II ratio at the level of tissues may explain the
increased incidence of adverse cardiovascular events after re-
nin inhibition + ACE inhibition or ARB (but not after ARB +
ACE inhibition) [99]. In fact, there are currently only sparse
data on how antihypertensive monotherapy (e.g., ACE or re-
nin inhibition) or even dual or triple therapies influence the
levels of angiotensin peptides. The availability of novel and
more reliable diagnostic tools for assessing the biochemical
features of the RAAS might improve the understanding of
patient-specific responses to RAAS inhibition [100]. Better
understanding of the RAAS feedbackmechanisms could open
the doors not only for the development of novel drug combi-
nations and therapeutic strategies but also most importantly
for optimized personalized treatment schemes. The guidelines
still somewhat represent a one-for-all approach. Studies
should be aimed at identifying patient groups (high renin, high
ACE, low ACE2 activity, etc.) that could mostly benefit from
a particular treatment option (renin inhibitor, ACE inhibitor,
ACE2 supplementation/activation, etc.). Such data could also
help to differentiate different drugs among the current classes
of hypertension therapies. For example, the most recent ARB,
azilsartan medoxomil, increased Ang (1–7) levels and reduced
renal 20-hydroxyeicosatetraenoic (HETE) acid levels along
with prevention of hypertension and target organ damage in
Ang II-induced hypertension in Sprague-Dawley rats [101]. In
a meta-analysis of randomized active-controlled (compara-
tors—ramipril, olmesartan, valsartan, candesartan,
chlorthalidone) studies, azilsartan medoxomil conferred sig-
nificantly higher reduction of office and ambulatory systolic
as well as diastolic blood pressure than the comparators [102].
We may speculate, whether this superior blood pressure re-
duction was achieved due to the activation of the protective
RAAS arm by azilsartan medoxomil. Alternate hypotheses
could consider the pharmacologic profile of azilsartan
medoxomil with slower AT1 receptor dissociation rates and
higher receptor specificity [103], or its pleiotropic effects
inhibiting endothelial cell proliferation and activating
MAPKs in vascular smooth muscle cells [104]. Yet, there
are no data, whether these blood pressure effects and addi-
tional mechanisms translate into morbidity or mortality ef-
fects (available only for valsartan, losartan a telmisartan).
Further data on azilsartan medoxomil effects might be doc-
umented under clinical practice conditions in EARLY hy-
pertension registry [105]. We also advocate for a hyperten-
sion registry that would prospectively follow patients with
different RAAS profiles. Such data could provide some
important clues to tackle the above-mentioned questions
and open the door to individually tailored therapy based
on particular patient profile.
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Aldosterone Antagonism

Another opportunity for individually guided therapy is the
large prevalence of aldosteronism, in particular among resis-
tant hypertensives [106, 107]. Such patients should be identi-
fied before being labeled resistant hypertensive and before
nonpharmacological treatment is initiated. Instead, patients
with high aldosterone levels could benefit from aldosterone
antagonism. In 2002, eplerenone was added to spironolactone

into the armamentarium of theMRAs. Its higher selectivity for
MR and reduced affinity for sex steroid receptors resulted in
better tolerability and less pronounced side effects. When
added to conventional therapy, eplerenone reduced mortality
and hospitalization rate in patients with systolic heart failure
NYHA II in EMPHASIS-HF study [108] and reduced cardio-
vascular and all-cause mortality in patients after myocardial
infarction with systolic heart failure in the EPHESUS study
[109]. Next generation of MRAs, such as BAY94-8662,

Table 2 Approved and clinically
investigated fixed combinations
for hypertension

Combination

Drugs Approved/investigated

Renin inhibitor + calcium channel blocker + diuretic

Aliskiren + amlodipine + hydrochlorothiazide Approved 2010

Angiotensin (AT1) receptor blocker + calcium channel blocker + diuretic

Olmesartan + amlodipine + hydrochlorothiazide Approved 2010

Valsartan + amlodipine + hydrochlorothiazide Approved 2009

Renin Inhibitor + diuretic

Aliskiren + hydrochlorothiazide Approved 2008

Renin inhibitor + calcium channel blocker

Aliskiren + amlodipine Approved 2010

Renin inhibitor + angiotensin (AT1) receptor blocker

Aliskiren + valsartan Approved 2009, discount. 2012!

Angiotensin (AT1) receptor blocker + diuretic

Azilsartan + chrothalidone Approved 2011

Olmesartan + hydrochlorothiazide Approved 2003

Eprosartan + hydrochlorothiazide Approved 2001

Telmisartan + hydrochlorothiazide Approved 2000

Valsartan + hydrochlorothiazide Approved 1997

Angiotensin (AT1) receptor blocker + calcium channel blocker

Losartan + amlodipine Phase I

Candesartan + nifedipine Phase III

Telmisartan + amlodipine Approved 2009

Olmesartan + amlodipine Approved 2007

Angiotensin (AT1) receptor blocker + β-blocker

Valsartan + nebivolol Phase III

Angiotensin converting enzyme inhibitor + diuretic

Ramipril + hydrochlorothiazide Approved 2009 (not available in the US)

Angiotensin converting enzyme inhibitor + calcium channel blocker

Perindopril + amlodipine Approved 2015

Enalapril + felodipine Approved 1997

Enalapril + diltiazem Approved 1996

Angiotensin converting enzyme inhibitor + β-blocker

Lisinopril + carvedilol Approved 2009 (not available in the US)

Angiotensin (AT1) receptor blocker + statin

Losartan + atorvastatin Phase II

Calcium channel blocker + statin

Amlodipine + atorvastatin Approved 2004

Diuretic combination

Amiloride + spironolactone Phase II

Based on [3, 4, 93]
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should provide higher selectivity for the MR compared with
spironolactone and greater affinity compared with eplerenone
[110]. In a phase II trial, BAY 94–8862 demonstrated tolera-
bility and safety in patients with heart failure with reduced
ejection fraction and mild or moderate chronic kidney disease.
The markers of heart failure and chronic kidney disease were
reduced similarly or more profoundly compared to
spironolactone [111]. In addition to new MRAs development,
aldosterone activity may be affected via the modulation of
11-β-hydroxysteroid dehydrogenase [112] or direct produc-
tion inhibition.

Although MRAs are effective to reduce blood pressure,
they can cause counter-regulatory increase in plasma renin
and aldosterone levels, reducing treatment efficacy. Inhibition
of aldosterone synthase (ASI) could reduce both MR-
dependent (Na+/K+- or Na+/H+- pump activation) and MR-
independent (protein kinase C or c-Jun N-terminal kinases
activation) deleterious aldosterone effects, such as inflamma-
tion, vascular smooth muscle cell hypertrophy, vascular fibro-
sis, interstitial fibrosis of the kidney, and myocardial fibrosis
and hypertrophy [5]. Several ASIs have been developed.
LCI699 reduced ambulatory systolic blood pressures and
plasma aldosterone levels in 14 patients with primary
hyperaldosteronism [113] and decreased ambulatory blood
pressure in patients with essential hypertension to comparable
levels with 50 mg eplerenone twice daily (the highest ap-
proved dose) [114]. However, in patients with resistant hyper-
tension, the blood pressure-lowering effects of LCI699 were
inferior to eplerenone. Probably higher doses (which might

bring upon off-target effects on cortisol synthesis) are required
to achieve blood pressure reduction similar to eplerenone in
this population [115]. Yet currently, the development of
LCI669 is suspended similarly to a second generation of ASIs
with improved selectivity (sparing the 11β-hydroxylase reac-
tion), such as SPP2745 [116].

Conclusion

From the present review, it is apparent that we should not be
too much excited by the number of new molecules being
claimed to be investigated for hypertension. With the high
prevalence and clear primary read-out, hypertension is a good
target for early drug development. Therefore, many new mol-
ecules enter early clinical phases in hypertension to establish
their pharmacokinetic and pharmacodynamics profile. How-
ever, to find evidence which would distinguish a new sub-
stance from other antihypertensive drugs and which would
establish this new molecule from marketing perspective is
extremely difficult. Only morbidity/mortality data, which are
hard and expensive to obtain, would make a true difference.
Therefore, at the later stages, the development of most com-
pounds is being suspended, interrupted, or shifted to commer-
cially more perspective conditions such as heart failure or
pulmonary hypertension. There is a dead end for hypertension
treatment ahead.

Yet, there is still so much we do not know in hyperten-
sion. Actually, even for the established antihypertensives,
we do not completely understand their mechanism of ac-
tion. Even less, we really know about how to make the best
use of the available drugs or what is the effect of the nu-
merous possible double or triple combinations on endoge-
nous vasomotive peptides and mediators. Obtaining such
evidence could provide the real glimmer at the horizon in
hypertension research. It would open the door for optimi-
zation of hypertension treatment, as well as for the devel-
opment of new molecules. Some of them might be even
reentering the antihypertensive arena after their label has
been extended from heart failure or pulmonary hyperten-
sion treatment. We just should not give up and we should
keep our eyes open.
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