Skip to main content
Log in

Postprandial lipemia and cardiovascular disease

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Postprandial lipemia, characterized by a rise in triglyceride-rich lipoproteins after eating, is a dynamic, nonsteady-state condition in which humans spend the majority of time. There are several lines of evidence suggesting that postprandial lipemia increases risk of atherogenesis. Clinical data show a correlation between postprandial lipoproteins and the presence/progression of coronary artery disease and carotid intimal thickness. Mechanistic studies demonstrate that triglyceride-rich lipoprotein remnants may have adverse effects on endothelium and can penetrate into the subendothelial space. Exchange of core lipids between postprandial lipoproteins and low-density lipoprotein (LDL)/high-density lipoprotein (HDL) is increased during prolonged lipemia, resulting in small, dense LDL particles and reduced HDL cholesterol levels. Hemostatic variables, including clotting factors, platelet reactivity, and monocyte cytokine expression, may be increased during postprandial lipemia. Collectively, these data suggest that assessment and treatment of atherosclerosis should include parameters related to postprandial lipemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohn J: Postprandial plasma lipoprotein changes in human subjects of different ages. J Lipid Res 1988, 29:469–479.

    PubMed  CAS  Google Scholar 

  2. Havel R: Chylomicron remnants: hepatic receptors and metabolism. Curr Opin Lipidol 1995, 6:312–316.

    PubMed  CAS  Google Scholar 

  3. Parks E, Krauss R, Christiansen M, et al.: Effects of a low-fat, high carbohydrate diet on VLDL-triglyceride assembly, production, and clearance. J Clin Invest 1999, 104:1087–1096.

    PubMed  CAS  Google Scholar 

  4. Havel R: Triglyceride-rich lipoproteins and atherosclerosis—new perspectives. Am J Clin Nutr 1994, 59:795–799.

    PubMed  CAS  Google Scholar 

  5. Karpe F: Postprandial lipoprotein metabolism and atherosclerosis. J Int Med 1999, 246:341–355.

    Article  CAS  Google Scholar 

  6. Griffin B: Lipoprotein atherogenicity: an overview of current mechanisms. Proc Nutr Soc 1999, 58:163–169.

    Article  PubMed  CAS  Google Scholar 

  7. Frayn KN, Shadid S, Hamlani R, et al.: Regulation of fatty acid movement in human adipose tissue in the postabsorptive-to-postprandial transition. Am J Physiol 1994, 266:E308-E317.

    PubMed  CAS  Google Scholar 

  8. Parks E, Hellerstein M: Carbohydrate-induced hypertriacylglycerolemia: historical perspective and review of biological mechanisms. Am J Clin Nutr 2000, 71:1–21.

    Google Scholar 

  9. Mensenkamp AR, Jong MC, van Goor H, et al.: Apolipoprotein E participates in the regulation of very low density lipoprotein-triglyceride secretion by the liver. J Biol Chem 1999, 274:35711–35718.

    Article  PubMed  CAS  Google Scholar 

  10. Huang Y, Ji ZS, Brecht WJ, et al.: Overexpression of apolipoprotein E3 in transgenic rabbits causes combined hyperlipidemia by stimulating hepatic VLDL production and impairing VLDL lipolysis. Arterioscler Thromb Vasc Biol 1999, 19:2952–2959.

    PubMed  CAS  Google Scholar 

  11. Maugeais C, Tietge UJ, Tsukamoto K, et al.: Hepatic apolipoprotein E expression promotes very low density lipoprotein-apolipoprotein B production in vivo in mice. J Lipid Res 2000, 41:1673–1679.

    PubMed  CAS  Google Scholar 

  12. Bjorkegren J, Packard CJ, Hamsten A, et al.: Accumulation of large very low density lipoprotein in plasma during intravenous infusion of a chylomicron-like triglyceride emulsion reflects competition for a common lipolytic pathway. J Lipid Res 1996, 37:76–86.

    PubMed  CAS  Google Scholar 

  13. Cohn J, Johnson E, Millar J, et al.: Contribution of apoB-48 and apoB-100 triglyceride-rich lipoproteins (TRL) to postprandial increases in the plasma concentration of TRL triglycerides and retinyl esters. J Lipid Res 1993, 34:2033–2040.

    PubMed  CAS  Google Scholar 

  14. Schneeman BO, Kotite L, Todd KM, et al.: Relationships between the responses of triglyceride-rich lipoproteins in blood plasma containing apolipoproteins B-48 and B-100 to a fat-containing meal in normolipidemic humans. Proc Natl Acad Sci U S A 1993, 90:2069–2073.

    Article  PubMed  CAS  Google Scholar 

  15. Lichtenstein AH, Hachey DL, Millar JS, et al.: Measurement of human apolipoprotein B-48 and B-100 kinetics in triglyceride-rich lipoproteins using [5,5,5-2H3]leucine. J Lipid Res 1992, 33:907–914.

    PubMed  CAS  Google Scholar 

  16. Karpe F, Tornvall P, Olivecrona T, et al.: Composition of human low density lipoprotein: effects of postprandial triglyceride-rich lipoproteins, lipoprotein lipase, hepatic lipase and cholesteryl ester transfer protein. Atherosclerosis 1993, 98:33–49.

    Article  PubMed  CAS  Google Scholar 

  17. Krauss R: Heterogeneity of plasma low-density lipoproteins and atherosclerosis risk. Curr Opin Lipidol 1991, 5:339–349.

    Google Scholar 

  18. Lewis GF, O’Meara NM, Soltys PA, et al.: Fasting hypertriglyceridemia in noninsulin-dependent diabetes mellitus is an important predictor of postprandial lipid and lipoprotein abnormalities. J Clin Endocrinol Metab 1991, 72:934–944.

    PubMed  CAS  Google Scholar 

  19. Ida-Chen Y, Swami S, Skowronski R, et al.: Differences in postprandial lipemia between patients with normal glucose tolerance and non-insulin dependent diabetes mellitus. J Clin Endocrin 1996, 76:172–177.

    Article  Google Scholar 

  20. Boquist S, Hamsten A, Karpe F, et al.: Insulin and non-esterified fatty acid relations to alimentary lipaemia and plasma concentrations of postprandial triglyceride-rich lipoproteins in healthy middle-aged men. Diabetologia 2000, 43:185–193.

    Article  PubMed  CAS  Google Scholar 

  21. Lewis G, O’Meara N, Soltys P, et al.: Postprandial lipoprotein metabolism in normal and obese subjects: comparison after vitamin A fat-loading test. J Clin Endocrin Metab 1990, 71:1041–1050.

    CAS  Google Scholar 

  22. Goldberg, IJ, Vanni-Reyes T, Ramakrishnan R, et al.: Circulating lipoprotein profiles are modulated differently by lipoprotein lipase in obese humans. J Cardiovasc Risk 2000, 7:41–47.

    PubMed  CAS  Google Scholar 

  23. Cohen J, Berger G: Effect of glucose ingestion on postprandial lipemia and triglyceride clearance in humans. J Lipid Res 1990, 31:597–602.

    PubMed  CAS  Google Scholar 

  24. van Tol A, van der Gaag M, Scheek L, et al.: Changes in postprandial lipoproteins of low and high density caused by moderate alcohol consumption with dinner. Atherosclerosis 1998, 141(suppl 1):S101-S103.

    PubMed  Google Scholar 

  25. Williams C: Dietary interventions affecting chylomicron and chylomicron remnant clearance. Atherosclerosis 1998, 141(suppl 1):S87-S92.

    Article  PubMed  CAS  Google Scholar 

  26. Tinker L, Parks E, Behr S, et al.: (n-3) fatty acid supplementation in moderately hypertriglyceridemic adults changes postprandial lipid and apolipoprotein B responses to a standardized test meal. J Nutr 1999, 129:1126–1134.

    PubMed  CAS  Google Scholar 

  27. Hardman AE: The influence of exercise on postprandial triacylglycerol metabolism. Atherosclerosis 1998, 141(suppl 1):S93-S100.

    Article  PubMed  CAS  Google Scholar 

  28. Gill J, Mees G, Frayn K, et al.: Moderate exercise, postprandial lipaemia and triacylglycerol clearance. Eur J Clin Invest 2001, 31:201–207.

    Article  PubMed  CAS  Google Scholar 

  29. Couch SC, Isasi CR, Karmally W, et al.: Predictors of postprandial triacylglycerol response in children: the Columbia University Biomarkers Study. Am J Clin Nutr 2000, 72:1119–1127.

    PubMed  CAS  Google Scholar 

  30. van Beek A, de Ruitjer-Heijstek F, Erkelens D, et al.: Menopause is associated with reduced protection from postprandial lipemia. Arterioscler Thromb Vasc Biol 1998, 19:2737–2741.

    Google Scholar 

  31. Ossewaarde ME, Dallinga-Thie GM, Bots ML, et al.: Treatment with hormone replacement therapy lowers remnant lipoprotein particles in healthy postmenopausal women: results from a randomized trial. Eur J Clin Invest 2003, 33:376–382.

    Article  PubMed  CAS  Google Scholar 

  32. Weintraub MS, Eisenberg S, Breslow JL: Dietary fat clearance in normal subjects is regulated by genetic variation in apolipoprotein E. J Clin Invest 1987, 80:1571–1577.

    PubMed  CAS  Google Scholar 

  33. Dallongeville J, Tiret L, Visvikis S, et al.: Effect of apo E phenotype on plasma postprandial triglyceride levels in young male adults with and without a familial history of myocardial infarction: the EARS II study. European Atherosclerosis Research Study. Atherosclerosis 1999, 145:381–388.

    Article  PubMed  CAS  Google Scholar 

  34. Ostos MA, Lopez-Miranda J, Ordovas JM, et al.: Dietary fat clearance is modulated by genetic variation in apolipoprotein A-IV gene locus. J Lipid Res 1998, 39:2493–2500.

    PubMed  CAS  Google Scholar 

  35. Lopez-Miranda J, Ordovas JM, Ostos MA, et al.: Dietary fat clearance in normal subjects is modulated by genetic variation at the apolipoprotein B gene locus. Arterioscler Thromb Vasc Biol 1997, 17:1765–1773.

    PubMed  CAS  Google Scholar 

  36. Marin C, Lopez-Miranda J, Gomez P, et al.: Effects of the human apolipoprotein A-I promoter G-A mutation on postprandial lipoprotein metabolism. Am J Clin Nutr 2002, 76:319–325.

    PubMed  CAS  Google Scholar 

  37. Cohn J: Postprandial lipemia: emerging evidence for atherogenicity of remnant lipoproteins. Can J Cardiol 1998, 14:18B-27B.

    PubMed  CAS  Google Scholar 

  38. Patsch J, Miesenbock G, Hopferwieser T, et al.: Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arterioscler Thromb 1992, 12:1336–1345.

    PubMed  CAS  Google Scholar 

  39. Gofman J, Lindgren F, Elliot H, et al.: The role of lipids and lipoproteins in atherosclerosis. Science 1950, 111:166–171.

    Article  PubMed  CAS  Google Scholar 

  40. Zilversmit D: Atherogenesis: a postprandial phenomenon. Circulation 1979, 60:473–485.

    PubMed  CAS  Google Scholar 

  41. Groot PH, van Stiphout WA, Krauss XH, et al.: Postprandial lipoprotein metabolism in normolipidemic men with and without coronary artery disease. Arterioscler Thromb 1991, 11:653–662.

    PubMed  CAS  Google Scholar 

  42. Meyer E, Westerveld HT, de Ruyter-Meijstek FC, et al.: Abnormal postprandial apolipoprotein B-48 and triglyceride responses in normolipidemic women with greater than 70% stenotic coronary artery disease: a case-control study. Atherosclerosis 1996, 124:221–235.

    Article  PubMed  CAS  Google Scholar 

  43. Ginsberg HN, Jones J, Blaner WS, et al.: Association of postprandial triglyceride and retinyl palmitate responses with newly diagnosed exercise-induced myocardial ischemia in middle-aged men and women. Arterioscler Thromb Vasc Biol 1995, 15:1829–1838.

    PubMed  CAS  Google Scholar 

  44. Boquist S, Ruotolo G, Tang R, et al.: Alimentary lipemia, postprandial triglyceride-rich lipoproteins, and common carotid intima-media thickness in healthy, middle-aged men. Circulation 1999, 100:723–728.

    PubMed  CAS  Google Scholar 

  45. Karpe F, de Faire U, Mercuri M, et al.: Magnitude of alimentary lipemia is related to intima-media thickness of the common carotid artery in middle-aged men. Atherosclerosis 1998, 141:307–314.

    Article  PubMed  CAS  Google Scholar 

  46. Ryu J, Howard G, Craven T, et al.: Postprandial lipemia and carotid atherosclerosis. Stroke 1992, 23:823–828.

    PubMed  CAS  Google Scholar 

  47. Uiterwaal C, Grobbee D, Witteman J, et al.: Postprandial triglyceride response in young adult men and familial risk of coronary atherosclerosis. Ann Intern Med 1994, 121:576–583.

    PubMed  CAS  Google Scholar 

  48. Tiret L, Gerdes C, Murphy MJ, et al.: Postprandial response to a fat tolerance test in young adults with a paternal history of premature coronary heart disease—the EARS II study (European Atherosclerosis Research Study). Eur J Clin Invest 2000, 30:578–585.

    Article  PubMed  CAS  Google Scholar 

  49. Spiedel M, Booyse F, Abrams A, et al.: Lipolysed hypertriglyceridemic serum and trigylceride-rich lipoprotein cause lipid accumulation in and are cytotoxic to cultured human endothelial cells. Thromb Res 1990, 48:251–264.

    Article  Google Scholar 

  50. Hennig B, Shasby D, Spector A: Exposure to fatty acid increases human low density lipoprotein transfer across cultured endothelial monolayers. Circ Res 1985, 57:776–780.

    PubMed  CAS  Google Scholar 

  51. Rutledge JC, Woo MM, Rezai AA, et al.: Lipoprotein lipase increases lipoprotein binding to the artery wall and increases endothelial layer permeability by formation of lipolysis products. Circ Res 1997, 80:819–828.

    PubMed  CAS  Google Scholar 

  52. Yla-Herttuala S, Lipton BA, Rosenfeld ME, et al.: Macrophages and smooth muscle cells express lipoprotein lipase in human and rabbit atherosclerotic lesions. Proc Natl Acad Sci U S A 1991, 88:10143–10147.

    Article  PubMed  CAS  Google Scholar 

  53. Arbogast B: Purification and identification of very low density lipoprotein toxicity preventing activity. Atherosclerosis 1988, 73:259–267.

    Article  PubMed  CAS  Google Scholar 

  54. Vogel RA, Corretti MC, Plotnick GD: Effect of a single high-fat meal on endothelial function in healthy subjects. Am J Cardiol 1997, 79:350–354.

    Article  PubMed  CAS  Google Scholar 

  55. Lundman P, Eriksson M, Schenck-Gustafsson K, et al.: Transient triglyceridemia decreases vascular reactivity in young, healthy men without risk factors for coronary heart disease. Circulation 1997, 96:3266–3268.

    PubMed  CAS  Google Scholar 

  56. Kugiyama K, Doi H, Motoyama T, et al.: Association of remnant lipoprotein levels with impairment of endothelium-dependent vasomotor function in human coronary arteries. Circulation 1998, 97:2519–2526.

    PubMed  CAS  Google Scholar 

  57. Marchesi S, Lupattelli G, Siepi D, et al.: Oral L-arginine administration attenuates postprandial endothelial dysfunction in young healthy males. J Clin Pharm Ther 2001, 26:343–349.

    Article  PubMed  CAS  Google Scholar 

  58. Ross R: Atherosclerosis—an inflammatory disease. N Engl J Med 1999, 340:115–126.

    Article  PubMed  CAS  Google Scholar 

  59. Nordestgaard B, Wootton R, Lewis B: Selective retention of VLDL, IDL, and LDL in the arterial intima of genetically hyperlipidemic rabbits in vivo: molecular size as a determinant of fractional loss from the intima-inner media. Arterioscler Thromb 1995, 15:534–542.

    CAS  Google Scholar 

  60. Simionescu M, Simionescu N: Endothelial transport of macromolecules: transcytosis and endocytosis: a look from cell biology. Cell Biol Rev 1991, 25:5–78.

    PubMed  CAS  Google Scholar 

  61. Simionescu M, Simionescu N: Proatherosclerotic events—pathobiochemical changes occurring in arterial wall before monocyte migration. FASEB J 1993, 7:1359–1366.

    PubMed  CAS  Google Scholar 

  62. Mamo J, Wheeler J: Chylomicrons or their remnants penetrate rabbit thoracic aorta as efficiently as do smaller macromolecules, including low-density lipoprotein, high density lipoprotein and albumin. Coronary Artery Dis 1994, 5:695–705.

    Article  CAS  Google Scholar 

  63. Proctor S, Mamo J: Retention of fluorescent-labeled chylomicron remnants within the intima of the arterial wall—evidence that plaque cholesterol may be derived from postprandial lipoproteins. Eur J Clin Invest 1998, 28:497–503.

    Article  PubMed  CAS  Google Scholar 

  64. Shaikh M, Wootton R, Nordestgaard B, et al.: Quantitative studies of transfer in vivo of low density, Sf 12-60 and Sf 60-400 lipoproteins between plasma and arterial intima in humans. Arteriscler Thromb 1991, 11:569–577.

    CAS  Google Scholar 

  65. Rapp J, Lespine A, Hamilton R, et al.: Triglyceride-rich lipoproteins isolated by selected-affinity anti-apoprotein B immunosorption from human atherosclerotic plaque. Arterioscler Thromb 1994, 14:1767–1774.

    PubMed  CAS  Google Scholar 

  66. Gianturco S, Bradley W: Pathophysiology of triglyceride-rich lipoproteins in atherothrombosis: cellular aspects. Clin Cardiol 1999, 22:II-7–II-14.

    Article  CAS  Google Scholar 

  67. Mann CJ, Yen FT, Grant AM, et al.: Mechanism of plasma cholesteryl ester transfer in hypertriglyceridemia. J Clin Invest 1991, 88:2059–2066.

    Article  PubMed  CAS  Google Scholar 

  68. Austin M, King M, Vranizan K, et al.: Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary artery disease. Arterioscler Thromb 1990, 82:495–506.

    CAS  Google Scholar 

  69. Diwadkar V, Anderson J, Bridges S, et al.: Postprandial low-density lipoproteins in type 2 diabetes are oxidized more extensively than fasting diabetes and control samples. PSEBM 1999, 222:178–184.

    Article  CAS  Google Scholar 

  70. Miller GJ: Postprandial lipaemia and haemostatic factors. Atherosclerosis 1998, 141(suppl 1):S47-S51.

    Article  PubMed  CAS  Google Scholar 

  71. Meade T, Mellows S, Brozovic M, et al.: Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study. Lancet 1986, 6:533–537.

    Article  Google Scholar 

  72. Nordoy A, Strom E, Gjesdal K: The effect of alimentary hyperlipidaemia and primary hypertriglyceridaemia on platelets in man. Scan J Haematol 1974, 12:329–340.

    CAS  Google Scholar 

  73. Jakubowski J, Ardlie N, Chesterman C, et al.: Acute postprandial lipaemia does not influence the in vivo activity of human platelets. Thromb Res 1985, 39:725–732.

    Article  PubMed  CAS  Google Scholar 

  74. Fuhrman B, Brook J, Aviram M: Increased platelet aggregation during alimentary hyperlipemia in normal and hypertriglyceridemic subjects. Ann Nutr Metab 1986, 30:250–260.

    Article  PubMed  CAS  Google Scholar 

  75. Broijersen A, Karpe F, Hamsten A, et al.: Alimentary lipemia enhances the membrane expression of platelet P-selectin without affecting other markers of platelet activation. Atherosclerosis 1998, 137:107–113.

    Article  PubMed  CAS  Google Scholar 

  76. Hyson DA, Paglieroni TG, Wun T, et al.: Postprandial lipemia is associated with platelet and monocyte activation and increased monocyte cytokine expression in normolipemic men. Clin Applied Thromb Hemost 2002, 8:147–155.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyson, D., Rutledge, J.C. & Berglund, L. Postprandial lipemia and cardiovascular disease. Curr Atheroscler Rep 5, 437–444 (2003). https://doi.org/10.1007/s11883-003-0033-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-003-0033-y

Keywords

Navigation