Skip to main content

Advertisement

Log in

Birth Mode, Breastfeeding, Pet Exposure, and Antibiotic Use: Associations With the Gut Microbiome and Sensitization in Children

  • Allergies and the Environment (Michelle Hernandez, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The infant gut microbiota has become a focus of multiple epidemiologic and cohort studies. This microbiome is derived from the mother (via the vaginal canal, maternal skin contact, breastfeeding, and possibly in utero microbial transfer) and is likely influenced by multiple external factors. It is now believed by some experts that colonization and formation of the newborn and alterations of gut microbiota in children are dependent on earlier alterations of the microbiota of mothers during or perhaps even before pregnancy. This review will focus on specific factors (pet keeping, breastfeeding, antibiotic use, and mode of delivery) that influence the infant gut microbiome and atopy.

Recent Findings

This is a review of recent literature describing how pet keeping, breastfeeding, antibiotic use, and mode of delivery influences and changes the infant gut microbiome and atopy. General trends in gut microbiota differences have emerged in different birth cohorts when each external factor is analyzed, but consistency between studies is difficult to replicate. The aforementioned factors do not seem to confer an overwhelming risk for development of atopy alone.

Summary

This review provides a comprehensive review of early life environmental factors and their influence on the infant gut microbiome and atopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Fujimura KE, Slusher NA, Cabana MD, et al. Role of the gut microbiota in defining human health. Expert Rev Anti-Infect Ther. 2010;8(4):435–54.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Johnson CC, Ownby DR. The infant gut bacterial microbiota and risk of pediatric asthma and allergic diseases. Transl Res. 2017;179:60–70.

    Article  PubMed  Google Scholar 

  3. Penders J, Thijs C, van den Brandt PA, et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut. 2007;56(5):661–7.

    Article  CAS  PubMed  Google Scholar 

  4. Arrieta MC, Stiemsma LT, Dimitriu PA, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015;7(307):307ra152.

    Article  PubMed  CAS  Google Scholar 

  5. •• Backhed F, Roswall J, Peng Y, et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe. 2015;17(5):690–703 A comprehensive study of early life gut microbiota composition and function that demonstrated gut microbiota maturation upon breastfeeding cessation.

    Article  PubMed  CAS  Google Scholar 

  6. Aagaard K, Ma J, Antony KM, et al. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6(237):237ra265.

    Article  CAS  Google Scholar 

  7. Oh KJ, Lee SE, Jung H, et al. Detection of ureaplasmas by the polymerase chain reaction in the amniotic fluid of patients with cervical insufficiency. J Perinat Med. 2010;38(3):261–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Younes JA, Lievens E, Hummelen R, et al. Women and Their Microbes: The Unexpected Friendship. Trends Microbiol. 2018;26(1):16–32.

    Article  CAS  PubMed  Google Scholar 

  9. Dicks LMT, Geldenhuys J, Mikkelsen LS, et al. Our gut microbiota: a long walk to homeostasis. Benefic Microbes. 2018;9(1):3–20.

    Article  CAS  Google Scholar 

  10. Jenmalm MC. The mother-offspring dyad: microbial transmission, immune interactions and allergy development. J Intern Med. 2017;282(6):484–95.

    Article  CAS  PubMed  Google Scholar 

  11. Vuillermin PJ, Macia L, Nanan R, et al. The maternal microbiome during pregnancy and allergic disease in the offspring. Semin Immunopathol. 2017;39(6):669–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. •• Gensollen T, Iyer SS, Kasper DL, et al. How colonization by microbiota in early life shapes the immune system. Science. 2016;352(6285):539–44 An outstanding overview of how microbial colonization of mucosal surfaces during infancy effects immune development with persistent impact on human health and disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fujimura KE, Sitarik AR, Havstad S, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22(10):1187–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Johansson MA, Sjogren YM, Persson JO, et al. Early colonization with a group of Lactobacilli decreases the risk for allergy at five years of age despite allergic heredity. PLoS One. 2011;6(8):e23031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barberan A, Dunn RR, Reich BJ, et al. The ecology of microscopic life in household dust. Proc Biol Sci. 2015;282(1814).

  16. Dannemiller KC, Gent JF, Leaderer BP, et al. Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children. Indoor Air. 2016;26(2):179–92.

    Article  CAS  PubMed  Google Scholar 

  17. Dunn RR, Fierer N, Henley JB, et al. Home life: factors structuring the bacterial diversity found within and between homes. PLoS One. 2013;8(5):e64133.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kettleson EM, Adhikari A, Vesper S, et al. Key determinants of the fungal and bacterial microbiomes in homes. Environ Res. 2015;138:130–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maier RM, Palmer MW, Andersen GL, et al. Environmental determinants of and impact on childhood asthma by the bacterial community in household dust. Appl Environ Microbiol. 2010;76(8):2663–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sitarik AR, Havstad S, Levin AM, et al. Dog introduction alters the home dust microbiota. Indoor Air. 2018;28(4):539–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. •• Levin AM, Sitarik AR, Havstad SL, et al. Joint effects of pregnancy, sociocultural, and environmental factors on early life gut microbiome structure and diversity. Sci Rep. 2016;6:31775 This report highlights the identification of multiple independent factors, and how potential combinatorial effects of these factors contribute to the infant gut microbiome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sordillo JE, Zhou Y, McGeachie MJ, et al. Factors influencing the infant gut microbiome at age 3–6 months: Findings from the ethnically diverse Vitamin D Antenatal Asthma Reduction Trial (VDAART). J Allergy Clin Immunol. 2017;139(2):482–491.e414.

    Article  PubMed  Google Scholar 

  23. Nermes M, Endo A, Aarnio J, et al. Furry pets modulate gut microbiota composition in infants at risk for allergic disease. J Allergy Clin Immunol. 2015;136(6):1688–1690.e1681.

    Article  PubMed  Google Scholar 

  24. Azad MB, Konya T, Maughan H, et al. Infant gut microbiota and the hygiene hypothesis of allergic disease: impact of household pets and siblings on microbiota composition and diversity. Allergy, Asthma Clin Immunol. 2013;9(1):15.

    Article  Google Scholar 

  25. Tun HM, Konya T, Takaro TK, et al. Exposure to household furry pets influences the gut microbiota of infant at 3–4 months following various birth scenarios. Microbiome. 2017;5(1):40.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Laursen MF, Zachariassen G, Bahl MI, et al. Having older siblings is associated with gut microbiota development during early childhood. BMC Microbiol. 2015;15:154.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Adlerberth I, Strachan DP, Matricardi PM, et al. Gut microbiota and development of atopic eczema in 3 European birth cohorts. J Allergy Clin Immunol. 2007;120(2):343–50.

    Article  CAS  PubMed  Google Scholar 

  28. Penders J, Thijs C, Vink C, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118(2):511–21.

    Article  PubMed  Google Scholar 

  29. Anyo G, Brunekreef B, de Meer G, et al. Early, current and past pet ownership: associations with sensitization, bronchial responsiveness and allergic symptoms in school children. Clin Exp Allergy. 2002;32(3):361–6.

    Article  CAS  PubMed  Google Scholar 

  30. de Meer G, Janssen NA, Brunekreef B. Early childhood environment related to microbial exposure and the occurrence of atopic disease at school age. Allergy. 2005;60(5):619–25.

    Article  PubMed  Google Scholar 

  31. Holscher B, Frye C, Wichmann HE, et al. Exposure to pets and allergies in children. Pediatr Allergy Immunol. 2002;13(5):334–41.

    Article  PubMed  Google Scholar 

  32. Svanes C, Jarvis D, Chinn S, et al. Childhood environment and adult atopy: results from the European Community Respiratory Health Survey. J Allergy Clin Immunol. 1999;103(3 Pt 1):415–20.

    Article  CAS  PubMed  Google Scholar 

  33. Hesselmar B, Aberg N, Aberg B, et al. Does early exposure to cat or dog protect against later allergy development? Clin Exp Allergy. 1999;29(5):611–7.

    Article  CAS  PubMed  Google Scholar 

  34. Almqvist C, Egmar AC, Hedlin G, et al. Direct and indirect exposure to pets - risk of sensitization and asthma at 4 years in a birth cohort. Clin Exp Allergy. 2003;33(9):1190–7.

    Article  CAS  PubMed  Google Scholar 

  35. Kerkhof M, Wijga AH, Brunekreef B, et al. Effects of pets on asthma development up to 8 years of age: the PIAMA study. Allergy. 2009;64(8):1202–8.

    Article  CAS  PubMed  Google Scholar 

  36. Ownby DR, Johnson CC, Peterson EL. Exposure to dogs and cats in the first year of life and risk of allergic sensitization at 6 to 7 years of age. JAMA. 2002;288(8):963–72.

    Article  PubMed  Google Scholar 

  37. Gern JE, Reardon CL, Hoffjan S, et al. Effects of dog ownership and genotype on immune development and atopy in infancy. J Allergy Clin Immunol. 2004;113(2):307–14.

    Article  PubMed  Google Scholar 

  38. Lodge CJ, Lowe AJ, Gurrin LC, et al. Pets at birth do not increase allergic disease in at-risk children. Clin Exp Allergy. 2012;42(9):1377–85.

    Article  CAS  PubMed  Google Scholar 

  39. Remes ST, Castro-Rodriguez JA, Holberg CJ, et al. Dog exposure in infancy decreases the subsequent risk of frequent wheeze but not of atopy. J Allergy Clin Immunol. 2001;108(4):509–15.

    Article  CAS  PubMed  Google Scholar 

  40. Wegienka G, Johnson CC, Havstad S, et al. Indoor pet exposure and the outcomes of total IgE and sensitization at age 18 years. J Allergy Clin Immunol. 2010;126(2):274–9 279.e271–275.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wegienka G, Havstad S, Kim H, et al. Subgroup differences in the associations between dog exposure during the first year of life and early life allergic outcomes. Clin Exp Allergy. 2017;47(1):97–105.

    Article  CAS  PubMed  Google Scholar 

  42. Mandhane PJ, Sears MR, Poulton R, et al. Cats and dogs and the risk of atopy in childhood and adulthood. J Allergy Clin Immunol. 2009;124(4):745–750.e744.

    Article  PubMed  Google Scholar 

  43. Wlasiuk G, Vercelli D. The farm effect, or: when, what and how a farming environment protects from asthma and allergic disease. Curr Opin Allergy Clin Immunol. 2012;12(5):461–6.

    Article  PubMed  Google Scholar 

  44. Muller-Rompa SEK, Markevych I, Hose AJ, et al. An approach to the asthma-protective farm effect by geocoding: Good farms and better farms. Pediatr Allergy Immunol. 2018;29(3):275–82.

    Article  CAS  PubMed  Google Scholar 

  45. Ballard O and Morrow ALJPC. Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am 2013;60(1):49–74.

  46. Moossavi S, Miliku K, Sepehri S, et al. The prebiotic and probiotic properties of human milk: Implications for infant immune development and pediatric asthma. Front Pediatr 2018;6:197.

  47. Hunt KM, Foster JA, Forney LJ, et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One 2011;6(6):e21313.

  48. Collado M, Delgado S, Maldonado A, et al. Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR. Lett Appl Microbiol 2009;48(5):523–528.

  49. Fernández L, Langa S, Martín V, et al. The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res 2013;69(1):1–10.

  50. Fallani M, Young D, Scott J, et al. Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr 2010;51(1):77–84.

  51. Ho NT, Li F, Lee-Sarwar KA, et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat Commun 2018;9(1):4169.

  52. Stewart CJ, Ajami NJ, O’Brien JL, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 2018;562(7728):583.

  53. Global strategy for infant and young child feeding. World Health Organization 2003.

  54. Munblit D, Peroni D, Boix-Amorós A, et al. Human milk and allergic diseases: an unsolved puzzle. Nutrients 2017;9(8):894.

  55. Matheson M, Allen K, Tang MJC, et al. Understanding the evidence for and against the role of breastfeeding in allergy prevention. Clin Exp Allergy 2012;42(6):827–851.

  56. •• Kramer MS, Matush L, Vanilovich I, et al. Effect of prolonged and exclusive breast feeding on risk of allergy and asthma: cluster randomised trial. BMJ 2007;335(7624):815. A large randomized trial with a breastfeeding promotion intervention that failed to find a reduction in risk of positive skin prick tests, allergic symptoms, or diagnoses.

  57. Elliott L, Henderson J, Northstone K, et al. Prospective study of breast-feeding in relation to wheeze, atopy, and bronchial hyperresponsiveness in the Avon Longitudinal Study of Parents and Children (ALSPAC). J Allergy Clin Immunol 2008;122(1):49–54.e43.

  58. Elbert N, van Meel E, den Dekker H, et al. Duration and exclusiveness of breastfeeding and risk of childhood atopic diseases. Allergy 2017;72(12):1936–1943.

  59. Jelding-Dannemand E, Schoos A-MM, Bisgaard HJJoA, et al. Breast-feeding does not protect against allergic sensitization in early childhood and allergy-associated disease at age 7 years. Allergy Clin Immunol 2015;136(5):1302–1308.e1313.

  60. Oddy W, Holt P, Sly P, et al. Association between breast feeding and asthma in 6 year old children: findings of a prospective birth cohort study. BMJ 1999;319(7213):815–819.

  61. Liao SL, Lai SH, Yeh KW, et al. Exclusive breastfeeding is associated with reduced cow's milk sensitization in early childhood. Pediatr Allergy Immunol 2014;25(5):456–461.

  62. Sears MR, Greene JM, Willan AR, et al. Long-term relation between breastfeeding and development of atopy and asthma in children and young adults: a longitudinal study. Lancet 2002;360(9337):901–907.

  63. Wegienka G, Ownby DR, Havstad S, et al. Breastfeeding history and childhood allergic status in a prospective birth cohort. Ann Allergy Asthma Immunol 2006;97(1):78–83.

  64. Green Corkins K, Shurley T. What's in the Bottle? A Review of Infant Formulas. Nutr Clin Pract. 2016;31(6):723–9.

    Article  PubMed  Google Scholar 

  65. Zwittink RD, Renes IB, van Lingen RA, et al. Association between duration of intravenous antibiotic administration and early-life microbiota development in late-preterm infants. Eur J Clin Microbiol Infect Dis. 2018;37(3):475–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. ACOG. Committee Opinion No. 485: Prevention of early-onset group B streptococcal disease in newborns. Obstet Gynecol. 2011;117(4):1019–27.

    Article  Google Scholar 

  67. •• Stearns JC, Simioni J, Gunn E, et al. Intrapartum antibiotics for GBS prophylaxis alter colonization patterns in the early infant gut microbiome of low risk infants. Sci Rep. 2017;7(1):16527 A prospective birth cohort examining routine intrapartum antibiotics with careful detail on gut microbiome composion.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Aloisio I, Quagliariello A, De Fanti S, et al. Evaluation of the effects of intrapartum antibiotic prophylaxis on newborn intestinal microbiota using a sequencing approach targeted to multi hypervariable 16S rDNA regions. Appl Microbiol Biotechnol. 2016;100(12):5537–46.

    Article  CAS  PubMed  Google Scholar 

  69. Nogacka A, Salazar N, Suarez M, et al. Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates. Microbiome. 2017;5(1):93.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Martin R, Makino H, Cetinyurek Yavuz A, et al. Early-Life Events, Including Mode of Delivery and Type of Feeding, Siblings and Gender, Shape the Developing Gut Microbiota. PLoS One. 2016;11(6):e0158498.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. •• Ahmadizar F, Vijverberg SJH, Arets HGM, et al. Early-life antibiotic exposure increases the risk of developing allergic symptoms later in life: A meta-analysis. Allergy. 2018;73(5):971–86 A recent meta-analysis examining antibiotic use and atopic outcomes, including sensitization.

    Article  CAS  PubMed  Google Scholar 

  72. Semic-Jusufagic A, Belgrave D, Pickles A, et al. Assessing the association of early life antibiotic prescription with asthma exacerbations, impaired antiviral immunity, and genetic variants in 17q21: a population-based birth cohort study. Lancet Respir Med. 2014;2(8):621–30.

    Article  CAS  PubMed  Google Scholar 

  73. Hoskin-Parr L, Teyhan A, Blocker A, et al. Antibiotic exposure in the first two years of life and development of asthma and other allergic diseases by 7.5 yr: a dose-dependent relationship. Pediatr Allergy Immunol. 2013;24(8):762–71.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kusel MM, de Klerk N, Holt PG, et al. Antibiotic use in the first year of life and risk of atopic disease in early childhood. Clin Exp Allergy. 2008;38(12):1921–8.

    Article  CAS  PubMed  Google Scholar 

  75. Wickens K, Ingham T, Epton M, et al. The association of early life exposure to antibiotics and the development of asthma, eczema and atopy in a birth cohort: confounding or causality? Clin Exp Allergy. 2008;38(8):1318–24.

    Article  CAS  PubMed  Google Scholar 

  76. Walker WA. The importance of appropriate initial bacterial colonization of the intestine in newborn, child, and adult health. Pediatr Res. 2017;82(3):387–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. •• Magne F, Puchi Silva A, Carvajal B, et al. The Elevated Rate of Cesarean Section and Its Contribution to Non-Communicable Chronic Diseases in Latin America: The Growing Involvement of the Microbiota. Front Pediatr. 2017;5:192 This is a comprehensive review of the association of C-section with a number of adverse health outcomes in offspring and the potential contribution of C-section to infant gut dysbiosis.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Francino MP. Birth Mode-Related Differences in Gut Microbiota Colonization and Immune System Development. Ann Nutr Metab. 2018;73(Suppl 3):12–6.

    Article  CAS  PubMed  Google Scholar 

  79. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–5.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gronlund MM, Lehtonen OP, Eerola E, et al. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr. 1999;28(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  81. Jakobsson HE, Abrahamsson TR, Jenmalm MC, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut. 2014;63(4):559–66.

    Article  CAS  PubMed  Google Scholar 

  82. Kabeerdoss J, Ferdous S, Balamurugan R, et al. Development of the gut microbiota in southern Indian infants from birth to 6 months: a molecular analysis. J Nutr Sci. 2013;2:e18.

    PubMed  PubMed Central  Google Scholar 

  83. Brumbaugh DE, Arruda J, Robbins K, et al. Mode of Delivery Determines Neonatal Pharyngeal Bacterial Composition and Early Intestinal Colonization. J Pediatr Gastroenterol Nutr. 2016;63(3):320–8.

    Article  PubMed  Google Scholar 

  84. Azad MB, Konya T, Maughan H, et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. Cmaj. 2013;185(5):385–94.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Chu DM, Ma J, Prince AL, et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017;23(3):314–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hansen CH, Andersen LS, Krych L, et al. Mode of delivery shapes gut colonization pattern and modulates regulatory immunity in mice. J Immunol. 2014;193(3):1213–22.

    Article  CAS  PubMed  Google Scholar 

  87. Martinez KA 2nd, Devlin JC, Lacher CR, et al. Increased weight gain by C-section: Functional significance of the primordial microbiome. Sci Adv. 2017;3(10):eaao1874.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. •• Zachariassen LF, Krych L, Rasmussen SH, et al. Cesarean Section Induces Microbiota-Regulated Immune Disturbances in C57BL/6 Mice. J Immunol. 2019;202(1):142–50 This study in mice demonstrates that C-section birth alters the gut microbiota, and immune function, of the offspring.

    Article  CAS  PubMed  Google Scholar 

  89. Sandall J, Tribe RM, Avery L, et al. Short-term and long-term effects of caesarean section on the health of women and children. Lancet. 2018;392(10155):1349–57.

    Article  PubMed  Google Scholar 

  90. Abreo A, Gebretsadik T, Stone CA, et al. The impact of modifiable risk factor reduction on childhood asthma development. Clin Transl Med. 2018;7(1):15.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Thavagnanam S, Fleming J, Bromley A, et al. A meta-analysis of the association between Caesarean section and childhood asthma. Clin Exp Allergy. 2008;38(4):629–33.

    Article  CAS  PubMed  Google Scholar 

  92. Huang L, Chen Q, Zhao Y, et al. Is elective cesarean section associated with a higher risk of asthma? A meta-analysis. J Asthma. 2015;52(1):16–25.

    Article  PubMed  Google Scholar 

  93. Bager P, Wohlfahrt J, Westergaard T. Caesarean delivery and risk of atopy and allergic disease: meta-analyses. Clin Exp Allergy. 2008;38(4):634–42.

    Article  CAS  PubMed  Google Scholar 

  94. Bjorksten B, Sepp E, Julge K, et al. Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol. 2001;108(4):516–20.

    Article  CAS  PubMed  Google Scholar 

  95. Kalliomaki M, Kirjavainen P, Eerola E, et al. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol. 2001;107(1):129–34.

    Article  CAS  PubMed  Google Scholar 

  96. Sjogren YM, Jenmalm MC, Bottcher MF, et al. Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clin Exp Allergy. 2009;39(4):518–26.

    Article  CAS  PubMed  Google Scholar 

  97. Yap GC, Loo EX, Aw M, et al. Molecular analysis of infant fecal microbiota in an Asian at-risk cohort-correlates with infant and childhood eczema. BMC Res Notes. 2014;7:166.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol. 2012;129(2):434–40 440.e431–432.

    Article  PubMed  Google Scholar 

  99. van Nimwegen FA, Penders J, Stobberingh EE, et al. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. J Allergy Clin Immunol. 2011;128(5):948–955.e941-943.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haejin Kim.

Ethics declarations

Conflict of Interest

Drs. Zoratti and Kim report grants from NIAID, during the conduct of the study. Ms. Sitarik reports grants from NIH, during the conduct of the study. The other authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Allergies and the Environment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Sitarik, A.R., Woodcroft, K. et al. Birth Mode, Breastfeeding, Pet Exposure, and Antibiotic Use: Associations With the Gut Microbiome and Sensitization in Children. Curr Allergy Asthma Rep 19, 22 (2019). https://doi.org/10.1007/s11882-019-0851-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-019-0851-9

Keywords

Navigation