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Abstract
On the torus, it is possible to assign a global symbol to a pseudo-differential operator
using Fourier series. In this paper we investigate the relations between the local and
global symbols for the operators in the classical Hörmander calculus and describe
the principal symbols, the non-commutative residue and the canonical trace of an
operator in terms of its global symbol. We also generalise these results to any compact
Lie group.
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1 Introduction

On general smooth manifolds, an operator is pseudo-differential when it belongs to
some Hörmander class �m in local coordinates: this property is local. Although each
operator remains globally defined, one cannot hope to extract global geometric infor-
mation from its local symbols in coordinate charts. However, in some settings, it is
possible to define a notion of global symbols: it is naturally the case for operators
on R

n (see e.g. [23]), but also on the torus, starting with the work of Agranovitch in
dimension one in 1979 [1], followed by many studies of toroidal or periodical pseudo-
differential operators, e.g. [2,21,22,35]. Recently, this idea has been studied on the
non-commutative torus by Lévy et al. in [20].

In this paper, we study the case of compact Lie groups which may be viewed as a
different direction for a non-commutative generalisation of the torus. Indeed, on the
torus and more generally on any compact Lie group, it is possible to use the Fourier
series to define the global symbol of a pseudo-differential operator on the torus. The
aim of this paper is to characterise the classical Hörmander classes in terms of the
global symbols, and then to investigate the relations between the global symbols and
the local symbols in coordinate charts. In particular, we will relate the global symbols
with local objects such as the principal symbol and the non-commutative residue of
an operator, and also with its (global) canonical trace. To our knowledge, these results
are new.

The definitions of the non-commutative residue and of the canonical trace together
with further references will be given in Sect. 2, so in this introduction we will restrict
our comments to their origins and uses. The non-commutative residue was introduced
independently by Guillemin [12] and Wodzicki [36,37] in the early eighties. Beside
being the only trace on the algebra of pseudo-differential operators up to constants, its
importance comes from its applications in mathematical physics, mainly in Connes’
non-commutative geometry due to its linkwith theDixmier trace [3] but also in relation
with e.g. the Einstein–Hilbert action (see [19, Section 6.1] and the references therein).
The canonical trace was constructed by Kontsevich and Vishik in the mid-nineties
[17] as a tool to study further zeta functions and determinants of elliptic pseudo-
differential operators. Since then, it has received considerable attention and found
interesting applications, see e.g. [24,25,30].

On the torus Tn , using trigonometric Fourier series, the relations between local and
global symbols are well understood [1,2,21,22,27,35]: a global symbol σ is defined
on T

n × Z
n , and, when the corresponding operator is classical, this global symbol
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extends naturally to a symbol on T
n × R

n which coincides with the local symbol
modulo smoothing symbols, see Sect. 3. Therefore the notions of principal symbol and
non-commutative residue have obvious meanings locally and globally. Furthermore,
the recent result of the author of this paper on real trace expansions [6] applied to the
Laplacian on the torus yields a description of the non-commutative residue and of the
canonical trace as coefficients in certains expansions. This generalises Pietsch’s result
on the non-commutative residue on the torus in [26, Theorem 11.15]. It also gives an
alternative proof of the description of the canonical trace as the discrete Hadamard
finite part of the symbol already obtained by Lévy et al. in [20, Section 5].

The case of compact Lie groups is more involved but also more natural from the
viewpoint of harmonic analysis. Indeed, the idea of global symbols stems from the
study of Fourier multipliers, and is related to singular integrals (Caledròn–Zygmund
theory) and to the genesis of the pseudo-differential theory; see [7] and its introduction
for a brief survey on Fourier multipliers on compact Lie groups in these directions.
The idea of studying pseudo-differential operators on Lie groups as a systematic gen-
eralisation of Fourier multipliers can be traced back to Michael Taylor in [34]. On
compact Lie groups, recent works [8,27,28] have shown that it is possible to charac-
terise the classes of global symbols corresponding to pseudo-differential operators (see
Sect. 4.2). In this paper, we also characterise the classical pseudo-differential classes
and show how to obtain the principal symbol from the global symbol (see Sects. 4.3
and 4.4); these results are new to our knowledge. They use representation theory, espe-
cially highest weights. They recover the commutative case of the torus with a very
sophisticated presentation.

The paper is organised as follows. In Sect. 2, we review the properties of the clas-
sical pseudo-differential calculus on any compact manifold. In particular, we recall
the notions of principal symbols, non-commutative residue and canonical trace. We
explore the case of the torus in Sect. 3, themain result in the toroidal setting being sum-
marised in Sect. 3.2. In Sect. 4, we examine the case of compact Lie groups: we first
relate the principal symbol of a classical operator with the global symbol in Sect. 4.3.
Subsequently, in Sect. 4.4, we define the notions of global homogeneous symbol and
global classical symbols, and characterise classical pseudo-differential operators as
the pseudo-differential operators with classical symbols.We conclude with the deriva-
tion of the non-commutative residue and the canonical trace as coefficients in certains
expansions.

2 Preliminaries: The Euclidean case

In this section we recall well-known properties of the classical Hörmander pseudo-
differential calculus onRn and on a manifold. We also introduce the non-commutative
residue and the canonical trace together with their relations to trace expansions.
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2.1 The Euclidean pseudo-differential calculus

In this sectionwemainly set the notation and our vocabulary for the pseudo-differential
calculus on an open subset� ofRn and on a compactmanifoldM . Classical references
for this material include [32,33].

We denote by Sm = Sm(�) the Hörmander class of symbols of order m ∈ R on
�, that is, the Fréchet space of smooth functions a : � × R

n → C satisfying for all
multi-indices α, β ∈ N

n
0

∣
∣
∣∂

β
x ∂α

ξ a(x, ξ)

∣
∣
∣ ≤ Cα,β〈ξ 〉m−α.

In this paper, we will regularly use the usual notation 〈ξ 〉 = √

1+ |ξ |2, ∂ j = ∂x j for
the partial derivatives in R

n , ∂α = ∂
α1
1 ∂

α2
2 . . . etc. N0 = {0, 1, 2, . . .} denotes the set

of non-negative integers and N = {1, 2, . . .} the set of positive integers.
We say that the symbol a ∈ Sm(�) is compactly supported in x when there exists

R > 0 such that a(x, ξ) = 0 for any (x, ξ) ∈ R
n × R

n with |x | > M .
To each symbol a ∈ Sm(�), we associate the operator Op�(a) defined via

Op�(a) f (x) =
∫

Rn
f̂ (ξ)e2iπx ·ξa(x, ξ)dξ, x ∈ �, f ∈ C∞

c (�).

Here, f̂ denotes the Euclidean Fourier transform of f ∈ S(Rn):

f̂ (ξ) = FRn f (ξ) =
∫

Rn
f (x)e−2iπx ·ξdx .

We denote by �m = �m(�) = Op�(Sm(�)) the Hörmander class of operators of
order m ∈ R on �. Recall that Op� is one-to-one on Sm(�) and thus that �m(�)

inherit a structure of Fréchet space.
The class of smoothing symbols is denoted by S−∞ = S−∞(�) = ∩m∈RSm(�)

and the class of smoothing symbols is denoted by �−∞(�) = ∩m∈R�m(�) =
Op�(S−∞(�)). Examples of smoothing operators are convolution operators with
Schwartz convolution kernels.

If A ∈ ∪m∈R�m(�) then we denote by KA ∈ S ′(�×�) its integral kernel so that
we have in the sense of distributions:

A f (x) =
∫

�

KA(x, y) f (y)dy.

Recall thata(x, ξ) = FRn (KA(x, x−·)) and that KA is smooth away from the diagonal
x = y.

The following property is well-known:

Lemma 2.1 If A = Op�(a) ∈ �m(�) with m < − n, then its integral kernel KA is
continuous. Assuming furthermore that its symbol a ∈ Sm(�) is compactly supported
in x, then the operator A is trace-class with trace:
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tr(A) =
∫

�

KA(x, x)dx =
∫

�×Rn
a(x, ξ) dxdξ.

Consequently, if � is a bounded open subset of Rn, then the linear map A �→ tr(A) is
continuous on �m(�) for any m < − n.

A symbol a ∈ Sm with m ∈ R admits a poly-homogeneous expansion with
complex order m̃ when it admits an expansion a ∼ ∑

j∈N0
αm− j where each

function αm− j (x, ξ) is in Sm− j and is (m̃ − j)-homogeneous in ξ for |ξ | ≥ 1;
here m̃ ∈ C with �m̃ = m and the homogeneity for |ξ | ≥ 1 means that
αm− j (x, ξ) = |ξ |m̃− jαm− j (x, ξ/|ξ |) for any (x, ξ) ∈ R

n × R
n with |ξ | ≥ 1. We

write the poly-homogeneous expansion as a ∼h
∑

j am̃− j where am̃− j (x, ξ) =
|ξ |m̃− jαm− j (x, ξ/|ξ |) ∈ C∞(� × (Rn\{0})) is homogeneous of degree m̃ − j in
ξ . We may call am̃ the (homogeneous) principal symbol of a or of A and m̃ the
complex order of a or A.

If the open set � is bounded, we say that a symbol in Sm(�) is classical with
complex order m̃ when it admits a poly-homogeneous expansion with complex order
m̃. We denote by Sm̃cl the space of classical symbols with complex order m̃ and by
�m̃

cl = Op(Smcl ) the space of classical pseudo-differential operators with complex
order m̃.

If F : �1 → �2 is (smooth) diffeomorphism between two bounded open sets
�1,�2 ⊂ R

n , we keep the same notation for the map F : C∞
c (�1) → C∞

c (�1) given
by F( f ) = f ◦ F−1. For any A ∈ �m(�1), the operator

F∗A := FAF−1

is then in �m(�2). This property allows us to define pseudo-differential operators on
manifolds in the following way. Let M be a smooth compact connected manifold of
dimension n without boundary. The space �m(M) of pseudo-differential operators of
order m on M is the space of operators which are locally transformed by some (and
then any) coordinate cover to pseudo-differential operators in �m(Rn); that is, the
operator A : C∞(M) → D′(M) such that there exists a finite open cover (� j ) j of
M , a subordinate partition of unity (χ j ) j and diffeomorpshims Fj : � j → O j ⊂ R

n

that transform the operators χk Aχ j : C∞
c (� j ) → D′(�k) into operators in �m(Rn).

If F : �1 → �2 is (smooth) diffeomorphism between two bounded open sets
�1,�2 ⊂ R

n and if A ∈ �m̃
cl (�1), then the operator F∗A is then in �m̃

cl (�2). This
property allowsus to definepseudo-differential operators onmanifolds in the following
way. The space �m̃

cl (M) of classical pseudo-differential operators of order m̃ on M is
the space of operatorswhich are locally transformed by some (and then any) coordinate
cover to classical pseudo-differential operators.

2.2 Trace expansions

In this section, we recall trace expansions for pseudo-differential operators.
We start with the trace and kernel expansions due to Seeley, Grubb and Schrohe.

Recall that a complex sector is a subset of C\{0} of the form � = �I := {reiθ : r >

0, θ ∈ I } where I is a subset of [0, 2π ]; it is closed (in C\{0}) when I is closed.
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Theorem 2.2 [11, Theorem 2.7] Let M be a compact smooth manifold of dimension
n ≥ 2 or let � be a bounded open subset in R

n. Let L ∈ �cl be an invertible elliptic
operator of order m0 ∈ N. We assume that there exists a complex sector � such that
the homogeneous principal symbol of L in local coordinates satisfies

m0(x, ξ) /∈ −�m0 = {−μm0 : μ ∈ �} when |ξ | = 1.

Let A ∈ �m
cl and let k ∈ N such that −km0 + m < − n. The kernel K (x, y, λ) of

A(L− λ)−k is continuous and satisfies on the diagonal

K (x, x, λ) ∼
∞
∑

j=0

c j (x)λ
n+m− j

m0
−k +

∞
∑

l=0

(

c′l(x) log λ + c′′l (x)
)

λ−l−k, (2.1)

for λ ∈ −�m0 , |λ| → ∞, uniformly in closed sub-sectors of �. The coefficients c j (x)
and c′l(x) are determined from the symbols a ∼h

∑

j am− j and  ∼h
∑

j m0− j in
local coordinates, while the coefficients c′′l (x) are in general globally determined.

As a consequence, one has for the trace

tr
(

A(L− λ)−k
)

∼
∞
∑

j=0

c jλ
n+m− j

m0
−k +

∞
∑

l=0

(

c′l log λ + c′′l
)

λ−l−k, (2.2)

where the coefficients are the integrals over M of the traces of the coefficients defined
in (2.1).

In the statement above as well as in the rest of the paper, we keep the same notation
for an elliptic operator L and its self-adjoint extension.

Integrating the expansion (2.2) against λz or against e−zλ onwell chosen z-contours
yields the following expansions for operators A of any order, see also [29, Section 1]:

Theorem 2.3 Let L ∈ �cl be as in Theorem 2.2.
For any A ∈ �m

cl , we have for t → 0:

tr
(

Ae−tL)

∼
∞
∑

j=0

c̃ j t
n+m− j

m0 +
∞
∑

l=0

(

c̃′l ln t + c̃′′l
)

t l , (2.3)

and

�(t)tr
(

AL−t) ∼
∞
∑

j=0

c̃ j

s + n+m− j
m0

t
n+m− j

m0 +
∞
∑

l=0

( −c̃′l
(t + l)2

+ c̃′′l
t + l

)

. (2.4)

In (2.4), the left had side is meromorphic with poles as indicated by the right hand
side. The coefficients c̃ j , c̃′l and c̃′′l are multiples of the corresponding c j , c′l and c′′l in
(2.2), the actors are universal constants independent of A and L.
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Recently, the real trace expansions were obtained by the author. Their statements
require the spaceMm(R) of slowly increasing functions, which we now define:

Definition 2.4 For any m ∈ R, we denote by Mm(R) the Fréchet space of functions
f ∈ C∞(R) satisfying

‖ f ‖Mm ,N = sup
j=0,...,N

sup
λ∈R

〈λ〉 j−m | f ( j)(λ)| < ∞, N = 0, 1, . . .

The real trace expansions are as follows:

Theorem 2.5 [6] Let L ∈ �
m0
cl be an elliptic self-adjoint operator on a compact

manifold M of dimension n ≥ 2. Its order is m0 > 0. Let A ∈ �m
cl and η ∈ C∞(R).

(1) If η is compactly supported in (0,∞), then the operator A η(tL) is trace-class for
all t ∈ R and the trace admits the following expansion as t → 0+,

tr (Aη(tL)) ∼ cm+nt
−m+n

m0 + cm−n−1t
−m+n−1

m0 + . . .

in the sense that

tr (Aη(tL)) −
N−1
∑

j=0

cm+n− j t
−m+n− j

m0 = O

(

t
−m+n−N

m0

)

.

(2) If m0 ≥ 1, �m > − n and m /∈ Z and η ∈ Mmη (R) (see Definition 2.4) with
�m +mηm0 < − n, then the operator A η(tL) is traceclass for all t ∈ R and the
trace admits the following expansion as t → 0+,

tr(Aη(tL)) = η(0)c′(A) +
N−1
∑

j=0

cm+n− j t
−m−n+ j

m0 + o(1),

where N ∈ N is the smallest non-negative integer such that N ≥ m0mη +m1+n.
If η is equal to a constant near 0, we need not impose m0 ≥ 1.

(3) In Part (1) , the constant cm+n− j are of the form

cm+n− j = c(σ )
m+n− j c

(η)
m+n− j

where c(A)
m+n− j depends only on the poly-homogeneous expansion of the symbol of

A in local coordinates and

c̃(η)
m+n− j :=

1

m0

∫ +∞

u=0
η(u) u

m− j+n
m0

du

u
,

and similarly for Part (2).

The relations between the constants in Theorems 2.5 and 2.3 have not been studied.
However, it is known that the constant terms are given by the non-commutative residue
and the canonical trace, see Propositions 2.7 and 2.9 respectively.
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2.3 The non-commutative residue

Here, we recall the definition of the non-commutative residue via local symbols. The
original references are [12,36,37]. See also [5,9,29,30].

Let � be a bounded open subset in R
n with n ≥ 2. Let A ∈ �m

cl (�) with symbols
a ∼h

∑

j∈N0
am j . If m ∈ Zn , we set

resx (A) :=
∫

Sn−1
a−n(x, ξ) dς(ξ)

in this paper, Zn denotes the set

Zn := {− n,− n + 1,− n + 2, . . .},

and ς denotes the surface measure on the Euclidean unit sphere S
n−1 ⊂ R

n which
may be obtained as the restriction to S

n−1 of the (n − 1)-form ς defined on R
n by

∑n
j=1(−1) j+1ξ j dξ1 ∧ . . . ∧ dξ j−1 ∧ dξ j+1 ∧ · · · ∧ dξn . If m ∈ C\Zn , then we set

resx (A) := 0.
If F : �1 → �2 is (smooth) diffeomorphism between two bounded open sets

�1,�2 ⊂ R
n and if A ∈ �m

cl (�1), then

|F ′(x)|resF(x)(F
∗A) = resx (A).

Hence resx yields a 1-density on a compact manifold M , for which we keep the same
notation resx (A).

Definition 2.6 The function x �→ resx A is the residue density on a bounded open
subset � ⊂ R

n or on an n-dimensional compact manifold M with n ≥ 2. The
corresponding integral

res(A) :=
∫

M
resx (A) or res(A) :=

∫

�

resx (A) dx,

is called the non-commutative residue of A.

The non-commutative residue is a trace on ∪m∈C�m
cl in the sense that it is a linear

functional on ∪m∈C�m
cl which vanishes on commutators. If M is connected, then any

other trace on ∪m∈C�m
cl is a multiple of res.

The non-commutative residue also appears in the constant coefficients of the trace
expansions recalled in Sect. 2.2:

Proposition 2.7 (1) We continue with the setting and results of Theorem 2.2. The
coefficients c′0(x) and c′0 in (2.1) and (2.2) satisfy

c′0(x) = (−1)k

(2π)nm0
resx (A) and c′0 = (−1)k

(2π)nm0
res(A).
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(2) With the setting and results of Theorem 2.3, we have

c̃′0 = −res(A)

(2π)nm0
.

(3) With the setting and results of Theorem 2.5, we have when m ∈ Zn

c0 = 1

m0
res(A)

∫ +∞

0
η(u)

du

u
.

Parts (1) and (2) can be found in [29, Section 1], while Part (3) is part of the results
in [6].

2.4 The canonical trace

In this section, we recall the definition of the canonical trace. References include the
original paper [17] by Kontsevich and Vishik, as well as [9,25].

Let � be an open bounded subset of Rn and let A = Op(a) ∈ �m
cl (�) with

complex order m /∈ Zn . The symbol of A admits the poly-homogeneous expansion
a ∼h

∑

j∈N0
am− j . For x fixed, the function am− j (x, ·) is smooth on R

n\{0} and
(m − j)-homogeneous with m − j /∈ Zn , so [15, Theorem 3.2.3] it extends uniquely
into a tempered (m − j)-homogeneous distributions on R

n for which we keep the
same notation. For each x ∈ �, we define the tempered distributions using the inverse
Fourier transform

κa,x = F−1 {a(x, ·)} and κam− j ,x = F−1 {

am− j (x, ·)
}

, j = 0, 1, 2, . . .

The distribution κam− j ,x is (− n−m+ j)-homogeneous. Then for any positive integer

N withm− N < − n and x ∈ � the distribution κa,x −∑N
j=0 κam− j ,x is a continuous

function on R
n . Furthermore, the function (x, y) �→ κa,x (y) − ∑N

j=0 κam− j ,x (y)
is continuous and bounded on � × R

n . Its restriction to y = 0 is independent of
N > m + n and defines the quantity

TRx (A) := κa,x (0) −
N

∑

j=0

κam− j ,x (0).

If F : �1 → �2 is diffeomorphism between two bounded open sets �1,�2 ⊂ R
n

and if A ∈ �m̃
cl (�1), then

|F ′(x)|TRF(x)(F
∗A) = TRx (A).

Hence, TRx yields a 1-density on a compact manifold M for which we keep the same
notation TRx .
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Definition 2.8 [17] The density x �→ TRx (A) on a compact manifold M or x �→
TRx (A)dx on a bounded open subset � is called the canonical trace density of A.
The corresponding integral

TR(A) =
∫

M
TRx (A) or TR(A) =

∫

�

TRx (A)dx,

is called the canonical trace of A.

On � or M , the map A �→ TR(A) is a linear functional on �m
cl for each m ∈ C\Zn

and it coincides with the usual L2-trace if �m < − n. It is a trace type functional on
∪m∈\Zn�

m
cl in the sense that

TR(cA + dB) = cTR(A) + dTR(B) whenever c, d ∈ C, A, B ∈ ∪m∈C\Zn�
m
cl ,

and

TR(AB) = TR(BA) whenever AB, BA ∈ ∪m∈C\Zn�
m
cl .

The canonical trace was originally defined in [17], and may be defined on a slightly
larger domain [10]. It is related with coefficients in the trace expansions recalled in
Sect. 2.2:

Proposition 2.9 (1) We continue with the setting and results of Theorem 2.3. The
coefficients c′′0 in (2.2) is equal to the canonical trace TR(A) of A when m /∈ Zn.

(2) With the setting and results of Theorem 2.5, we have c′(A) = TR(A).

Part (1) can be found in [9, Section 1] while Part (2) is part of the results in [6].
The residue of the canonical trace of a (suitable) holomorphic family of classical

pseudo-differential operators is equal to the non-commutative residue. It can also be
read off the zeta function of A and in the �-setting is related to the finite-part integral
of the symbol of A on � × R

n , see also [18] and [6].

3 The case of the torus

In this section, we discuss the relations between the pseudo-differential calculi defined
on the torus viewed as a compact manifold and defined via the Fourier series.

In this paper, the n-dimensional torus is denoted by T
n and is realised as Tn =

R
n/Zn .

3.1 The toroidal pseudo-differential calculus

In this section we set the notation for and define the toroidal pseudo-differential cal-
culus. References include [1,2,21,22,27,35].
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A toroidal symbol is a scalar function σ defined onTn×Z
n . The operator OpTn (σ )

associated with the toroidal symbol σ is the operator defined via

OpTn (σ ) f (x) =
∑

∈Zn

e2iπx ·σ (x, ) f̂ (), x ∈ T
n .

In this formula, f is in the space L2
f ini te(T

n) of smooth functions onTn whose Fourier
coefficients

f̂ () = FTn f () =
∫

Tn
f (x)e−2iπx ·dx,  ∈ Z

n,

all vanish except for a finite number of them. We will keep the same notation for
the operator OpTn (σ ) and its natural extensions between topological vector spaces
containing L2

f ini te(T
n) as a dense subspace.

For each j = 1, . . . , n, we denote by� j the difference operator in the j th direction,
that is, the operator acting on toroidal symbols σ in the following way:

� jσ(x, ) = σ(x,  + e j ) − σ(x, ), (x, ) ∈ T
n × Z

n,

where (e1, . . . , en) is the canonical basis of Rn . The difference operator for the multi-
index α = (α1, . . . , αn) ∈ N

n
0 is denoted by

�α := �
α1
1 · · ·�αn

n ,

with the convention that �0
j = I.

The following statement says that the pseudo-differential operators defined locally
on the manifold M = T

n have a global description as toroidal operators of the form
OpTn (σ ):

Theorem 3.1 [27] Let A ∈ �m(Tn) for some m ∈ R. Then there exists a unique
toroidal symbol σA such that A = OpTn (σA). The symbol σA is smooth in x ∈ T

n, i.e.
x �→ σ(x, ) is smooth for each  ∈ Z

n. It satisfies:

∀α, β ∈ N
n
0 ∃C > 0 ∀(x, ) ∈ T

n × Z
n |∂β

x �ασA(x, )| ≤ C〈〉m−|α|.
(3.1)

Conversely, if a toroidal symbol σ is smooth in x and satisfies (3.1), then OpTn (σ ) ∈
�m(Tn).

We denote by Sm(Tn) the Fréchet space of toroidal symbols which are smooth in
x and satisfy (3.1); we say then that the symbols are of order m. There should be no
confusion with the notation Sm(�) since there� is an open subset ofRn . Theorem 3.1
may then be rephrased as

�m(Tn) = OpTn (Sm(Tn)).
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Furthermore, the proof of Theorem 3.1 shows that the map σ �→ OpTn (σ ) is an
isomorphism from Sm(Tn) to �m(Tn).

We denote by S−∞(Tn) = ∩m∈RSm(Tn) the set of smoothing toroidal symbols.
As a consequence of the results mentioned above, the map σ �→ OpTn (σ ) is an
isomorphism of Fréchet spaces from S−∞(Tn) to �−∞(Tn).

Naturally, another way of defining globally an operator A ∈ ∪m∈R�m(Tn) is via
its integral kernel KA ∈ D′(Tn × T

n) or equivalently via the distribution given by
kA,x (y) = KA(x, x − z). Indeed, we have (in the sense of distributions) for any
f ∈ C∞(Tn) and x ∈ T

n :

A f (x) =
∫

Tn
KA(x, y) f (y)dy =

∫

Tn
f (y)κA,x (x − y)dy = f ∗ κA,x (x).

Recall that the map x �→ κA,x ∈ D′(Tn) is smooth on T
n and that we have

∀(x, ) ∈ T
n × Z

n κ̂A,x () = σA(x, ) where σA := Op−1
Tn (A).

Moreover, κA,x is smooth away from the origin for x fixed since KA is smooth away
from the diagonal x = y. In fact, an operator A : C∞(Tn) → D′(Tn) is in �−∞(Tn)

if and only if (x, y) �→ κx (y) is smooth on Tn × T
n .

If σA does not depend on x , then A is a Fourier multiplier with symbol σ and
convolution kernel κA. Even when σA depends on x , we may abuse the vocabulary
and call κA,x the convolution kernel of A.

More generally, we have the following property between pseudo-differential and
translations:

τ−1
x0 OpTn (σ )τx0 = OpTn (τx0σ) (3.2)

where τx0 denotes the translation

τx0 f (x) = f (x − x0), x0 ∈ T
n, f ∈ L2(Tn) (3.3)

and we abused the notation to have τx0σ : (x, ) �→ σ(x − x0, ).
As onRn , we say that the toroidal symbol σ ∈ Sm(Tn) admits an expansion and we

write σ ∼ ∑

j∈N0
σm− j when σm− j ∈ Sm− j (Tn) and σ −∑N

j=0 σm j ∈ Sm−N−1(Tn).

3.2 Main results for the classical toroidal pseudo-differential calculus

As in the Euclidean setting, we say that a toroidal symbol σ in Sm(Tn) is classical
with complex order m̃ ∈ C when it admits a poly-homogeneous expansion σ ∼h∑

j∈N0
σm̃− j , that is, when each toroidal symbol σm̃− j (x, ) is in Sm− j (Tn) and

is (m̃ − j)-homogeneous in  �= 0, i.e. σm̃− j (x, r) = r m̃− jσm̃− j (x, ) for any
(x, ) ∈ T

n × (Zn\{0}), r ∈ N. We denote by Sm̃cl (T
n) the space of classical symbols

of order m̃ ∈ C.
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The next statement says that the pseudo-differential operators corresponding to
classical toroidal (global) symbols are exactly the classical ones on the manifold
M = T

n :

Theorem 3.2 For any m ∈ C, we have

�m
cl (T

n) = OpTn

(

Smcl (T
n)

)

.

Theorem 3.2 is a consequence of Proposition 3.4, stated and proved below. Propo-
sition 3.4 is a stronger result, but requires the following property allowing for the
identification of a homogeneous toroidal symbol with a homogeneous symbol on Rn :

Proposition 3.3 If σ is a toroidal symbol which is m-homogeneous in  with m ∈ C,
then there exists a unique continuous function in (x, ξ) ∈ T

n × (Rn\{0}) which is
m-homogeneous in ξ and coincides with σ on Tn × (Zn\{0}). Still denoting by σ this
unique extension, σ is in fact smooth on Tn × (Rn\{0}).

Proposition 3.3 will be proved in Sect. 3.3. Note that as a consequence of Proposi-
tion 3.3, a toroidal symbol which is m-homogeneous in  is in Smcl (T

n), m ∈ C.
Proposition 3.4 whose statement follows may be roughly summarised as saying

that the poly-homogeneous expansion of a toroidal symbol is given by the poly-
homogeneous expansion in local charts and vice versa:

Proposition 3.4 We fix a finite open covering (�k)k of Tn and a subordinate partition
of unity (χk)k of the form χk(x) = ψk(x − xk) where the points xk ∈ �k are distinct
and the functionψk ∈ C∞(Tn) is supported on a small neighbourhood of 0; moreover,
0 ≤ ψk ≤ 1 and ψk ≡ 1 on an even smaller neighbourhood of 0.

Let A ∈ �m1(Tn). Then χk1 Aχk2 is smoothing for k1 �= k2 and if k1 = k2 = k,
using the xk translations [see (3.3)] we have

χk Aχk := τ−1
xk Akτxk , where Ak := ψkτ

−1
xk Aτxkψk .

Denoting by σ = Op−1
Tn A the toroidal symbol of A, we have σ ∈ Sm1(Tn) by

Theorem 3.1.

(1) If σ is classical, i.e. σ ∈ Smcl (T
n) with σ ∼h

∑

j∈N0
σm− j , then the symbol of Ak

admits the poly-homogeneous expansions
∑

j∈N0
ψk(x)σm− j (x − xk, ξ) where

the functions σm− j have been smoothly extended (see Proposition 3.3).
(2) If A is classical on T

n with complex order m ∈ C then Ak is classical on R
n,

its symbol is supported in a small neighbourhood of 0 in x and admits a poly-
homogeneous expansion

∑

j∈N0
a(k)
m− j ; moreover, σ admits a poly-homogeneous

expansion which coincides with
∑

j∈N0
a(k)
m− j (x − xk, ) on {χk ≡ 1}

In Proposition 3.4 and in its proof (given in Sect. 3.3), we will allow ourselves to make
no distinction between functions defined on T

n or Rn when they are supported in a
small enough neighbourhood of 0.

Note that Proposition 3.4 and the local definition of the non-commutative residue
(see Sect. 2.3) readily imply:
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Corollary 3.5 If σ ∈ Smcl (T
n) with m ∈ Zn, then

resx (A) =
∫

Sn−1
σ−n(x, ξ) dς(ξ) and res(A) =

∫

Tn×Sn−1
σ−n(x, ξ) dxdς(ξ).

where σ−n is the smooth extension of the symbol σ−n contained in the expansion
σ ∼h

∑

j∈N0
σm− j as granted by Proposition 3.3.

The expansion results applied to the Laplacian � of Tn easily yields:

Corollary 3.6 Let σ ∈ Smcl (T
n) with m ∈ C. We set A := OpTn (σ ).

(1) Let η ∈ C∞
c (0,∞). Then we have an expansion as t → 0+:

tr(A η(t�)) =
∑

∈Zn

σ(x, )η(t ||2) ∼ cm+nt
−m+n

m0 + cm−n−1t
−m+n−1

m0 + . . .

The constants cm+n− j are of the form cm+n− j = c(σ )
m+n− j c

(η)
m+n− j where c

(σ )
m+n− j

depends only on the homogeneous expansion of σ and

c(η)
m+n− j :=

1

2

∫ +∞

u=0
η(u) u

m− j+n
2

du

u
.

With the same constants c(σ )
m+n− j , if �m > −n then we have the expansion as

R → +∞
∑

R≤||≤2R

∫

Tn
σ(x, )dx =

N−1
∑

j=0

2m− j+n − 1

m − j + n
c(σ )
m+n− j R

−m+n− j + o(1),

where N ∈ N is the smallest integer such that �m + n − N < 0.
If m ∈ Zn then c0 = c(σ )

0 c(η)
0 with

c(σ )
0 = resA, and c(η)

0 = 1

2

∫ +∞

0
η(u)

du

u
,

and we have the expansion as R → +∞
∑

R≤||≤2R

∫

Tn
σ(x, )dx =

m+n
∑

j=1

2m− j+n − 1

m − j + n
c(σ )
m+n− j R

−m+n− j + ln 2 resA + o(1).

(2) Here, �m ≥ −n with m /∈ Z. Let η ∈ Mmη (R) (see Definition 2.4) with �m +
mηm0 < −n. Then the operator A η(t�) is traceclass for all t ∈ R and the trace
admits the following expansion as t → 0+,

tr(Aη(t�)) = η(0)TR(A) +
N−1
∑

j=0

cm+n− j t
−m−n+ j

2 + o(1),
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where N ∈ N is the smallest non-negative integer such that N ≥ 2mη + m1 + n.

The constants c′m+n− j are of the form c′m+n− j = c′(σ )
m+n− j c

′(η)
m+n− j where c

′(σ )
m+n− j

depends only on the poly-homogeneous expansion of σ and

c′(η)
m+n− j :=

1

2

∫ +∞

u=0
η(u) u

m− j+n
2

du

u
.

With the same constants c′(σ )
m+n− j , we have the expansion as R → +∞

∑

||<R

∫

Tn
σ(x, )dx = TR(A) +

N−1
∑

j=0

c′(σ )
m+n− j

m − j + n
R−m+n− j + o(1).

Consequently, the canonical trace of the operator A = OpTn (σ ) is given by the
discrete finite part of

∫

Tn σ(x, )dx.

Proof of Corollary 3.6 The first results in Part (1) and (2) are directs applications of
Theorem 2.5 and Proposition 2.9. For the expansion in R = t−2, we apply these
results to suitable functionsχk ∈ C∞

c (R) approximating the indicator 1I of the interval
I = [1, 4] for Part (1) or of the interval I = [0, 1] for Part (2). Suitable approximations
are for instance functions satisfying 0 ≤ ηk ≤ 1, ηk ≡ 1 on I and ηk ≡ 0 outside
I + (− 1

k ,
1
k ). As the Laplacian � is invariant under translation, we easily compute for

R > 1

tr
(

A(1I − ηk)(R
−2�))

)

=
∑

∈Zn

∫

Tn
σ(x, )dx (1I − ηk) (R−2||2).

We also estimate for I = [1, 4]
∑

∈Zn

〈〉�m (1I − ηk) (R−2||2) ≤
∑

R
√
1−k≤||≤R

or 2R≤||≤2R
√
1+k

1

|B(, 1/2)|
∫

B(,1/2)
〈ξ 〉�mdξ

�
∫

R
√
1−k− 1

2≤|ξ |≤R+ 1
2

or 2R− 1
2≤||≤2R

√
1+k+ 1

2

〈ξ 〉�mdξ � R�m+n 1

k
,

and similarly if I = [0, 1]. Hence, in both cases, we have

tr
(

A(1I − ηk)(R
−2�)

)

= R�m+nO

(
1

k

)

.

We easily check the convergences of the coefficients c′(ηk )m+n− j −→k→+∞ c′(1I )m+n− j .
The results follow by taking k → +∞. ��

A modification of the proofs of Theorem 2.5 Part (2) and Proposition 2.9 Part (2)
given in [6] adapted to the case of the torus would also imply that the canonical trace
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density at x of the operator A = OpTn (σ ) is given by the discrete finite part of σ(x, ).
The results regarding the canonical trace on the torus have already been obtained in
[20, Section 5]. The particular case of the limit of

∑

R≤||≤2R

∫

Tn σ(x, )dx in the

case m = −n and R = 2K have been shown in [26, Theorem 11.15].

3.3 Proofs of Propositions 3.3 and 3.4

The main ingredient in the proof of Proposition 3.3 is the following:

Lemma 3.7 Let σ ∈ S0(Tn) be a toroidal symbol which is independent of x and 0-
homogeneous in  ∈ Z

n\{0}, that is, ∀ ∈ Z
n\{0} and r ∈ N, σ(r) = σ(). There

exists a unique continuous function σ ∈ C(Rn\{0}) which is 0-homogeneous and
coincides with σ on Z

n\{0}. Furthermore σ is smooth.

Proof of Lemma 3.7 First, let us show that the estimate

|x − x ′| ≤ |x |
10

�⇒ |σ(x ′) − σ(x)| �σ

|x − x ′|
|x | (3.4)

holds for any x, x ′ ∈ Z
n\{0}. We start with the case of x = (x1, x̌) and x ′ = x + αe1

with α ∈ N and x1 ∈ N here (e1, . . . , en) denotes the standard orthonormal basis of
R
n . Since

σ(x) − σ(x + αe1) =
α−1
∑

j=0

�1σ(x + je1),

as σ ∈ S0(Tn), we have

|σ(x) − σ(x + αe1)| �σ

α−1
∑

j=0

〈x + je1〉−1 �
∣
∣
∣
∣

∫ |x1+α|

|x1|
(t + |̌|)−1dt

∣
∣
∣
∣

�
∣
∣
∣
∣
ln

|x + αe1|
|x |

∣
∣
∣
∣
=

∣
∣
∣
∣
ln | x|x | +

α

|x |e1|
∣
∣
∣
∣
� α

|x | ,

when α ≤ |x |/10. Hence (3.4) holds when x ′ = x + αe j with j = 1, α ∈ N and
x1 ∈ N. Applying this to σ composed with permutations or with x �→ −x shows that
we have proved (3.4) for any x, x ′ such that the segment [x, x ′] is parallel to one of
the axes Re j for some j . Writing x ′ = x + ∑n

j=1 α j e j , we then use

|σ(x ′) − σ(x)| ≤
n

∑

j=1

|σ(x + α1e1 + · · · + α j e j ) − σ(x + α1e1 + · · · + α j−1e j−1)|

�σ

n
∑

j=1

|α j |
|x | � |x − x ′|

|x | .

This shows (3.4) for any x, x ′ ∈ Z
n\{0}.
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Secondly, as σ is 0-homogeneous on Z
n\{0}, it admits a unique 0-homogeneous

extension toQn\{0}, forwhichwekeep the samenotationσ .Note that the homogeneity
implies that (3.4) holds for any x, x ′ ∈ Q

n\{0}. Let us show that (3.4) allows us
for a unique continuous 0-homogeneous extension to R

n\{0}. For any x ∈ R
n\{0},

consider a sequence (xm)m∈N in Q
n converging to x . The estimate (3.4) implies that

(σ (xm))m∈N is aCauchy sequence of real numbers, therefore convergent. Furthermore,
the limit does not depend on the sequence as the concatenation of two sequences
such as (xm)m∈N yields a converging sequence. We denote the limit by σ(x). This
defines an extension of σ to R

n\{0}. Taking limits shows now that (3.4) holds for
any x, x ′ ∈ R

n\{0}. Consequently, σ is continuous on Rn\{0}, and it is the only such
0-homogeneous extension.

Thirdly, let us show that σ is differentiable.We start with the following observation:
for every (fixed) ξ0 ∈ Q

n\{0}, choosing r0 ∈ N such that 0 := r0ξ0 ∈ Z
n , we have

for any p, q ∈ N:

σ

(

ξ0 + p

q
e1

)

− σ(ξ0) − r0 p�e1σ(q0) =
r0 p∑

j=1

� je1�e1σ(q0),

so σ ∈ S0(Tn) implies

|� je1�e1σ(q0)|

=
∣
∣
∣
∣
∣
∣

j
∑

j ′=1

�2
e1σ(q0 + j ′e1)

∣
∣
∣
∣
∣
∣

�σ

j
∑

j ′=1

〈q0 + j ′e1〉−2 �
∫ j

t=1
|q0 + te1|−2dt

�
∣
∣
∣|q0 + je1|−1 − |q0|−1

∣
∣
∣

= |q0|−1
(

1− | q0

|q0| +
j

|q0|e1|
−1

)

� |q0|−2 j,

when 1 < r0 p < q|0|/10, thus
∣
∣
∣
∣
σ

(

ξ0 + p

q
e1

)

− σ(ξ0) − r0 p�e1σ(q0)

∣
∣
∣
∣
�σ

r0 p∑

j=1

|q0|−2 j � |q0|−2(r0 p)
2.

Adapting the proof above to other cases, it is easy to check that the estimate

∣
∣σ (ξ0 + he1) − σ(ξ0) − r0 p�e1σ(q0)

∣
∣ � |ξ0|2h2. (3.5)

holds in fact for h = p/q satisfying p, q ∈ Z, and |h| < |ξ0|/10. The second
observation is that for every  ∈ Z

n\{0}, the sequence (q�e1σ(q))q∈N is bounded
because σ ∈ S0(Tn). Therefore, we can extract a converging subsequence. We can
also assume that the subsequence (q j ) j∈N is the same for all  ∈ Z

n\{0}. One checks
easily that this yields a symbol in S−1(Tn). As the symbol || is in S1(Tn), the symbol
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σ1 defined via

σ1() := || lim
j→∞ q j�e1σ(q j),

is in S0(Tn). If h ∈ R with |h| < |ξ0|/100, applying (3.5) with p j := �hq j and q j ,
then taking j → +∞, we obtain

∣
∣
∣
∣
σ (ξ0 + he1) − σ(ξ0) − h

|ξ0|σ1(0)
∣
∣
∣
∣
�σ |ξ0|2h2. (3.6)

This shows that ∂1σ(ξ0) exists when ξ0 ∈ Q
n\{0}. In particular for the points ξ0 =

 ∈ Z
n\{0}, we obtain the convergence

q�e1σ(q)=q (σ (q+e1) − σ(q))=q

(

σ( + 1

q
e1) − σ()

)

−→q→+∞ ∂1σ().

This implies that the symbol given by ∂1σ is in S−1(Tn) and is (−1)-homogeneous.
Therefore, the symbol σ1 ∈ S0(Tn) coincide with {||∂1σ() :  ∈ Z

n} and is 0-
homogeneous. We keep the same notation for its continuous extension σ1 to R

n\{0}.
The continuity of σ and σ1 together with (3.6) implies that ∂1σ exists and is continuous
onRn\{0}. Naturally the result is true for the other partial derivatives ∂2, . . . , ∂n . This
implies that the function σ is C1 on R

n\{0}.
Finally, we can also apply this result to σ1 which is therefore also C1. Applying

this result recursively and in all the directions shows that σ is in fact smooth. ��
The proof of Proposition 3.3 follows readily:

Proof of Proposition 3.3 The case of m = 0 is a simple adaptation of the proof of
Lemma 3.7 with the addition of the smooth dependence in x ; it is left to the reader. For
any m ∈ C, it suffices to apply the case m = 0 to the symbol given by ||−mσ(x, )
for  �= 0. ��

We can now show Proposition 3.4.

Proof of Proposition 3.4 We observe that the properties of translations [see (3.2)]
implies that it suffices to consider the case of Ak with k = 0. The convolution kernel
of A0 is

κ(0)
x (y) = ψ0(x)κx (y)ψ0(x − y).

So the symbol of the pseudo-differential operator A0 ∈ �m1(Rn) is (x, ξ) �→
FRnκ

(0)
x (ξ) on R

n ; when restricted to ξ ∈ Z
n , this is the symbol of A0 ∈ �m1(Tn)

because of the properties of the support of κ(0). Hence Part (2) follows. It remains
to prove Part (1). By refining the open covering, it suffices to prove the properties in
Parts (1) for a neighbourhood of 0 included in {ψ0 ≡ 1}. Let V be a neighbourhood
of 0 included in {ψ0 ≡ 1} and let χ ∈ C∞(Tn) valued in [0, 1] with χ ≡ 1 near 0 but
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supported in a neighbourhood of 0 so small that V + suppχ ⊂ {ψ0 ≡ 1}. Then for
x ∈ V , we have

κ(0)
x (y) = κx (y)χ(y) + κx (y)(1− χ)(y)ψ0(x − y).

The second term is a smoothing kernel, so the symbol of Ak is given modulo S−∞ by

FRn (κxχ)(ξ) =
∫

Rn
κx (y)χ(y)e−2iπ yξdy.

The integrand being supported near 0, we can view this integral as being over Tn and
use Parseval formula for Fourier series:

FRn (κxχ)(ξ) =
∑

∈Zn

σ(x, )FTn {χ(y)e2iπ ·ξ }() =
∑

∈Zn

σ(x, )χ̂( − ξ),

where χ̂ := FRnχ ∈ S(Rn).
Note that

FTn {χ(y)e2iπ ·ξ }() = χ̂ ( − ξ).

Furthermore, the Poisson summation formula and the properties of χ yield

∑

∈Zn

χ̂ ( − ξ) = 1 and
∑

∈Zn

(ξ − )αχ̂( − ξ) = 0,

for any α ∈ N
n
0\{0} and ξ ∈ R

n .
We assume that σ is m-homogeneous in  �= 0 and we keep the same notation for

its smooth homogeneous extension to Tn × (Rn\{0}) granted by Proposition 3.3. We
have for any N ∈ N0

FRn {χκx }(ξ) − σ(x, ξ) =
∑

∈Zn

⎛

⎝σ(x, ) −
∑

|α|≤N

(ξ − )α

α! ∂α
ξ σ (x, ξ)

⎞

⎠ χ̂ ( − ξ).

For r > 0, let Ar := { ∈ Z
n : r/2 ≤ || ≤ 2r} denote the set of integers in the

annulus with radii r/2 and 2r .We decompose the last sum above as
∑

/∈A|ξ | +
∑

∈A|ξ |
and we assume |ξ | ≥ 1 large. As σ ∈ C∞(Tn × (Rn\{0})) is m-homogeneous, and
χ̂ ∈ S(Rn), for any N1 ∈ N,

∣
∣
∣
∣
∣
∣

∑

/∈A|ξ |

∣
∣
∣
∣
∣
∣

�
∑

/∈A|ξ |

(

||�m + 〈ξ − 〉N |ξ |�m
)

〈ξ − 〉−N1

�
∑

||≤|ξ |/2
|ξ |�m+N−N1 +

∑

||≥2|ξ |
||�m+N−N1 � |ξ |�m+N−N1+n .
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We write the second sum
∑

A|ξ | as
∑

A|ξ |∩B(ξ,|ξ |1/2) +
∑

A|ξ |∩ cB(ξ,|ξ |1/2). The Taylor
estimates and the homogeneity of σ imply

∣
∣
∣
∣
∣
∣

∑

A|ξ |∩B(ξ,|ξ |1/2)

∣
∣
∣
∣
∣
∣

�
∑

A|ξ |∩B(ξ,|ξ |1/2)
|ξ − |N+1|ξ |�m−(N+1) � |ξ |�m− N+1

2 +n .

For the same reasons and because χ̂ ∈ S(Rn), we have

∣
∣
∣
∣
∣
∣

∑

A|ξ |∩ cB(ξ,|ξ |1/2)

∣
∣
∣
∣
∣
∣

�
∑

A|ξ |∩ cB(ξ,|ξ |1/2)
|ξ − |N+1|ξ |�m−(N+1)〈ξ − 〉N � |ξ |�m− N

2 +n .

The estimates above imply that for all N ′ ∈ N and ξ ∈ R
n , |ξ | ≥ 1, we have

|FRn {χκx }(ξ) − σ(x, ξ)| �σ,N ′ |ξ |−N ′
.

We can estimate in the same way ∂
β
x ∂α

ξ {FRn {χκx }(ξ) − σ(x, ξ)}. This shows that
FRn {χκx }(ξ) = χ(x)σ modulo S−∞ for x ∈ V . By linearity, it is true for any symbol
σ ∈ Smcl (T

n) with σ ∼h
∑

j∈N0
σm− j . This concludes the proof of Proposition 3.4. ��

4 Compact Lie groups

In this section we extend to the non-commutative setting some of the results that were
proved in Sect. 3. After recalling the setting and its notation in Sect. 4.1, we discuss
the Hörmander pseudo-differential calculus on a compact Lie group G in Sect. 4.2,
mainly gathering recent results on the subject. Sections4.3 and 4.4 are devoted to the
descriptions of the principal symbol and of the classical calculus in terms of the global
symbol; these are new to our knowledge. The rest of the section is devoted to proofs
(Sect. 4.5) and to the non-commutative reside and canonical trace on G (Sect. 4.6).

4.1 Notations and conventions

In Sect. 4, G always denotes a connected compact Lie group and n > 1 its dimension.
In this section we set the notation and convention regarding the group G. References
include [13,14,16], see also [7,8].

4.1.1 Representations

In this paper, a representation of G is any continuous (hence smooth) group homo-
morphism π from G to the set of automorphisms of a finite dimensional complex
vector space. We will denote this space Hπ with dimension dπ = dimHπ . We may
equip Hπ with an inner product (·, ·)Hπ

for which π is unitary. The coefficients of
π are any function of the form x �→ (π(x)u, v)Hπ

for u, v ∈ Hπ ; these are smooth
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functions on G. If a basis {e1, . . . , edπ } ofHπ is fixed, then we may identifyHπ with
C
dπ , and the matrix coefficients of π are the coefficients πi, j , 1 ≤ i, j ≤ dπ given by

πi, j (x) = (π(x)ei , e j )Hπ
.

We will often identify a representation of G and its equivalence class.
We denote by Rep(G) and Ĝ the sets of representations of G and of irreducible

representations of G respectively, both modulo equivalence.

4.1.2 Lie algebra and vector fields

The Lie algebra g is the tangent space of G at the neutral element eG . We denote by
expG : g → G the exponential mapping.

Wemay identify the Lie algebra gwith the space of left-invariant vector fields onG.
If a basis {X1, . . . , Xn} for g is fixed, we set for any multi-index α = (α1, . . . , αn) ∈
N
n
0

Xα := Xα1
1 . . . Xαn

n .

If π is a representation of the group G, then

π(X) = ∂

∂t
π(expG(t X))|t=0, X ∈ g,

defines a representation also denoted π of g and therefore of its universal enveloping
Lie algebra.

The Lie algebra g is the direct sum of the semi-simple Lie algebra gss = [g, g]with
its centre z:

g = gss ⊕ z.

Note that z is also the Lie algebra of the centre ZG of the group G. The Killing form
is a scalar inner product on gss ⊂ g and we extend it into a scalar inner product (·, ·)g
on g which is invariant under the adjoint action of G.

The Casimir element of the universal enveloping algebra is X2
1 + · · · + X2

n for
one and then any orthonormal basis X1, . . . , Xn of g. Up to a sign, the corresponding
differential operator is the (positive) Laplace-Beltrami operator of the compact Lie
group G:

LG := −X2
1 − · · · − X2

n .

The Laplace–Beltrami operator LG is a non-negative essentially self-adjoint operator
on L2(G). It is a central operator (i.e. invariant under left and right translations) and,
for any irreducible representation π of G, π(L) is scalar:

π(LG(π)) = λπ IHπ
, π ∈ Ĝ.
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4.1.3 Group Fourier transform

If f ∈ D′(G) is a distribution and π is a unitary representation, we can define its
group Fourier transform at π ∈ Ĝ denoted by

π( f ) ≡ f̂ (π) ≡ FG f (π)

via

π( f ) =
∫

G
f (x)π(x)∗dx, i.e. (π( f )u, v)Hπ

=
∫

G
f (x)(u, π(x)v)Hπ

dx,

since the coefficient functions are smooth. In this paper, the Haar measure dx on G is
normalised to be a probability measure.

We denote by L2
f ini te(G) the set formed by the finite linear combinations of coef-

ficients of representations π ∈ Ĝ. Hence L2
f ini te(G) is a vector subspace of C∞(G).

The Peter-Weyl Theorem states that L2
f ini te(G) is dense in L2(G) and that for any

π, π ′ ∈ Ĝ, u, v ∈ Hπ we have

FG{(π(·)u, v)Hπ
}(π ′) =

{

d−1
π (u, v)Hπ

if π ′ = π,

0 otherwise

Consequently, a function f ∈ C∞(G) admits the following expansion in Fourier
series:

f (x) =
∑

π∈Ĝ
dπ tr

(

π(x) f̂ (π)
) =

∑

π∈Ĝ
dπ

∑

1≤i, j≤dπ

πi, j (x)[ f̂ (π)] j,i .

Furthermore the Peter–Weyl Theorem yields an explicit spectral decomposition for
LG .

4.2 The Hörmander pseudo-differential calculus on G

In this section we discuss the Hörmander pseudo-differential calculus on G. It may
be viewed as a generalisation of the symbols and operator defined on tori in Sect. 3.

4.2.1 The symbols and the natural quantisation

The natural quantisation and notion of symbols on Lie groups was first mentioned by
Michael Taylor [34].

On a (connected) compact Lie group G, a symbol is a field σ = {σ(x, π) ∈
L (Hπ ), (x, π) ∈ G × Ĝ} (for a general definition of fields of operators, see e.g. [4,
Part IICh2]).HereL (Hπ )denotes the set of endomorphismson thefinite dimensional
space Hπ , and more generally the space of continuous linear mapping on a Hilbert
space Hπ .
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Its associated operator is the operator OpG(σ ) defined on L2
f ini te(G) via

OpG(σ )φ(x) =
∑

π∈Ĝ
dπ tr

(

π(x)σ (x, π)φ̂(π)
)

, φ ∈ L2
f ini te(G), x ∈ G.

ThePeter–Weyl theorem implies that forσ(x, π) = IHπ
the corresponding operator

is the identity. Furthermore, if T is a linear operator defined on L2
f ini te(G) (and with

image some complex-valued functions of x ∈ G), then one recovers the symbol via

σ(x, π) = π(x)∗(Tπ)(x), that is, [σ(x, π)]i, j =
∑

k

πki (x)(Tπk j )(x),

when one has fixed a matrix realisation of π . This shows that the quantisation OpG
defined above is injective.

4.2.2 Difference operators

Here we recall the two notions of difference operators, the RT-ones introduced by
Michael Ruzhansky and Ville Turunen [27] and the fundamental ones introduced by
the author in [8].

If q ∈ C∞(G), then the corresponding RT-difference operator �q is defined as
acting on Fourier coefficients i.e. FG(D′(G)) via

�q f̂ = FG{q f }, f ∈ D′(G).

A collection � = {�1, . . . ,�n�} = {�q1, . . . ,�n�} of RT-difference operators is
strongly admissible when

rank(∇eG q1, . . . ,∇eG qn�) = n and {eG} = ∩n�

j=1{x ∈ G : q j (x) = 0}.

Such a collection exists, see [8,28]. If α ∈ N
n�

0 , we write �α = �
α1
1 . . . �

αn�
n�

. Note
that the RT-difference operators are defined to act not on all the symbols but only on
FG(D′(G)).

Let us now recall the definition of the fundamental difference operators as intro-
duced by the authors in [8], see also [7]. These two references explain how this
approach generalises the difference operators of the toroidal case. A symbol σ =
{σ(x, π) ∈ L (Hπ ) : (x, π) ∈ G × Ĝ} is a field over the set G × Ĝ and the Hilbert
space ⊕π∈ĜHπ extends naturally to a field over G × Rep(G) via

σ(x, π1 ⊕ π2) = σ(x, π1) ⊕ σ(x, π2) ∈ L (Hπ1 ⊕Hπ2).

Conversely, fields over G × Rep(G) satisfying such relations defines a symbol. The
difference operator with respect to π0 ∈ Rep(G) is defined via

�π0σ(x, π) := σ(x, π0 ⊗ π) − σ(x, IHπ0
⊗ π), x ∈ G, π ∈ Rep(G).
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This defines a field over the set G× Ĝ and the Hilbert space⊕π∈ĜHπ ⊗Hπ0 . We also
extend this definition to any field over the setG× Ĝ and the Hilbert space⊕π∈ĜHπ ⊗
Hϕ for any ϕ ∈ Rep(G). This allows us to compose difference operators. We fix a
finite set {ϕ1, . . . , ϕ f } ⊂ Ĝ of representations of G such that any representation in
Ĝ will occur in a tensor products of representations in Fund(G). This exists [7], and
we call these representations ϕ1, . . . , ϕ f and the corresponding difference operators

�ϕ1, . . . ,�ϕ f fundamental. If α ∈ N
f
0 , we write �α = �

α1
ϕ1 . . . �

α f
ϕ f .

4.2.3 Pseudo-differential calculus on G

The next statement characterises the global symbol of an operator in the Hörmander
pseudo-differential calculus on G:

Theorem 4.1 (1) Let A ∈ �m(G) for some m ∈ R. Then there exists a unique symbol
σA such that A = OpG(σA). The symbol is smooth in x ∈ G in the sense that for
each π ∈ Ĝ, the map x �→ σ(x, π) is smooth on G.

• For any basis X1, . . . , Xn of g and for any strongly admissible family of RT-
difference operators �, the symbol σA satisfies

∀α ∈ N
n�

0 , β ∈ N
n
0 ∃C > 0 ∀(x, π) ∈ G × Ĝ (4.1)

‖Xβ�ασA(x, π)‖L (Hπ ) ≤ C〈λπ 〉m−|α|
2 .

• The symbol σA satisfies

∀α ∈ N
f
0 , β ∈ N

n
0 ∃C > 0 ∀(x, π) ∈ G × Ĝ (4.2)

‖Xβ�ασA(x, π)‖L ≤ C〈λπ 〉m−|α|
2 .

Here X1, . . . , Xn denotes a basis of g and we have fixed fundamental repre-
sentations ϕ1, . . . , ϕ f .

(2) Conversely, the following holds:

• If a symbol σ is smooth in x and satisfies (4.1) for a basis X1, . . . , Xn of
g and for a strongly admissible family of RT-difference operators �, then
OpG(σ ) ∈ �m(G) and it satisfies (4.1) for any basis X1, . . . , Xn of g and for
any strongly admissible family of RT-difference operators �.

• If a symbol σ is smooth in x and satisfies (4.1) for a basis X1, . . . , Xn of g and
for a set fundamental representations {ϕ1, . . . , ϕ f } of fundamental represen-
tations then OpG(σ ) ∈ �m(G) and it satisfies (4.2) for any basis of g and any
set of fundamental representations.

Theorem 4.1 is shown in [8]. Part (1) is also stated in [27,28], unfortunately with
sketches of proofs relying on properties of the pseudo-differential calculus (e.g. com-
position or properties equivalent to the statement above) which had not been shown
in these works.
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We denote by Sm(G) the Fréchet space of symbols satisfying (4.2) or equivalently
(4.1), and we say then that the symbols are of orderm. This extends the notation for the
toroidal caseG = T

n viewed in Sect. 3.1. As in the case of the torus, Theorem 4.1 may
then be rephrased as �m(G) = OpG(Sm(G)). Furthermore, the proof of Theorem 3.1
in [8] shows that the map σ �→ OpG(σ ) is an isomorphism of Fréchet spaces from
Sm(G) to �m(G). This is so for any m ∈ R, and also for m = −∞ having denoted
by S−∞(G) = ∩m∈RSm(G) the set of smoothing symbols.

As on R
n or Tn , we say that the symbol σ ∈ Sm(G) admits an expansion and we

write σ ∼ ∑

j∈N0
σm− j when σm− j ∈ Sm− j (G) and σ − ∑mN

j=0 σm j ∈ Sm−N+1(G).

4.2.4 Kernels

As on the torus, another way of defining globally an operator A ∈ ∪m∈R�m(G) is
via its integral kernel KA ∈ D′(G × G) or equivalently via the distribution given
by kA,x (y) = KA(x, xz−1). Indeed, we have (in the sense of distributions) for any
f ∈ C∞(G) and x ∈ G:

A f (x) =
∫

G
KA(x, y) f (y)dy =

∫

G
f (y)κA,x (y

−1x)dy = f ∗ κA,x (x).

Recall that the map x �→ κA,x ∈ D′(G) is smooth on G and that we have

∀(x, π) ∈ G × Ĝ κ̂A,x () = σA(x, π) (where σA := Op−1
G (A)).

Moreover, κA,x is smooth away from the origin for x fixed since KA is smooth away
from the diagonal x = y. In fact, an operator A : C∞(G) → D′(G) is in �−∞(G) if
and only if (x, y) �→ κx (y) is smooth on G × G.

If σA does not depend on x , then A is a group Fourier multiplier with symbol σ and
convolution kernel κA. Even when σA depends on x , we may abuse the vocabulary
and call κA,x the convolution kernel of A.

Lemma 4.2 Let A = OpG(σA) ∈ �m(G) with m < −n. Then
∑

π∈Ĝ dπ |tr∫

G σ(x, π)dx | is finite and A is trace-class with

tr(A) =
∫

G
KA(x, x)dx =

∫

G
κA,x (eG)dx =

∑

π∈Ĝ
dπ tr

∫

G
σ(x, π)dx .

Proof The first equality holds on any compact manifold and any operator of order
m < −n. As m < −n, κx is continuous on G so

∫

G KA(x, x)dx = ∫

G κx (eG)dx .
As σ ∈ Sm(G), we have

|tr
∫

G
σ(x, π)dx | ≤ sup

(x ′,π ′)∈G×Ĝ

‖σ(x ′, π ′)‖(1+ λπ ′)−
m
2 tr

(

(1+ λπ)−
m
2 IHπ

)

.
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Recall that the convolution kernel Bs of the operator (I+LG)− s
2 is square integrable

for s > n/2 [8, Lemma A5] and that

‖Bs‖2L2(G)
=

∑

π∈Ĝ
dπ‖(1+ λπ)−

s
2 IHπ

‖2HS =
∑

π∈Ĝ
dπ tr(1+ λπ)−sIHπ

.

In this paper, ‖ · ‖HS denotes the Hilbert–Schmidt norm of a matrix or an operator on
a Hilbert space. Therefore, as m < −n, we have

∑

π∈Ĝ
dπ |tr

∫

G
σ(x, π)dx |

≤ sup
(x ′,π ′)∈G×Ĝ

‖σ(x ′, π ′)‖(1+ λπ ′)−
m
2

∑

π∈Ĝ
dπ tr

(

(1+ λπ)−
m
2 IHπ

)

= sup
(x ′,π ′)∈G×Ĝ

‖σ(x ′, π ′)‖(1+ λπ ′)−
m
2 ‖B−m/2‖2,

and the sum on the right-hand side is finite. Moreover, since
∫

G σ(x, π)dx =
FG{

∫

G κxdx}(π), the Fourier inversion formula yields:

∫

G
κx (eG)dx =

∑

π∈Ĝ
dπ tr

∫

G
σ(x, π)dx .

��

4.2.5 Invariance of the calculi under translations

For any operator A = OpG(σA) and x0 ∈ G, we denote by x0 A and Ax0 the left and
right translated of A, that is, the operators given by

x0 A( f )(x) = A( f (x−1
0 ·))(x0x) and Ax0( f )(x) = A( f (· x−1

0 ))(xx0).

We check easily that the symbols of x0 A and Ax0 are given by respectively:

σx0 A
(x, π) = σA(x0x, π) and σAx0

(x, π) = π(x0)σA(xx0, π)π(x0)
−1.

It follows readily from the definition of the symbol classes [see the conditions in
(4.2)] that for any x0 ∈ G we have

σA ∈ Sm(G) �⇒ σx0 A
and σAx0

are in Sm(G).

Furthermore, the maps σA �→ σx0 A
and σA �→ σAx0

are continuous isomorphisms
of the Fréchet space Sm(G). Consequently, �m(G) is invariant under left or right
translations in the sense that for any x0 ∈ G we have:

A ∈ �m(G) �⇒ x0 A and Ax0 are in �m(G).
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Furthermore, we can integrate with respect to x0 ∈ G:

A ∈ �m(G) �⇒
∫

G
x0 A dx0 and

∫

G
Ax0dx0 are in �m(G).

Let us prove a similar result for the classical calculus:

Proposition 4.3 For any A ∈ �m
cl (G) and x0 ∈ G, the operators x0 A, Ax0 ,

∫

G x0 A dx0
and

∫

G Ax0dx0 are in �m
cl (G).

Proof We can construct a finite open cover ofG of the form (�z j ) j where� is a small
neighbourhood of eG and (z j ) j distinct point on G. We can also find a subordinate
partition of unity of the form χ j = ψ j (· z j ), andψ j valued in [0, 1], identically 1 near
eG and with a small support about eG . The exponential mapping expG is a smooth
diffeomorphism from a neighbourhood of 0 onto a neighbourhood of suppψ j . For any
A : C∞(G) → D′(G), we define A j,k : C∞

c (�) → D′(�) via

A j,k( f ) (x) = (

χk Aχ j
(

f (· x j )
))

(xx−1
k ).

Then A : C∞(G) → D′(G) is in �m(G) if and only if all the operators φ �→
(A j,k(φ ◦ exp−1

G )) ◦ expG are in �m(O). And A ∈ �m(G) is classical if and only if
all the operators φ �→ (A j,k(φ ◦ exp−1

G )) ◦ expG are in �m
cl (O).

We observe that (x0 A) j,k coincides with A′
j,k constructed in a similar fashion,

but with the z j being replaced by x−1
0 z j . The membership of x0 A follows readily.

Furthermore, all the operators (x0 A) j,k have an integral kernelwhichdepends smoothly
on x0, i.e. G % x0 �→ K(x0 A) j,k ∈ D′(G × G) is continuous; therefore the Euclidean

symbols of φ �→ ((x0 A) j,k(φ ◦exp−1
G ))◦expG depend smoothly on x0 as well. Hence,

one checks easily that the integration over G also produces a classical symbols. This
implies the membership of

∫

G x0 A dx0 in �m
cl (G).

Similarly, we obtain the�m
cl (G)-memberships of Ax0 by considering left translated

of � and of
∫

G Ax0dx0 as above. ��
The proof of Proposition 4.3 yields readily:

Corollary 4.4 Let A ∈ �m
cl (G) and let x0 ∈ G.

(1) Denoting by am the principal symbol of A, the principal symbols of x0 A and Ax0
at x are given by am(x0x, L∗

x0 ·) and am(xx0, R∗
x0 ·) where L∗

x0 and R∗
x0 are the

pullbacks of the left and right x0-translation mappings.
(2) Translating the operator yields translation of the residue density

resx1(x0 A) = resx0x1(A) and resx1(Ax0) = resx1x0(A),

and of the canonical trace density:

TRx1(x0 A) = TRx0x1(A) and TRx1(Ax0) = TRx1x0(A),



256 V. Fischer

Consequently, the operators A, x0 A, Ax0 ,
∫

G x0 A dx0 and
∫

G Ax0dx0 have the
same non-commutative residue and the same canonical trace. If m < −n, they
have the same trace.

We will not use Part (2) of this corollary in this paper.

4.3 Principal symbols

Our definition of homogeneous symbol is motivated by the following important prop-
erty for whichwe need the following conventions. Recall that for a non-trivial (unitary)
representationπ when amaximal torus T is fixed, the representation spaceHπ decom-
poses orthogonally into π(T )-eigenspaces. The corresponding non-zero eigenvalues
form the set of weights.Wewill also use the notion of analytical integral weight. Some
well-known facts will also be recalled and used below. References for this classical
material include [16] (especially Chapters IV and V) and [13] (especially Section 12).

Lemma 4.5 Let A = OpG(σA) ∈ �0
cl(G). Let χ1, χ2 ∈ C∞(G) with small supports

near eG and identically equal to 1 on a small neighbourhood of eG. Let b ∈ S0(Rn) be
the principal symbol of the operator exp∗ χ1Aχ2 : f �→ (χ1A((χ2 f )◦expG))◦exp−1

G .
Let w ∈ g∗. If there exists a maximal torus T of G and a non-trivial irreducible
representation π of G such that w is an analytical integral weight for π and T then

b(0, w) = lim
k→+∞

(

σA

(

eG , π⊗k
)

v⊗k, v⊗k
)

H⊗k
π

,

where v is a unit w-weight vector.

As the eigenspace of an analytical integral weight is one-dimensional, the limit
relation in Lemma 4.5 does not depend on the choice of a unit highest weight vector.

Proof of Lemma 4.5 If f is a smooth function supported in a neighbourhood small
enough of eG and if X is in a neighbourhood small enough of eG , we have:

A( f ◦ exp−1
G ) (expG(X)) =

∫

G
f ◦ exp−1

G (y)κA,expG (X)(y
−1 expG(X))dy

=
∫

g
f (Y )κA,expG (X)(expG(−Y ) expG(X))|jacY exp | dY

after the change of variable y = expG(Y ). Hence the symbol a of the operator
exp∗ χ1Aχ2 is, up to a smoothing symbol, given by

a(X , ξ) =
∫

Y∈g
χ(Y )κA,expG (X)(expG(Y − X) expG(X))eiξ ·Y |jacY exp | dY ,

where χ ∈ C∞
c (R) is valued in [0, 1] and supported in a small neighbourhood of 0

with χ ≡ 1 near 0. Consequently, its principal symbol at X = 0 is

b(0, ξ) = lim
r→+∞

∫

Y∈g
χ(Y )κA,eG (expG(Y ))eirξ ·Y |jacY exp | dY .



Local and global symbols on compact Lie groups 257

Letw ∈ g∗ such that there exists amaximal torus T ofG and anon-trivial irreducible
representation π of G such that w is an analytical integral weight for π and T . We fix
an ordering on g∗ so that w is dominant and has become the highest weight of π . Let
v be a unit highest weight vector. For every k ∈ N, the highest weight theory yields:

∀y ∈ G (πkw(y)vkw, vkw)Hπkw
= (π⊗k(y)v⊗k, v⊗k)H⊗k

π

where πkw is the representation with highest weight kw and vkw a unit highest weight
vector. Therefore, we have for any x ∈ G

(σA(x, π⊗k)v⊗k, v⊗k)H
π⊗k = (σA(x, πkw)vkw, vkw)Hπkw

= (̂κA,x (πkw)vkw, vkw)Hπkw
. (4.3)

Setting χG = χ ◦ exp, we have κ̂A,eG = FG(χGκA,eG ) + FG((1 − χG)κA,eG ), and
the second term is smoothing, so

|(FG
(

(1− χG)κA,eG

)

(πkw)vkw, vkw)Hπkw
| ≤ ‖FG

(

(1− χG)κA,eG

)

(πkw)‖L (Hπkw )

for any N ∈ N. By [7, Lemma 3.8], 〈λπkw 〉 & 〈kw〉2 & k2 for w fixed. For the first
term, we use

(πkw(eY )vkw, vkw)Hπkw
= eikw(Y ),

for Y in a small neighbourhood of 0 to obtain:

(FG
(

χGκA,eG

)

(πkw)vkw, vkw)Hπkw
=

∫

g
χ(Y )κA,eG (expG(Y ))ekiw(Y )|jacY exp | dY

This implies easily the limit relation in the statement. ��
Having chosen a maximal torus T in G, the set of analytical integral functionals

{w analytical integral weight for π and T : π ∈ Ĝ\{1Ĝ}},

form a lattice of the dual t∗ of the Lie algebra t of T (see also [7, Section 2.4] for a
discussion with this viewpoint). It is easily seen that given any real finite-dimension
vector space V , a continuous homogeneous function on V \{0} is characterised by its
restriction to any lattice of V . Hence, Lemma 4.5 implies that, keeping its notation,
b(0, ·) is determined completely on t∗\{0}. Now the unions of all the possible maximal
tori and of the duals of their Lie algebras are G and g∗ respectively. Therefore, b is
determined completely on {0}×g∗\{0}. The properties of translations in Corollary 4.4
Part (1) then yield:

Theorem 4.6 Let A = OpG(σA) ∈ �0
cl(G). Using the homogeneity and the pullback

of the left translations, its principal symbol is identified with a smooth function a0 :
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G × (g∗\{0}) → C which is homogeneous of degree 0 in the variable ξ ∈ g∗\{0}.
Then we have for x ∈ G and any non-trivial π ∈ Ĝ,

a0(x, w) = lim
k→+∞(σA(x, π⊗k)v⊗k, v⊗k)H⊗k

π
,

where w and v ∈ Hπ are the highest weight and a corresponding unit vector for a
given maximal torus T and ordering on g∗. This characterises a0.

This theorem shows how to obtain the principal symbol a0 from the global symbol
σA. The matrix symbol contains all the information about the operator A whereas the
principal symbol may be viewed as the operator A modulo ∪m<0�

m(G).
In the case of the torus G = T

n , every representation π ∈ Ĝ is of dimension 1
and identified with a character x �→ e2iπx ·; furthermore, π⊗k corresponds then to
the character x �→ e2iπx ·(k). With Theorem 4.6, we recover

a0(x, ) = lim
k→+∞ σA(x, k).

which is a simple consequence of Proposition 3.4.

4.4 Homogeneous symbols and classical symbols on G

We are led to define the following notion of homogeneity.

Definition 4.7 Let σ be a symbol. It is said to be 0-homogeneous when the following
condition is satisfied for every x ∈ G and every π ∈ Ĝ\{1} of G. We fix a maxi-
mal torus T and a realisation of π as a unitary irreducible representation of G. We
consider an orthonormal basis of π(T )-eigenvectors for the representation space. The
only possibly non-zero coefficients of σ(x, π) are the diagonal ones corresponding to
analytical integral weights, i.e. (σ (x, π)v1, v2) = 0 if v1, v2 are π(T )-eigenvectors
for weights which are not both analytical integral, or if v1, v2 are π(T )-eigenvectors
for distinct analytical integral weights. Furthermore, if v is a unit eigenvector for an
analytical integral weight for π and T , then we have for every k ∈ N

(σ (x, π)v, v)Hπ
= (σ (x, π⊗k)v⊗k, v⊗k)H

π⊗k

In the last relation, π⊗k denotes the k-tensor product of the representation π . As
v is a unit eigenvector for an analytical integral weight w for π and T , v⊗k is a unit
eigenvector for the analytical integral weight kw for π⊗k and T . Furthermore, this last
relation does not depend on the choice of the unit eigenvector v since the eigenspace
of an analytical integral weight is one-dimensional. In fact, it implies

(σ (x, π)v, v)Hπ
= (σ (x, πkw)vkw, vkw)Hπwk

,

where πkw is the representation with highest weight kw and vkw a unit highest weight
vector, see (4.3).
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Definition 4.7 gives a condition on the symbol σ as a field over G × Ĝ. Indeed, if
π1 is equivalent to the representation π in the definition, then π1 and π are isomorphic
and therefore have the same matrix representation in an orthonormal basis of weight
vectors. Furthermore, the condition in Definition 4.7 does not depend on the choice
of a maximal torus T . Indeed, if T ′ is another maximal torus T then T ′ and T are
conjugate by an element g of G; the co-adjoint action at g is an isomorphism for the
two sets of weights and the unitary map π(g) intertwines the matrix representation in
the basis of eigenvectors for π(T ) and π(T ′).

We can now define our notion of classical poly-homogeneous expansion for our
global symbol in G:

Definition 4.8 A symbol σ is said to be m-homogeneous with m ∈ C when
λ
m/2
π σ(x, π) yields a 0-homogeneous symbol.
A symbol is classical of complex order m ∈ C when σ is in S�m(G) and admits

the expansion σ ∼h
∑

j∈N0
σm− j where each σm− j is in S�m− j and is (m − j)-

homogeneous.

In the case of the group being a torus G = T
n , this definition is consistent with the

ones given in Sect. 3.2. Therefore, we can generalise the notation of that section and
denote by Smcl (G) the space of classical symbol of order m ∈ C. We obtain as in the
case of the torus:

Theorem 4.9 For any m ∈ C, we have

�m
cl (G) = OpG(Smcl (G)).

The next section is devoted to the proof of Theorem 4.9.

4.5 Proof of Theorem 4.9

Let us first show the inclusion OpG(Smcl (G)) ⊂ �m
cl (G). By linearity of OpG and the

result on ∪m1∈R�m1(G), it suffices to show:

Lemma 4.10 If σ ∈ S�m is m-homogeneous, then OpG(σ ) ∈ �m
cl (G).

Proof of Lemma 4.10 We already know A := OpG(σ ) ∈ ��m(G). If χ ∈ C∞
c (R) has

a small enough support near 0 with χ(0) = 1, then the operator spectrally defined via
χ(LG) is the projection onto the constant function and LG + χ(LG) is injective. By
[8, Proposition 3.14], the operator χ(LG) is smoothing and (LG + χ(LG))−m1/2 ∈
��m1(G) for any m1 ∈ C. Furthermore, the properties of a Laplace operator on a
compact manifold [31] imply (LG + χ(LG))−m1/2 ∈ �

m1
cl (G). The properties of

OpG yield A1 := A(LG + χ(LG))−m/2 := OpG(σ1) where σ1 is the symbol given
by

σ1(x, 1Ĝ) := σ(x, 1Ĝ) and σ1(x, π) = σ(x, π)λ−m/2
π , π ∈ Ĝ\{1Ĝ}.

Showing that A1 is classical will imply that A = A1(LG+χ(LG))m/2 is also classical,
therefore this paragraph shows that we may assume m = 0.
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Let us assume m = 0. By the properties of invariance under translation (see
Sect. 4.2.5), it suffices to show that the operator exp∗ χ1Aχ2 is classical where
χ1, χ2 ∈ C∞(G) have small supports near eG and identically equal to 1 on a small
neighbourhood of eG . Proceeding as in the proof of Lemma 4.5, the symbol a of the
operator exp∗ χ1Aχ2 is, up to a smoothing symbol, given by

a(X , ξ) =
∫

Y∈g
χ(Y )κA,expG (X)(expG(Y − X) expG(X))eiξ ·Y |jacY exp | dY ,

where χ ∈ C∞
c (g∗) is valued in [0, 1], supported near 0 and identically equal to 1 on

a small neighbourhood of 0. For X ∈ suppχ , the function �X defined via

expG(�X (Y )) = expG(Y − X) expG(X), Y ∈ g∗,

is smooth on g∗. As D0�X = I, it is a diffeomorphism between open neighbourhoods
of 0. The change of variable Y ′ = �X (Y ) yields

a(X , ξ) = bX (ξ ◦ �−1
X ), where b(X)(ξ)

:=
∫

Y ′∈g
χ(�−1

X (Y ′))κA,expG (X)(Y
′)eiξ(Y ′)|jacY ′ exp | dY ′,

viewing ξ as an element of g∗. Setting

b(X)
T (w) := (σ (eX , π)v, v),

when w ∈ g∗ is an analytical integral weight for some π ∈ Ĝ and maximal torus T ,
and where v is a unit w-weight vector, we have

b(X)(w) − b(X)
T (w) = FG{(1− χX ) κA,eX }(πw),

where χX = χ ◦ �−1
X ◦ exp−1

G ∈ C∞(G) is identically 1 in a neighbourhood of

eG . Setting b
(X)
T (0) = 0, the function b(X) − b(X)

T is therefore an invariant smoothing
symbol on the lattice of analytical integralweight for themaximal torus T . Sinceσ is 0-
homogeneous,wehaveb(X)

T (kw) = b(X)
T (w) and the functionb(X)

T is a 0-homogeneous

symbol on the lattice of analytical integral T -weights. By Proposition 3.3, b(X)
T admits

a unique smooth extension to t∗\{0} for which we keep the same notation. The unique-
ness of the construction shows that we can define a function b(X)

0 : g∗ → C such that
its restriction to the dual t∗ of the Lie algebra of any maximal torus T coincides with
b(X)
0 |t∗ = b(X)

T . Furthermore, b(X)
0 ∈ C∞(g∗\{0}) is 0-homogeneous.

We fix a function ψ0 ∈ C∞(R) be such that ψ0(s) = 0 for s ≤ 1/2 and ψ0(s) = 1
for s ≥ 1. We define the smooth and bounded function R on g∗ with

RX (ξ) := b(X)(ξ) − b(X)
0 (ξ)ψ(ξ), ψ(ξ) := ψ0(|ξ |), ξ ∈ g∗.
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By construction, RX is an invariant symbol in S0 on R
n ∼ g∗, therefore F−1

Rn RX is
Schwartz away from 0. For any maximal torus T , the restriction of RX to the lattice of
analytical integral weights of T is smoothing, therefore it yields a smoothing symbol
on the torus T and its convolution kernelF−1

T RX |T is smooth near eG ∈ T . This being
true for any maximal torus T implies that F−1

Rn RX is Schwartz on g, so RX ∈ S(g∗).
One checks easily that the map X �→ RX ∈ S(g∗) is smooth on a neighbourhood of
0. As the symbol a is given by

a(X , ξ) = b(X)
0 (ξ ◦ �−1

X )ψ(ξ ◦ �−1
X ) + RX (ξ ◦ �−1

X ),

it satisfies a(X , ξ) ∼h b(X)
0 (ξ ◦ �−1

X ) + 0. This concludes the proof. ��
The main ingredient for the reverse inclusion is the following lemma:

Lemma 4.11 Let A ∈ �0
cl(G). As in Theorem 4.6, we identify its principal symbol with

a smooth function a0 : G × (g∗\{0}) → C which is 0-homogeneous in the variable
ξ ∈ g∗\{0}.

Let x ∈ G and let π be an irreducible non-trivial representation of G. Fixing a
maximal torus T , we define an endomorphism Mx,π ofHπ in the following way: all its
coefficients with respect to an orthonormal basis of π(T )-eigenvectors of Hπ vanish
except (potentially) the diagonal ones corresponding to analytical integral weights
w where we have (Mx,πv, v)Hπ

:= a0(x, w). When x runs over G and π runs over
the set of irreducible non-trivial representation of G, the matrices Mx,π together with
σ0(x, 1Ĝ) = 0 define a 0-homogeneous symbol σ0. Furthermore, σ0 ∈ S0(G) and
A − Op(σ0) ∈ �−1

cl (G).

Proof of Lemma 4.11 The considerations in Sects. 4.3 and 4.4 show that the symbol σ0
is well-defined and 0-homogeneous. Let us show σ0 ∈ S0(G). We fix a maximal torus
T . We will need the following observation: the highest weight theory implies that if
w1, . . . , w j are j analytical integral weights for representations π1, . . . , π j ∈ Ĝ, then
w1 + · · · +w j is an analytical integral weights for the irreducible representation with
highest weight (in any choice of ordering) in the decomposition of π1 ⊗ · · · ⊗π j into
irreducibles, so we have:

a0(x, w1 + · · · + w j )

= (

σ0(x, π1 ⊗ · · · ⊗ π j )v1 ⊗ · · · ⊗ v j , v1 ⊗ · · · ⊗ v j
)

Hπ1⊗···⊗Hπ j
, (4.4)

where each vector vk is a unitary wk-vector.
Let ϕ, π ∈ Ĝ. The endomorphsims σ0(x, 1ϕ ⊗π) and σ0(x, ϕ⊗π) ofHπ ⊗Hϕ are

diagonal when viewed in an orthogonal basis of vectors of the form vπ ⊗vϕ where vπ

and vϕ are eigenvectors for π(t) and ϕ(t) respectively. Furthermore, only the diagonal
entries corresponding to analytical integral wπ and wϕ may be non-zero. Therefore
this is also the case for �ϕσ0(x, π) and we have by (4.4)

(

�ϕσ0(x, π)vϕ ⊗ vπ , vϕ ⊗ vπ

) = a0(x, wϕ + wπ) − a0(x, wπ).
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This last expression is equal to Dξa0(x, ·)(wπ) for some ξ ∈ [wπ,wπ + wϕ] by the
mean value theorem. The homogeneity of a0 then yield the estimate

| (�ϕσ0(x, π)vϕ ⊗ vπ , vϕ ⊗ vπ

) | ≤ |wϕ ||ξ |−1 sup
|ξ ′|=1

‖Dξ ′a0(x, ·)‖ �a0,ϕ 〈wπ 〉−1.

By [7, Lemma 3.8], 〈wπ 〉 & 〈λπ 〉1/2. Therefore, ‖�ϕσ0(x, π)‖L (Hπ⊗ϕ) �a0,ϕ

〈λπ 〉−1/2.
More generally, we compute recursively for any symbol σ independent of x and

ϕ′
1, . . . , ϕ

′
J , π ∈ Rep(G):

�ϕ′
1
. . . �ϕ′

J
σ(π) = σ(x,⊗J

k=1ϕ
′
k ⊗ π) −

J
∑

j=1

σ(1ϕ′
j
⊗k �= j ϕ′

k ⊗ π)

+
∑

1≤ j1< j2≤J

σ(1ϕ′
j1
⊗ 1ϕ′

j2
⊗k �= j1, j2 ϕ′

k ⊗ π) + . . .

+ (−1)J−1
∑

1≤ j1< j2≤J

σ(ϕ′
j1 ⊗ ϕ′

j2 ⊗k �= j1, j2 1ϕ′
k
⊗ π)

+ (−1)J
J

∑

j=1

σ(ϕ′
j ⊗k �= j 1ϕ′

k
⊗ π). (4.5)

We now assume ϕ′
1, . . . , ϕ

′
J , π irreducible. The endomorphsim �ϕ′

1
. . . �ϕ′

J
σ0(x, π)

is diagonal when viewed in an orthogonal basis of vectors which are the projections
of of vπ ⊗ vϕ′

1
⊗ · · · ⊗ vϕ′

J
and only the diagonal entries corresponding to analytical

integral weightswπ andwϕk may be non-zero. The formulae in (4.4) and (4.5) applied
to symbols independent of x on Ĝ and also on the lattice of analytical integral weights
yield:

(

�ϕ′
1
. . . �ϕ′

J
σ0(x, π)vπ ⊗ vϕ′

1
⊗ · · · ⊗ vϕ′

J
, vπ ⊗ vϕ′

1
⊗ · · · ⊗ vϕ′

J

)

= �wϕ′1
. . . �wϕ′J

a0(x, wπ),

where a(x, ·) is restricted to the lattice of analytical integral weights of G. Iteratively
applying the mean value formula, we have

�wϕ′1
. . . �wϕ′J

a(x, wπ) = DJ
ξ ′a0(x, ·)

(

wϕ′
1
, . . . , wϕ′

J

)

for some ξ ′ in a ball about wπ and with radius
∑J

j=1 |wφ′
j
|. The homogeneity of a0

then yield

∣
∣
∣DJ

ξ ′a0(x, ·)
(

wϕ′
1
, . . . , wϕ′

J

)∣
∣
∣ ≤ |ξ ′|−J |wϕ′

1
| . . . |wϕ′

J
| sup
|ξ ′|=1

‖DJ
ξ ′a0(x, ·)‖ � 〈wπ 〉−J .
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As 〈wπ 〉 & 〈λπ 〉1/2, we have obtained ‖�ϕ′
1
. . . �ϕ′

J
σ0(x, π)‖L � 〈λπ 〉−J/2. This

shows that the symbol σ0 is in S0(G).
By Lemma 4.9, Op(σ0) ∈ �0

cl(G) so A − Op(σ0) is in �0
cl(G). By construction

and Theorem 4.6, the principal symbol of A−Op(σ0) is identically zero. This implies
A − Op(σ0) ∈ �−1

cl (G) and concludes the proof of Lemma 4.11. ��
Proof of Theorem 4.9 We have already noticed that Lemma 4.10 implies OpG(Smcl (G))

⊂ �m
cl (G). Let us prove the reverse inclusion. Let A ∈ �m

cl (G). Then A(I+LG)−m
2 ∈

�0
cl(G) and we denote by σ0 the 0-homogeneous symbol associated with it in Lemma

4.11. We define σm via σ(x, π) = λ
m
2
π σm(x, π) for π ∈ Ĝ\{1Ĝ}, and σ(x, 1Ĝ) = 0.

Then the symbol σm is in Sm(G) while the operator

A − Op(σm) =
(

A(I + LG)−
m
2 − Op(σ0)

)

(I + LG)
m
2 mod�−∞,

is in �m−1
cl (G). Recursively, we obtain a poly-homogeneous expansion

∑

j∈N0
σm− j

for σ = Op−1
G A and this shows σ ∈ Smcl (G). We have obtained the reverse inclusion

�m
cl (G) ⊂ OpTn (Smcl (G)) and this concludes the proof of Theorem 4.9. ��

4.6 Non-commutative residue and canonical trace on G

Here, we generalise Corollary 3.6 to the case of a compact Lie group which may not
be commutative, i.e. may not be the torus. Applying Theorem 2.5 and Proposition 2.9
to the Laplace operator LG , we obtain readily the following result.

Proposition 4.12 Let σ ∈ Smcl (G) with m ∈ C. We set A := OpG(G).

(2) Let η ∈ C∞
c (0,∞). Then we have an expansion as t → 0+:

tr(A η(LG)) =
∑

π∈Ĝ
dπη(tλπ)tr(σ (x, π)) ∼ cm+nt

−m+n
m0 + cm−n−1t

−m+n−1
m0 + . . .

The constants cm+n− j are of the form cm+n− j = c(σ )
m+n− j c

(η)
m+n− j where c

(σ )
m+n− j

depends only on the homogeneous expansion of σ and

c(η)
m+n− j :=

1

2

∫ +∞

u=0
η(u) u

m− j+n
2

du

u
.

If m ∈ Zn then c0 = c(σ )
0 c(η)

0 with

c(σ )
0 = resA, and c(η)

0 = 1

2

∫ +∞

0
η(u)

du

u
.

(3) Here, �m ≥ −n with m /∈ Z. Let η ∈ Mmη (R) (see Definition 2.4) with �m +
mηm0 < −n. Then the operator A η(t�) is traceclass for all t ∈ R and the trace
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admits the following expansion as t → 0+,

tr(A η(LG)) =
∑

π∈Ĝ
dπη(tλπ)tr(σ (x, π)) = η(0)TR(A)

+
N−1
∑

j=0

c′m+n− j t
−m−n+ j

2 + o(1),

where N ∈ N is the smallest non-negative integer such that N ≥ 2mη + m1 + n.

The constants c′m+n− j are of the form c′m+n− j = c′(σ )
m+n− j c

′(η)
m+n− j where c

′(σ )
m+n− j

depends only on the poly-homogeneous expansion of σ and

c′(η)
m+n− j :=

1

2

∫ +∞

u=0
η(u) u

m− j+n
2

du

u
.
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