Skip to main content
Log in

From Waste to Health: Synthesis of Hydroxyapatite Scaffolds From Fish Scales for Lead Ion Removal

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Fish scales are natural sources of collagen and hydroxyapatite, yet are typically considered waste. In this study, fish scale powder obtained from Tilapia fish (Oreochromis mossambicus) was used to synthesize scaffolds by freeze casting for the removal of lead ions from wastewater. The mineral hydroxyapatite was confirmed by x-ray diffraction. Scaffolds with a well-aligned lamellar microstructure (10–80-μm channel widths) and proper mechanical properties under compression were synthesized by controlling the solid loading, cooling rate, and sintering temperature. The maximum adsorption capacities (q max) were 208.3 mg/g and 344.8 mg/g in pH = 5 and pH = 2.2 solutions, respectively. More than 99.9% of the lead ion was removed after 20 min. The results show that fish-scale-derived hydroxyapatite scaffolds are promising for heavy metal ion removal and wastewater treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Davydova, Microchem. J. 79, 133 (2005).

    Article  Google Scholar 

  2. S.E. Bailey, T.J. Olin, R.M. Bricka, and D.D. Adrian, Water Res. 33, 2469 (1999).

    Article  Google Scholar 

  3. C.T. Benatti, C.R. Tavares, and E. Lenzi, J. Environ. Manage. 90, 504 (2009).

    Article  Google Scholar 

  4. L. Cui, L. Hu, X. Guo, Y. Zhang, Y. Wang, Q. Wei, and B. Du, J. Mol. Liq. 198, 157 (2014).

    Article  Google Scholar 

  5. R. Donat, A. Akdogan, E. Erdem, H. Cetisli, and J. Colloid, Interface Sci. 286, 43 (2005).

    Article  Google Scholar 

  6. H. Xu, L. Yang, P. Wang, Y. Liu, and M. Peng, J. Environ. Manag. 86, 319 (2008).

    Article  Google Scholar 

  7. J.W. Shen, T. Wu, Q. Wang, and H.H. Pan, Biomaterials 29, 513 (2008).

    Article  Google Scholar 

  8. Y. Takeuchi, T. Suzuki, and H. Arai, J. Chem. Eng. Jpn. 21, 98 (1988).

    Article  Google Scholar 

  9. Q.Y. Ma, S.J. Traina, T.J. Logan, and J.A. Ryan, Environ. Sci. Technol. 27, 1803 (1993).

    Article  Google Scholar 

  10. Y. Feng, J.-L. Gong, G.-M. Zeng, Q.-Y. Niu, H.-Y. Zhang, C.-G. Niu, J.-H. Deng, and M. Yan, Chem. Eng. J. 162, 487 (2010).

    Article  Google Scholar 

  11. M. Ferraz, F. Monteiro, and C. Manuel, J. Appl. Biomater. Biomech. 2, 74 (2004).

    Google Scholar 

  12. X. Zhang and K.S. Vecchio, J. Cryst. Growth 308, 133 (2007).

    Article  Google Scholar 

  13. D.-M. Liu, T. Troczynski, and W.J. Tseng, Biomaterials 22, 1721 (2001).

    Article  Google Scholar 

  14. S. Mondal, B. Mondal, A. Dey, and S.S. Mukhopadhyay, J. Miner. Mater. Charact. Eng. 11, 55 (2012).

    Google Scholar 

  15. Y.-C. Huang, P.-C. Hsiao, and H.-J. Chai, Ceram. Int. 37, 1825 (2011).

    Article  Google Scholar 

  16. Y. Lei, W. Chen, B. Lu, Q.-F. Ke, and Y.-P. Guo, RSC Adv. 5, 98783 (2015).

    Article  Google Scholar 

  17. H. Zhang, I. Hussain, M. Brust, M.F. Butler, S.P. Rannard, and A.I. Cooper, Nat. Mater. 4, 787 (2005).

    Article  Google Scholar 

  18. S. Deville, E. Saiz, and A.P. Tomsia, Biomaterials 27, 5480 (2006).

    Article  Google Scholar 

  19. U.G. Wegst, M. Schecter, A.E. Donius, and P.M. Hunger, Philos. Trans. A. Math. Phys. Eng. Sci. 368, 2099 (2010).

    Article  Google Scholar 

  20. M.M. Porter, J. McKittrick, and M.A. Meyers, JOM 65, 720 (2013).

    Article  Google Scholar 

  21. S. Mondal, S. Mahata, S. Kundu, and B. Mondal, Adv. Appl. Ceram. 109, 234 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the Ministry of Science and Technology, Taiwan (MOST103-2221-E-007-034-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po-Yu Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3310 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, WK., Liaw, BS., Chang, HK. et al. From Waste to Health: Synthesis of Hydroxyapatite Scaffolds From Fish Scales for Lead Ion Removal. JOM 69, 713–718 (2017). https://doi.org/10.1007/s11837-017-2270-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2270-5

Keywords

Navigation