Skip to main content

Advertisement

Log in

A mode transition strategy from air to oxyfuel combustion in a 35 MW coal-fired power plant boiler

  • The 11th Korea-China Clean Energy Workshop
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The atmosphere under the conditions of a coal combustion reaction in the furnace is the factor that makes the most significant difference during mode transition from traditional air to oxy-fuel combustion. The flue gas is adopted as the primary air and secondary air for pulverized-coal conveying and the support of combustion; it has a high carbon dioxide concentration during the oxy-fuel combustion. The air-leakage reduces CO2 enrichment and leads to thermal NO x production. A control strategy of this shift operation is conducted in a 35MW oxy-fuel combustion power plant boiler by adjusting the furnace pressure, regulating the recirculation rate of the flue gas and amending the oxygen concentration in the inlet stream. The furnace pressure can be changed smoothly and stabilized at a micro-positive level as the pressurized air flow is monitored at a suitable range. The combustion-supporting flue gas is modified by the oxygen content in the furnace outlet, and the circulation rate of the flue gas verifies the regulation process. Results show that the CO2 concentration in the flue gas can be rapidly increased along with the increment of furnace pressure and oxygen in the inlet stream; then, this procedure gradually becomes flattened. The CO2 content in the flue gas correlates with the recirculation rate of the flue gas and oxygen concentration in the inlet stream. The two operation parameters should be maintained at a high CO2 concentration in a range from 0.6-0.7 and 29.5%-30.5%, respectively. Sampling analysis shows that SO2 and NO x emissions were 26 (±1.5) mg/MJ and 90 (±11.7) mg/MJ in air condition, 14 (±0.4) mg/MJ and 34 (±1.6) mg/MJ in oxy-fuel combustion; the burnout rate, mechanical losses of incomplete combustion and the unburned carbon rate remained similar at these two stable combustion modes. This mode transition scheme should provide a reference for monitoring and diagnostics, design and operation control of an oxygen-enriched pulverized-coal combustion power plant boiler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Fujimori and T. Yamada, Proceedings of the Combustion Institute, 34(8), 2111 (2013).

    Article  CAS  Google Scholar 

  2. F. Normann, K. Andersson, B. Leckner and F. Johnsson., Progress Energy Combustion Sci., 35(5), 385 (2009).

  3. K. Kupila, P. Dernjatin, R. Sormunen, T. Sumida and K. Kiyama, A. Briglia, I. Sanchez-Molinero and A. Darde, Energy Procedia, 4, 1820 (2011).

    Article  Google Scholar 

  4. L. Stromberg, G. Lindgren, J. Jacoby, R. Giering, M. Anheden, U. Burchhardt, H. Altmann, F. Kluger and G.-N. Stamatelopoulos, Energy Procedia, 1(1), 581 (2009).

    Article  Google Scholar 

  5. M. Lupion, I. Alvarez, P. Otero, R. Kuivalainen, J. Lantto, A. Hotta and H. Hack, Energy Procedia, 37, 6179 (2013).

    Article  CAS  Google Scholar 

  6. G. Scheffknecht, L. Al-Makhadmeh, U. Schnell and J. Maier, Int. J. Greenhouse Gas Control, 5(S1), S16 (2011).

    Article  CAS  Google Scholar 

  7. R. C. da Silver, T. Kangwanpongpan and H. J. Krautz, Fuel, 115, 507 (2014).

    Article  Google Scholar 

  8. B. J. P. Buhre, L. K. Elliott, C. D. Sheng, R. P. Gupta and T. F. Wall, Progress Energy Combustion Sci., 31(4), 283 (2005).

    Article  CAS  Google Scholar 

  9. T. Wall, Y. Liu, C. Spero, L. Elliott, S. Khare, R. Rathnam, F. Zeenathal, B. Moghtaderi, B. Buhre, C. Sheng, R. Gupta, T. Yamada, K. Makino and J. Yu, Chem. Eng. Res. Design, 87(8), 1003 (2009).

    Article  CAS  Google Scholar 

  10. K. Andersson, R. Johansson, S. Hjartstam, F. Johnsson and B. Leckner, Experimental Thermal and Fluid Science, 33(1), 67 (2008).

    Article  CAS  Google Scholar 

  11. C. Lupianez, I. Guedea, I. Bolea, L. I. Díez and L. M. Romeo, Fuel Processing Technol., 106, 587 (2013).

    Article  CAS  Google Scholar 

  12. B. Leckner and A. G. Barea, Appl. Energy, 125, 308 (2014).

    Article  CAS  Google Scholar 

  13. Y. Tan, E. Croiset, M. A. Douglas and K. V. Thambimuthu, Fuel, 85(4), 507 (2005).

    Article  Google Scholar 

  14. M. Pottmann, G. Engl, B. Stahl and R. Ritter, Energy Procedia, 4, 951 (2011).

    Article  CAS  Google Scholar 

  15. D. Snarheim, Control Issues in Oxy-fuel Combustion, Norwegian Univ. of Sci. and Technol. (2009).

    Google Scholar 

  16. I. Guedea, I. Bolea, C. Lupianez, N. Cortés, E. Teruel, J. Pallarés, L. I. Díez and L. M. Romeo, Energy Procedia, 4, 972(2011).

    Article  Google Scholar 

  17. K. J. Kuczynski, F. D. Fitzgerald, D. Adams, F. H. M. Glover, V. White, H. Chalmers, O. Errey and P. Stephenson, Energy Procedia, 4, 2541 (2011).

    Article  CAS  Google Scholar 

  18. P. J. Edge, P. J. Heggs, M. Pourkashanian, P. L. Stephenson and A. Williams, Fuel, 101, 234 (2012).

    Article  CAS  Google Scholar 

  19. B. Jin, H. Zhao and C. Zheng, Int. J. Greenhouse Gas Control, 30, 97 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zixue Luo.

Additional information

The paper will be reported in the 11th China-Korea Clean Energy Workshop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z., Cheng, W., Wu, B. et al. A mode transition strategy from air to oxyfuel combustion in a 35 MW coal-fired power plant boiler. Korean J. Chem. Eng. 34, 1554–1562 (2017). https://doi.org/10.1007/s11814-017-0046-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0046-9

Keywords

Navigation