Skip to main content
Log in

Arsenic removal from drinking water by electrocoagulation using iron electrodes

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Arsenic removal from drinking water was investigated using electrocoagulation (EC) followed by filtration. A sand filter was used to remove flocs generated in the EC process. Experiments were performed in a batch electrochemical reactor using iron electrodes with monopolar parallel electrode connection mode to assess their efficiency. The effects of several operating parameters on arsenic removal such as current density (1.5–9.0 mA cm−2), initial arsenic concentration (50–500 μg L−1), operating time (0–15 min), electrode surface area (266–665 cm2), and sodium chloride concentrations (0.01 and 0.02M) were examined. The EC process was able to decrease the residual arsenic concentration to less than 10 μg L−1. Optimum operating conditions were determined as an operating time of 5 min and current density of 4.5 mA cm−2 at pH of 7. The optimum electrode surface area for arsenic removal was found to be 266 cm2 taking into consideration cost effectiveness. The residual iron concentration increased with increasing residence time, and maximum residual iron value was measured as 287 μg L−1 for electrode surface area of 266 cm2. The addition of sodium chloride had no significant effect on residual arsenic concentration, but an increase in current density was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.L. Smedley and D.G. Kinniburgh, Appl. Geochem., 17, 517 (2002).

    Article  CAS  Google Scholar 

  2. M.A. Ali, International Review for Environmental Strategies, 6, 329 (2006).

    Google Scholar 

  3. R. Bhattacharyya, D. Chatterjee, B. Nath, J. Jana, G. Jacks and M. Vahter, Mol. Cell. Biochem., 253, 347 (2003).

    Article  CAS  Google Scholar 

  4. M. A. Halim, R. K. Majumder, S. A. Nessa, Y. Hiroshiro, M. J. Uddin, J. Shimada and K. Jinno, J. Hazard. Mater., 164, 1335 (2009).

    Article  CAS  Google Scholar 

  5. C. F. Harvey, K.N. Ashfaque, W. Yu, A.B.M. Badruzzaman, M.A. Ali, P.M. Oates, H. A. Michael, R. B. Neumann, R. Beckie, S. Islam and M. F. Ahmed, Chem. Geol., 228, 112 (2006).

    Article  CAS  Google Scholar 

  6. D. C. Cory and T. Rahman, Ecol. Econ., 68, 1825 (2009).

    Article  Google Scholar 

  7. S. S. Farias, V. A. Casa, C. Vazquez, L. Ferpozzi, G. N. Pucci and I. M. Cohen, Sci. Total Environ., 309, 187 (2003).

    Article  CAS  Google Scholar 

  8. A. M. Sancha, Journal of Health Population and Nutrition, 24, 267 (2006).

    Google Scholar 

  9. S. Wang, and C. N. Mulligan, Sci. Total Environ., 366, 701 (2006).

    Article  CAS  Google Scholar 

  10. T. Yuan, Q. Luo, J. Hu, S. Ong and W. Ng, J. Environ. Sci. Heal. A., 38(9), 1731 (2003).

    Article  Google Scholar 

  11. S. J. Appleyard, J. Angeloni and R. Watkins, Appl. Geochem., 21, 83 (2006).

    Article  CAS  Google Scholar 

  12. P. Drahota, J. Rohovec, M. Filippi, M. Mihaljevic, P. Rychlovsky, V. Cerveny and Z. Pertold, Sci. Total Environ., 407, 3372 (2009).

    Article  CAS  Google Scholar 

  13. J. Gregor, Water Res., 35, 1659 (2001).

    Article  CAS  Google Scholar 

  14. B. Ross-Larson, M. Coquereaumont and C. Trott, (Eds.), Human Development Report Beyond Scarcity: Power, Poverty and Global Water Crisis, Human Development Report, Palgrave Macmillan, Retrieved September 26, 2012, from http://hdr.undp.org/en/media/HDR06-complete.pdf (2006).

    Google Scholar 

  15. M. Çolak, Ü. Gemici and G. Tarcan, Water Air Soil Poll., 149, 127 (2003).

    Article  Google Scholar 

  16. M. Çöl and C. Çöl, Hum. Ecol. Risk Assess., 10, 461 (2004).

    Article  Google Scholar 

  17. M. Doğan and A. U. Doğan, Environ. Geochem. Hlth., 29, 119 (2007).

    Article  Google Scholar 

  18. Ü. Gemici, G. Tarcan, C. Helvac and A.M. Somay, Appl. Geochem., 23, 2462 (2008).

    Article  CAS  Google Scholar 

  19. Y. Lee, I. Um and J. Yoon, Environ. Sci. Technol., 37, 5750 (2003).

    Article  CAS  Google Scholar 

  20. K. Moore, Treatment of arsenic contaminated groundwater using oxidation and membrane filtration, Master of Applied Science in Civil Engineering, University of Waterloo (2005).

    Google Scholar 

  21. R. Johnston, H. Heijnen and P. Wurzel, United Nations synthesis report on arsenic in drinking water, chapter 6: safe water technology (2001), Available at www.cepis.ops-oms.org/bvsacd/who/arsin.pdf.

    Google Scholar 

  22. M. Fujimoto, The Removal of arsenic from drinking water by carbon adsorption, Master of Science, Department of Civil and Environmental Engineering, Michigan State University (2001).

    Google Scholar 

  23. S. R. Wickramasinghe, B. Han, J. Zimbron, Z. Shen and M. N. Karim, Desalination, 169, 231 (2004).

    CAS  Google Scholar 

  24. E. O. Kartinen and C. J. Martin, Desalination, 103, 79 (1995).

    Article  CAS  Google Scholar 

  25. T. Viraraghavan, K. S. Subramanian and J.A. Aruldoss, Water Sci. Technol., 40, 69 (1999).

    CAS  Google Scholar 

  26. U. S. EPA, Arsenic treatment technologies for soil, waste, and water, U.S. EPA/National Service Center for Environmental Publications, Cincinnati (2002).

    Google Scholar 

  27. A. Zouboulis and I. Katsoyiannis, Sep. Sci. Technol., 37, 2859 (2002).

    Article  CAS  Google Scholar 

  28. B. An, T.R. Steinwinder and D. Zhao, Water Res., 39, 4993 (2005).

    Article  CAS  Google Scholar 

  29. M.M. Gholami, M. A. Mokhtari, A. Aameri and M. R. A. Fard, Desalination, 200, 725 (2006).

    Article  CAS  Google Scholar 

  30. K. Banerjee, G. L. Amy, M. Prevost, S. Nour, M. Jekel, P. M. Gallagher and C. D. Blumenschein, Water Res., 42, 3371 (2008).

    Article  CAS  Google Scholar 

  31. M. Kobya, U. Gebologlu, F. Ulu, S. Oncel and E. Demirbas, Electrochim. Acta, 56, 5060 (2011).

    Article  CAS  Google Scholar 

  32. E. Mohora, S. Roncevic, B. Dalmacija, J. Agbaba, M. Watson, E. Karlovic and M. Dalmacija, J. Hazard. Mater., 235–236, 257 (2012).

    Article  Google Scholar 

  33. E. Lacasa, P. Canizares, C. Saez, F. J. Fernandez and M. A. Rodrigo, Sep. Purif. Technol., 79, 15 (2011).

    Article  CAS  Google Scholar 

  34. X. Zhao, B. Zhang, H. Liu and J. Qu, Chemosphere., 83, 726 (2011).

    Article  CAS  Google Scholar 

  35. P.K. Holt, G.W. Barton, M. Wark and C. A. Mitchell, Colloids Surf., A., 211, 233 (2002).

    Article  CAS  Google Scholar 

  36. W. Wan, T. J. Pepping, T. Banerji, S. Chaudhari and D. E. Giammar, Water Res., 45, 384 (2011).

    Article  CAS  Google Scholar 

  37. P. R. Kumar, S. Chaudhari, K.C. Khilar and S. P. Mahajan, Chemosphere., 55(9), 1245 (2004).

    Article  Google Scholar 

  38. D. Lakshmanan, D. A. Clifford and G. Samanta, Environ. Sci. Technol., 43(10), 3853 (2009).

    Article  CAS  Google Scholar 

  39. M. Kobya, A. Akyol, E. Demirbas and M. S. Oncel, Environmental Progress Sustainable Energy, DOI:10.1002/ep.11765.

  40. X. Zhao, B. Zhang, H. Liu and J. Qu, J. Hazard. Mater., 184, 472 (2010).

    Article  CAS  Google Scholar 

  41. N. Balasubramanian and K. Madhavan, Chem. Eng. Technol., 24(5), 519 (2001).

    Article  CAS  Google Scholar 

  42. T. Guerin, N. Molenat, A. Astruc and R. Pinel, Appl. Organomet. Chem., 14, 401 (2000).

    Article  CAS  Google Scholar 

  43. P. R. Kumar, S. Chaudhari, K.C. Khilar and S. P. Mahajan, Chemosphere., 55, 1245 (2004).

    Article  Google Scholar 

  44. M. Kobya, F. Ulu, U. Gebologlu, E. Demirbas and M. S. Oncel, Sep. Purif. Technol., 77, 283 (2011).

    Article  CAS  Google Scholar 

  45. S. Vasudevan, J. Lakshmi and G. Sozhan, Sep. Sci. Technol., 45, 1313 (2010).

    Article  CAS  Google Scholar 

  46. K. Thella, B. Verma, V. C. Srivastava and K.K. Srivastava, J. Environ. Sci. Heal. A., 43, 554 (2008).

    Article  CAS  Google Scholar 

  47. N. S. Kumar and S. Goel, J. Hazard. Mater., 173, 528 (2010).

    Article  CAS  Google Scholar 

  48. J. F. Martínez-Villafane, C. Montero-Ocampo and A. M. García-Lara, J. Hazard. Mater., 172, 1617 (2009).

    Article  Google Scholar 

  49. S. Chaudhari, P.R. Kumar, K.C. Khilar and S. P. Mahajan, Chemosphere, 55, 1245 (2004).

    Article  Google Scholar 

  50. O. J. Flores, J. L. Nava, G. Carreno, E. Elorza and F. Martinez, Chem. Eng. Sci., 97, 1 (2013).

    Article  CAS  Google Scholar 

  51. P. Holt, G.M. Barton and C. Mitchell, Electrocoagulation as a wastewater treatment, The Third Annual Australian Environmental Engineering Research Event, Sydney (2006).

    Google Scholar 

  52. M. Ihos, A. Negrea, L. Lupa, M. Ciopec and P. Negrea, Chem. Bull., 50(64), 1 (2005).

    Google Scholar 

  53. H. K. Hansen, P. Nunez, D. Raboy, I. Schippacasse and R. Grandon, Electrochim. Acta, 52, 3464 (2007).

    Article  CAS  Google Scholar 

  54. A.G. J. Gomes, P. Diada, M. Kesmez, M. Weir, H. Moreno and J. R. Parga, J. Hazord. Mater., 139, 220 (2007).

    Article  CAS  Google Scholar 

  55. O. Larue, E. Vorobiev, C. Vu and B. Durand, Sep. Purif. Technol., 31, 177 (2003).

    Article  CAS  Google Scholar 

  56. M. Bayramoglu, M. Eyvaz and M. Kobya, Chem. Eng. J., 128, 155 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meltem Bilici Baskan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ucar, C., Baskan, M.B. & Pala, A. Arsenic removal from drinking water by electrocoagulation using iron electrodes. Korean J. Chem. Eng. 30, 1889–1895 (2013). https://doi.org/10.1007/s11814-013-0128-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0128-2

Key words

Navigation