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Abstract A Binary puzzle is a Sudoku-like puzzle with values in each cell taken from the set {0, 1}. Let n ≥ 4 be
an even integer, a solved binary puzzle is an n × n binary array that satisfies the following conditions: (1) no three
consecutive ones and no three consecutive zeros in each row and each column; (2) the number of ones and zeros
must be equal in each row and in each column; (3) there can be no repeated row and no repeated column. This paper
proposes three approaches to solve the puzzle. The first method is based on a complete backtrack-based search
algorithm. The idea is to propagate and fill an unsolved binary puzzle according to the three constraints, followed
by a random guess if the puzzle remains unsolved. The second method of solving a binary puzzle is by representing
it as an instance of a Boolean satisfiability problem which allows the solution for a binary puzzle to be obtained
using SAT solvers. The third approach is based on expressing a binary puzzle as a system of polynomial equations
over the binary field F2. The set of solutions for the equation system implies the solutions for the binary puzzle and
it is obtained by computing a Gröbner basis of the ideal generated by the polynomials. We experimentally compare
the three approaches with binary puzzles of various sizes and different numbers of empty cells using a computer
algebra system.
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Mathematics Subject Classification Primary 05A05; Secondary 12Y05

1 Introduction

A binary puzzle is a Sudoku-like puzzle with values in each cell taken from the set {0, 1}. The reader who is
interested in the work related to Sudoku and mathematics can refer to [1,2,10,14]. We will now define the binary
puzzle. Let n ≥ 4 be an even integer. A solved binary puzzle is an n × n binary array that satisfies the following
conditions/constraints:
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Fig. 1 Unsolved Puzzle
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0 1 0 1 0 1 1 0
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1 0 1 0 1 1 0 0
1 0 0 1 0 0 1 1
0 1 1 0 0 1 0 1

Fig. 2 Solved Puzzle

1. No three consecutive ones and also no three consecutive zeros in each row and each column,
2. every row and column is balanced, that is the number of ones and zeros must be equal in each row and in each

column,
3. there can be no repeated row and no repeated column.

We refer to the above as the first, second, and third constraint of a binary puzzle respectively.
Figure 1 is an example of an initial setting of a binary puzzle. A solution that satisfies all three conditions can

be seen in Fig. 2. It is possible that multiple solutions exist for a given binary puzzle. In the case of the puzzle
in Fig. 1, there exists only one unique solution. In [7] de Biasi shows that deciding whether a binary puzzle has a
valid solution is NP-complete. The proof is based on the reduction of deciding whether a planar conjunctive normal
form is satisfiable, which is also an NP-complete problem [11]. De Biasi also proves that deciding the existence
of a valid solution for another variant of a binary puzzle that omits the second and third constraints, called a bare
binary puzzle, is NP-hard.

Utomo and Pellikaan studied binary puzzles as erasure decoding problem [19]. Their results provide the lower
and upper bound for the rate of the codes, as well as the probability of correct erasure decoding for the puzzles.
Another work by the same authors discusses binary puzzles as constrained arrays and presents some results on the
rate of codes based on binary puzzles [20].

This work proposes different techniques in solving binary puzzles. We devise and compare three approaches
to find its solution. The first approach solves binary puzzles as an array in the Fn×n

2 using a complete backtrack-
based search algorithm. The idea is quite similar with the DPLL algorithm, which is finding values based on the
three constraint, random guessing if necessary, and backtrack if there is a contradiction. The second approach is
based on transforming a binary puzzle into a Boolean satisfiability (SAT) problem. And hence we have a different
representation for the puzzle, which we solve later using a SAT solver. The third approach constructs a set of
polynomial equations over the binary field representing the three conditions for a solved binary puzzle. The variables
in the system of equations all correspond to cells in the puzzle. Hence the solution for the system of equations is
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a solution for the puzzle and it can be obtained by computing the Gröbner basis of the ideal generated by the
polynomials in the equation system.

1.1 Notations

Let n = 2m and m ≥ 2. For an n × n binary puzzle and i, j ∈ {1, . . . , n} we use xi j to denote Boolean variable
representing the cell at row i and column j . Row 1 is the top-most row of the puzzle and column 1 is the left-most
column. In the visual illustration of a binary puzzle, the cells with value 0 and 1 are represented in black and
white-colored squares respectively while the gray-colored ones describe the cells with unknown value. The binary
field is denoted by F2 = {0, 1} and the n-dimensional vector space over F2 is denoted by Fn

2. The Boolean operators
OR, AND, and NOT are denoted by ∨,∧ and ¬ respectively. The notation for the binomial coefficient is written
as
(m
k

)
.

2 Backtrack-Based Search

One natural approach to reach a solution for a given unsolved binary puzzle is to follow the implications of the three
constraints on some of its empty cells. The current state of the rows, columns, and some adjacent cells allow the
deduction of value in the cells that are not yet determined. We discuss some of these implications for each binary
puzzle constraint below.

1. Constraint 1 Recall that the first constraint of binary puzzle is that no three neighbouring rows/columns have
the same value. If it appears that the value of two out of three adjacent cells in a row/column were known and
identical, then the value of the one remaining undetermined cell can be trivially deduced, which is equal to the
negation of the known values. Examples of this condition in rows are illustrated in Fig. 3. Similarly, this is also
applied for every three neighbouring column cells.

2. Constraint 2 The second constraint states that the number of zeros and ones in every row and column must
be equal. Equivalently as binary vector, each row/column of a binary puzzle is balanced. Following such a
constraint, the deduction of cells with unknown values in a row or a column can be done when the number of
zeros/ones is equal to n/2 (see Fig. 4).

3. Constraint 3 The third constraint, that is no two rows/columns are equal, involves comparison of rows/columns
in a binary puzzle. This allows the deduction of some value in cells of a row/column in the case when uniqueness
can be guaranteed. Figure 5 illustrates an example when such a situation may occur.

The propagation of a binary puzzle is repeatedly applied until the puzzle is solved. However, it is very unlikely
to obtain a valid solution for a binary puzzle directly only by following the implication of all three constraints. At
a certain step, it is possible that no more values of empty cells can be deduced by the constraint propagation.

It is then necessary to perform random guesses on some empty cells. This is followed by another constraint
propagation after some values are guessed. If the propagation yields a contradiction in fulfilling the three constraints,

Fig. 3 Propagation in three-adjacent row cells implied by the first constraint

Fig. 4 An example of propagation implied by the second constraint in a row of length 8. Since the number of zeros is equal to 4, we
can deduce that the remaining cells should be equal to 1
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row j row j
Compare

row i

Fig. 5 An example of propagation implied by the third constraint. For i �= j , the row i and j above are nearly equal except for the
last two cells of row j that are initially unknown. The third constraint enforces these last two cells to have opposite value of their
corresponding cells in row i

Utomo and Makarim

Guess x34 = 0

Propagation

x34

Guess x24

= 1

= 1

Propagation

Fig. 6 Illustration of backtrack-based search in solving a binary puzzle. In this 4 × 4 binary puzzle, the top part indicates its initial
state. After guessing x34 = 0, it shows that the third constraint is violated. Therefore the correct value of x34 must be equal to 1

then the guessed cells are clearly wrong. Thus, one should re-do and attempt a new constraint propagation with
different values until no contradictions occur. Hence we need to keep track on all cells that has been guessed and
propagated. We can also deduce that a random guess is never made if there is only one blank remaining. The entire
search algorithm is described as a systematic backtracking search procedure. We illustrate this in Fig. 6. Here only
one cell value is guessed each time a random-guess is performed. The pseudocode for the entire backtrack-based
search to solve a binary puzzle is provided in Algorithms 1 and 2.

3 Binary Puzzles and the SAT Problem

Since each cell in the binary puzzle can only take the values ‘0’ and ‘1’, we can represent the puzzle as an array of
binary variables, where false corresponds to ‘0’ and true to ‘1’. We can express each condition in terms of a logical
expression. We denote a variable or its negation as a literal and an expression formed from a finite collection of
literals as a clause.

To illustrate the derivation of the first constraint, let x1, x2, x3 be any three consecutive cells. There will be no
three consecutive ones and zeros if and only if the following expression is true ( x1∨ x2∨ x3) ∧ (¬x1∨¬x2∨¬x3).
For satisfying the second constraint on balancedness on a vector with length 2m, everym+1 cells must have at least
one 1 and one 0. In other words, the following formula must be true for every possible way of selectingm + 1 cells:
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Algorithm 1: Solve(B, i, j, v)
Input: An n × n binary puzzle B, positive integers i, j with 1 ≤ i, j ≤ n, and v ∈ {0, 1}.

1 B[i][ j] ← v

2 B ′ ← ConstraintPropagation(B)
3 if contradiction occur in B ′ then
4 return

5 else
6 if B ′ has no empty cell then
7 print B ′
8 return

9 else
10 Randomly choose x, y (1 ≤ x, y ≤ n) such that B ′[x][y] is an empty cell.
11 Solve (B ′, x, y, 0)
12 Solve (B ′, x, y, 1)

Algorithm 2: ConstraintPropagation(B)
Input: An n × n binary puzzle B.
Output: An updated B according to all three constraints.

1 repeat
2 for i = 1 to n do // Fulfilling Constraint 1
3 for j = 1 to n do
4 if j ≤ n − 2 then
5 if there is an empty cell in (B[i][ j], B[i][ j + 1], B[i][ j + 2]) then
6 Fill (B[i][ j], B[i][ j + 1], B[i][ j + 2]) according to Constraint 1

7 if i ≤ n − 2 then
8 if there is an empty cells in (B[i][ j], B[i + 1][ j], B[i + 2][ j]) then
9 Fill (B[i][ j], B[i + 1][ j], B[i + 2][ j]) according to Constraint 1

10

11 for i = 1 to n do // Fulfilling Constraint 2
12 if row i of B has an empty cell then
13 Fill row i of B according to Constraint 2

14 if column i of B has an empty cell then
15 Fill column i of B according to Constraint 2

16

17 for i = 1 to n − 1 do // Fulfilling Constraint 3
18 if row i of B has no empty cell then
19 for j = i + 1 to n do
20 if row j of B has an empty cell then
21 Fill row j of B according to Constraint 3 by comparing it with row i

22 if column i of B has no empty cell then
23 for j = i + 1 to n do
24 if column j of B has an empty cell then
25 Fill column j of B according to Constraint 3 by comparing it with column i

26 until B can no longer be updated
27 return B



520 P. H. Utomo, R. H. Makarim

(∨m+1
k=1 xk

)
∧
(∨m+1

k=1 ¬xk
)
. The last constraint is straightforward. Suppose we have two vectors x and ywith length

2m. Since xmust be different to y, then the following formula must be satisfied:¬∧2m
i=1 [(xi ∧ yi ) ∨ (¬xi ∧ ¬yi )].

Now, suppose we have an n × n array in the variables xi j . The array satisfies the first condition, that there are
no three consecutive ones and also no three consecutive zeros in each row and each column, if and only if the
expression below is true:

⎛
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⎨
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For satisfying the second condition on balancedness, the following expression must be true

⎛
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Since for each row or column we need to check every m + 1 cells from 2m cells for both symbol 0 and 1, the
complexity of this expression grows as 4 · 2m( 2m

m+1

)
which is exponential in m.

The satisfiability of the third condition, that every two rows and every two columns must be distinct, is equal to

⎛

⎝
∧

1≤ j1< j2≤2m

{

¬
2m∧

i=1

[(
xi j1 ∧ xi j2

) ∨ (¬xi j1 ∧ ¬xi j2
)]
}⎞

⎠ ∧
⎛

⎝
∧

1≤i1<i2≤2m

⎧
⎨

⎩
¬

2m∧

j=1

[(
xi1 j ∧ xi2 j

) ∨ (¬xi1 j ∧ ¬xi2 j
)]
⎫
⎬

⎭

⎞

⎠ .

Since many SAT solving algorithms often assume that the proposition is in CNF (Conjunctive Normal Form), it
is necessary to convert our expression into CNF. However, conversion to CNF can lead to an exponential explosion
of the formula.

We say a formula in the CNF if it is a conjunction of clauses, where a clause is a disjunction of literals. For the
first constraint, the formula is already in CNF. Moreover, each three consecutive cells has two clauses having three
literals in each clause. Since there are 4m vector and every vector has 2m − 2 three consecutive cells, we have
2 · 4m(2m − 2) clauses, and each clause has 3 literals.

Recall the derivation of second constraint. In checking a vector, there are 2
( 2m
m+1

)
clauses. Hence in total, there

are 4m · 2( 2m
m+1

)
clauses, where each clause has m + 1 literals.

The easiest way to make CNF from the third constraint is by using the following procedure. Suppose we want to
check the i th and j th column, x and y respectively. Then we can enumerate all 22m combinations of

∨2m
i=1(xi ∨ yi ).

Hence we have 2 · 22m(2m2
)
clauses where each clause has 4m literals for the third constraint. One can see that this

will blow up exponentially in terms ofm. One way to overcome this is by using Tseytin transformation [13,16]. The
idea of Tseytin transformation is to make a CNF from any Boolean formula by introducing some fresh variables
representing a clause subformula. With this approach, the transformation will output a formula whose size is linear
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in terms of the input formula. For a 2-variable x, y and OR operator with the Tseytin variable z, we will have the
following CNF, which have 3 clauses.

(¬z ∨ x ∨ y) ∧ (z ∨ ¬x) ∧ (z ∨ ¬y).

We will illustrate the Tseytin transformation of third constraint only for the columns, that is
(∧

1≤ j1< j2≤2m{
¬∧2m

i=1

[(
xi j1 ∧ xi j2

) ∨ (¬xi j1 ∧ ¬xi j2
)]})

. Since the outer operator is already in conjunction, we only need to

transform the inner part,
{
¬∧2m

i=1

[(
xi j1 ∧ xi j2

) ∨ (¬xi j1 ∧ ¬xi j2
)]}

. We define the Tseytin variable ai , bi , ci for

i = 1, . . . , 2m, and d as follow.

ai = xi j1 ∧ xi j2
bi = ¬xi j1 ∧ ¬xi j2
ci = ai ∨ bi

d = ¬
m∧

i=1

ci

Each transformation for the equations having ai , bi , and ci as the Tseytin variable will produce three clauses for each
i . Enumerating for all transformations in ai , bi , and ci for i = 1, . . . , 2m, we have 3 · 3 · 2m clauses. Meanwhile,

the CNF of d = ¬∧m
i=1 ci is

(
¬d ∨ ∨2m

i=1 ¬ci
)

∧
(∧2m

i=1 (ci ∨ d)
)
, and it has 2m + 1 clauses. Therefore, we have

10 · 2m + 1 clause for the transformation of the inner part. Hence CNF transformation of third constraint will have
2
(2m
2

)
(10 · 2m + 1) clauses and each clause will have at most 2m + 1 literals.

Once in CNF, we use a general SAT solver to find a solution for the puzzle, that is CryptoMiniSat [15].

4 Binary Puzzles and Systems of Polynomial Equations

This section discusses how a problem of solving binary puzzles can be seen as equivalent to finding solutions to a
system of multivariate polynomial equations over F2.We first recall some notions in the theory of Boolean functions
that are relevant for this section.

The Hamming weight of u ∈ F
n
2, that is the number of nonzero components of u, is denoted by wt(u). Let

v,w ∈ F
n
2 where v = (v1, . . . , vn), w = (w1, . . . , wn). We say that v is covered by w (or w covers v), denoted by

v 
 w, if vi ≤ wi for all i ∈ {1, . . . , n}. Similarly, let p, q ∈ Z≥0 be non-negative integers, we say that p 
 q if
the binary representation of p is covered by the binary representation of q.

An n-variable Boolean function f is a mapping from F
n
2 to F2. A natural way to represent f is by listing

f (x1, . . . , xn) for every (x1, . . . , xn) ∈ F
n
2 ordered lexicographically. This representation is called the truth table

of f . The function f can also be represented using a multivariate polynomial in the following form

∑

u∈Fn2
aux

u1
1 · · · xunn (4.1)

where u = (u1, . . . , un) ∈ F
n
2 and au ∈ F2. The representation in (4.1) is called the algebraic normal form (ANF)

of f . The conversion of a Boolean function from its truth table to the corresponding algebraic normal form is done
using the following result [5].

Theorem 4.1 Let f be an n-variable Boolean function and let
∑

u∈Fn2 aux
u1
1 · · · xunn be its ANF. For all u ∈ F

n
2 we

have

au =
∑

x∈Fn2
x
u

f (x).
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A system of polynomial equations that represent an n× n binary puzzle consists of polynomials with indetermi-
nates xi j for all i, j ∈ {1, . . . , n}. The indeterminates represent the value at row i and column j and the polynomials
exhibit all three conditions/constraints of a solved binary puzzle. In the following we show how the three constraints
are represented as multivariate polynomials.

Theorem 4.2 Let x, y, z be variables that represent three adjacent cells in a row (or column) of an n × n binary
puzzle. The first constraint of a binary puzzle is represented by the following polynomial equation

f1(x, y, z) = xy + xz + x + yz + y + z + 1. (4.2)

Proof Recall that the first constraint of a binary puzzle is there should not be any three consecutive zeros and ones
in each row and column. Let f1 be the polynomial equation that represent such constraint and by definition f1 must
satisfy the following

f1(x, y, z) =
{
1 if (x, y, z) = (0, 0, 0) ∨ (x, y, z) = (1, 1, 1)

0 otherwise.

By Theorem 4.1, au = 0 only when u = (1, 1, 1). Thus f1(x, y, z) = xy + xz + x + yz + y + z + 1. ��
Lemma 4.3 Let n,m be nonnegative integers. A binomial coefficient

(m
n

)
is divisible by a prime p if and only if at

least one of the digits in p-ary expansion of n is greater than the corresponding p-ary digit of m.

Proof See [12]. ��
Theorem 4.4 Let x1, . . . , xn be variables that denote the n cells of a single row/column of an n × n binary puzzle.
The polynomial equation that represents the second constraint is given by

f2(x1, . . . , xn) =
∑

u∈Fn2\{0}
n/2
wt(u)

xu11 · · · xunn + 1. (4.3)

Proof By definition, the function f2 : Fn
2 → F2 is defined by

f2(x1, . . . , xn) =
{
0 if wt(x1, . . . , xn) = n/2

1 otherwise.
(4.4)

By Theorem 4.1 the coefficient a0 in the ANF of f2 is a0 = f2(0) = 1. To compute the remaining coefficient au
for nonzero u ∈ F

n
2, we will divide it into two cases for wt(u) < n/2 and wt(u) ≥ n/2.

For all nonzero u ∈ F
n
2 such that wt(u) < n/2, by Theorem 4.1 we have au = ∑

w
u f2(w) = 0 because
f2(w) = 1 for all w 
 u and the cardinality of {w ∈ F

n
2 | w 
 u} is even.

For all nonzero u ∈ F
n
2 such that wt(u) ≥ n/2: by (4.4), f2(w) = 0 for w 
 u if and only if wt(w) = n/2. Let

Supp(u) = {i | ui �= 0} denotes the support of u. The number of w, w 
 u such that wt(w) = n/2 is equal to(|Supp(u)|
n/2

) = (wt(u)
n/2

)
. Thus for all nonzero u ∈ F

n
2 such that wt(u) ≥ n/2 the value au = ∑

w
u f2(w) = 1 if and

only if
(wt(u)
n/2

)
is odd, i.e. if and only if n/2 
 wt(u) by Lemma 4.3. This completes the proof. ��

Theorem 4.5 Let x1, . . . , xn and y1, . . . , yn be variables that represent two distinct rows (or columns) in an n × n
binary puzzle. The polynomial equation that represent the third constraint of a binary puzzle is given by

f3(x1, . . . , xn, y1, . . . , yn) =
n∏

i=1

(xi + yi + 1). (4.5)
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Proof The third constraint is satisfied if there exists i ∈ {1, . . . , n} such that xi + yi = 1. Polynomial (4.5) is then
a trivial implication from the definition of the third constraint. ��

The size of an equation system corresponding to a n×n binary puzzle in terms of number of polynomials can be
conveniently derived. In a single row/column, the number of polynomials (4.2) that represent the first constraint of
an n× n binary puzzle is n− 2. Since we have n rows and n columns, there are 2n(n− 2) = 2n2 − 4n polynomials
of the form (4.2) in the equation system. The number of polynomials of the form (4.3) for the second constraint is
clearly equal to 2n. For two distinct rows/columns, we obtain one polynomial of the form (4.5). Thus, the number
of polynomials that represent the third constraint is equal to 2(n(n−1)/2) = n(n−1). In total, the equation system
that represents all three constraints of an n × n binary puzzle consists of 2n2 − 4n + 2n + n2 − n = 3n(n − 1)
polynomials in n2 variables. The degree of the equation system is equal to n due to polynomial (4.5) and the fact
that the degree of (4.3) can not be strictly larger than n.

4.1 Solving Binary Puzzles Using Gröbner Bases

Once an equation system is constructed for a binary puzzle, the solutions of the system implies the solution for the
binary puzzle as well. One way to obtain the solutions for a system of polynomial equations is by computing the
Gröbner basis of the ideal generated by these polynomials.

Let R be a polynomial ring in n variables over a field F. We adapt an admissible ordering in the set of all
monomials inR. Let f ∈ R, we denote by LM( f ) the largest monomial appearing in f .

Definition 4.6 (Gröbner bases) Let F = { f1, . . . , fm} ⊂ R and let I be an ideal in R generated by polynomials
in F . A finite subset G ⊂ I that generates I is said to be a Gröbner basis of I if for any f ∈ I there exists g ∈ G
such that LM(g) divides LM( f ).

Historically, themethod to compute Gröbner basis of a polynomial ideal was introduced by Buchberger [4]. Since
then, various improvements have been proposed in the literature, notably with the seminal work of Faugère’s F4 [8]
and F5 [9] algorithms. These two algorithms employ linear algebra techniques to perform multiple polynomial
reduction at once.

The choice of monomial ordering in a Gröbner basis computation has an impact in the shape of Gröbner basis
itself as well as the time complexity of the computation. For example, a Gröbner basis of a polynomial ideal
corresponding to lexicographic monomial ordering has the following form :

{g1(x1), . . . , g2(x1, x2), . . . , gk1(x1, x2), gk1+1(x1, x2, x3), . . . , gkn (x1, . . . , xn)}.
With the above structure, recovering the set of solutions is done by successively eliminating variables. One begin
by factoring the univariate polynomials and performs back-substitution to other polynomials. A similar process is
then repeatedly applied for new univariate polynomials produced after back-substitution, until all the solutions are
obtained.

Note that in the case of binary puzzles we are only interested with solutions that lie in the base field F2. There
are two practices to impose such restriction, which will allow us to read the solution directly from the Gröbner
basis. The first method is to add the field equation polynomials x2i j + xi j for all i, j ∈ {1, . . . , n} to the equation

system, adding n2 more polynomials. For a general finite field Fq this approach is beneficial whenever q is less
than or equal than the degree of the system. The second method is to define the polynomials over the quotient
ring R/I instead of R where I is the ideal generated by the polynomials x2i j + xi j for all i, j ∈ {1, . . . , n}.
This is considered as a more natural practice when dealing with Boolean polynomial algebraically. Furthermore,
dedicated implementations for computation of Boolean polynomials are available in existing computer algebra
software such as Magma [3] and SageMath [17]. These implementations reduce significantly amounts of memory
usage while at the same time provide an excellent speedup due to its specialized data structure compared to the
general implementation of multivariate polynomial.
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Table 1 Comparison of execution time (in seconds) for each method

Size SAT SAT (with Tseytin tranf.) Gröbner basisa Backtrack-based search

Pre-comp. Solver Pre-comp. Solver Pre-comp. Solver
4 × 4 0.02 0.00 0.18 0.001 0.02 0.05 0.03
6 × 6 0.14 0.02 0.66 0.003 0.11 0.06 0.19
8 × 8 1.45 0.10 1.59 0.01 0.53 0.13 0.49
10 × 10 10.80 0.69 3.24 0.02 3.30 8.69 5.26
12 × 12 81.87 4.67 6.09 0.08 47.80 4.55 8.05
14 × 14 – – 10.74 0.32 – – 78.67
16 × 16 – – 19.42 1.43 – – 974.58
18 × 18 – – 45.33 6.56 – – 65445.50
a All puzzles used in this experiment have a unique solution

In addition to strategies above that eliminate irrelevant solutions, practically one would also intend to obtain the
solutions in an efficient manner. A critical parameter that influences the performance of Gröbner bases computation
is the choice of monomial ordering. Even though using lexicographic ordering allows to “read” the set of solutions
to a system of multivariate polynomial equations, however computationally it is considered as a less efficient
monomial ordering compared to orderings that respect the total degree of a monomial such as degree lexicographic
or degree-reverse lexicographic ordering. For more detailed treatment on the theory of Gröbner basis the reader
may refer to [6].

The polynomial equations that represent an n × n binary puzzle need to be constructed only once. For different
binary puzzle of the same size, we can substitute variables xi j with ci j ∈ F2 where ci j is the initial value of entry
at row i and column j . Equivalently, we may also add linear polynomials xi j + ci j in the equation system.

5 Experimental Results

Simulation has been done under 64 bit Debian 8, with hardware specification: Intel(R) Core(TM) i7-4700MQ CPU
@ 2.40GHz, 10GB RAM. The software used for the experiment is SageMath 7.2 [17] as the wrapper and front-end
programming language. Reader who interested in the experiment can refer to [18] for the source code including the
input and output of our simulation.

In this section,we compare the threemethods for solving binary puzzles. In the experiment, a puzzle is represented
in a form of a matrix with entries {0, 1, 9}, where 9 represents a blank. We generate 6 different binary puzzles for
each size. To be used in the experiment, we randomly select cells to be erased, hence they might have more than one
solution. The result in the Table 1 and both in the Figs. 7 and 8 are acquired by taking the average of 18 experiments.

Since the SAT solver and the Gröbner basis solver require different types of input to work with, we need to do
pre-computations for those methods, that is transforming the initial form of the puzzle into the form required by
the solver. For the SAT method, creating a CNF for the puzzle will be the precomputation. Similarly, creating the
Boolean function for the puzzle will be the precomputation for the Gröbner basis method.

In this experiment, we useCryptoMiniSat 2 for the SAT solver andBRiAl1 0.8.4.3 for the computation ofGröbner
bases. Both packages and their interfaces are available in SageMath 7.2. Note that Gröbner bases computation in
the following experiment is done in the quotient ring R/I with degree lexicographic monomial ordering.2 For
backtrack-based search, we implement the algorithm for solving the binary puzzle in SageMath 7.2 [17]. We have
several remarks:

• From the experiment, solving the puzzle by a SAT solver with Tseytin transformation is more efficient in terms
of execution time.

1 Previously known as PolyBori—http://polybori.sourceforge.net/. The source code is available at https://github.com/BRiAl/BRiAl.
2 Even though using degree-reverse lexicographic ordering is practically considered to be more efficient to compute Gröbner bases,
such ordering is not supported by BRiAl.

http://polybori.sourceforge.net/
https://github.com/BRiAl/BRiAl
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Fig. 8 Time comparison for different number of blanks in 6 × 6 puzzle

• Unlike backtrack-based search and Gröbner basis, the number of blanks hardly affect the SAT solver running
time.3 See Figs. 7 and 8 for 4 × 4 and 6 × 6 puzzle, respectively.4

• The SAT and Gröbner basis methods are limited by the memory aspect. With the current hardware specification,
18 × 18 is the limit. This is also explain the dash in the Table 1.

• Since the Gröbner basis method aims to find all solution(s) of the puzzle, it often fails to solve a puzzle having
more than one solution.

The comparison between the three methods in solving a particular puzzle of various sizes is given in the Table 1.
In these puzzles, around 75% of the cells were blanks.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes
were made.
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