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Abstract
This paper is devoted to the analysis of the single layer boundary integral operator
Cz for the Dirac equation in the two- and three-dimensional situation. The map Cz is
the strongly singular integral operator having the integral kernel of the resolvent of
the free Dirac operator A0 and z belongs to the resolvent set of A0. In the case of
smooth boundaries fine mapping properties and a decomposition of Cz in a ‘positive’
and ‘negative’ part are analyzed. The obtained results can be applied in the treatment
of Dirac operators with singular electrostatic, Lorentz scalar, and anomalous magnetic
interactions that are combined in a critical way.

1 Introduction

In the analysis of boundary value and transmission problems for partial differential
equations associated potential and boundary integral operators often play an important
role. These objects are well understood for uniformly elliptic second order differen-
tial expressions, cf. the monograph [20] and the references therein. We remark that
the transmission problems are closely related to differential operators with singular
interactions like, e.g., δ-potentials. In the recent years it turned out that similar objects
are also of importance in the study of boundary value and transmission problems for
the Dirac equation, which is the relativistic counterpart of the Laplace equation and
for which the associated differential expression is of first order and lacks ellipticity.
While the potential operator is sufficiently well investigated, the subtle examination
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of the associated boundary integral operator is less complete, see the review paper
[11] and the references therein. It is the main goal in this article to make some further
contributions to this study that are, in particular, necessary to examine Dirac operators
with singular δ-potentials, where the involved parameters are combined in a critical
way.

To introduce the problem setting in a more detailed way, consider first a formally
symmetric and strongly elliptic second order partial differential operator P in R

q ,
q ≥ 2, let P0 be the self-adjoint realization of P defined on H2(Rq), and let Ez(x, y)
be the integral kernel of (P0−z)−1, z ∈ ρ(P0). Moreover, let� ⊂ R

q be a sufficiently
smooth domain with unit normal vector field ν that is pointing outwards of � and let
Bν be the conormal derivative at ∂� associated withP . Then, the single layer potential
SL(z) and the double layer potential DL(z) applied to a sufficiently smooth function
ϕ : ∂� → C evaluated at x ∈ R

q\∂� are

SL(z)ϕ(x) =
∫

∂�

Ez(x, y)ϕ(y)dσ(y), DL(z)ϕ(x) =
∫

∂�

Bν,y Ez(x, y)ϕ(y)dσ(y).

It is known that all solutions of the partial differential equation

(P − z) f = g in R
q \ ∂� (1.1)

can be described with the help of SL(z) and DL(z). To analyze boundary value or
transmission problems associated with the above equation, it is common to employ the
Dirichlet trace operator γD and Bν to SL(z) and DL(z). Of particular interest is the
single layer boundary integral operator S(z) := γDSL(z). Its properties are closely
related to the solvability of theDirichlet boundary value problem for (1.1), and relevant
properties, as, e.g., ellipticity, are inherited from those of P , cf. [20, Chapter 7].
Moreover, a good understanding of S can be useful for a thorough understanding
of different problems related to P in an operator theoretic language, for instance
to show the self-adjointness and compute spectral properties of operators associated
with boundary value or transmission problems for P including perturbations of P0 by
singular interactions, cf. [12, 17, 18, 20].

It is the main goal in this paper to provide some properties of the counterpart of the
single layer boundary integral operator for the Dirac operator in the two- and three-
dimensional situation. For m ≥ 0 the free Dirac operator in dimension two is given
by

A0 f = −iσ1∂1 f − iσ2∂2 f + mσ3 f , dom A0 = H1(R2; C
2), (1.2)

where σ1, σ2, σ3 ∈ C
2×2 are the Pauli spin matrices defined in (2.1), and in dimension

three it is

A0 f = −iα1∂1 f − iα2∂2 f − iα3∂3 f + mβ f , dom A0 = H1(R3; C
4), (1.3)

where α1, α2, α3, β ∈ C
4×4 are the Dirac matrices in (2.2). Here, we used the notation

Hk(Rq; C
l) = Hk(Rq) ⊗ C

l for the L2-based Sobolev space of k times weakly
differentiable vector-valued functions. The free Dirac operator is used to describe the
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propagation of a spin 1
2 particle in vacuum taking effects of the special theory of

relativity into account [24]. Moreover, the two-dimensional Dirac operator appears in
the mathematical description of graphene [1]. It is known that A0 is self-adjoint and
that its spectrum is

σ(A0) = (−∞,−m] ∪ [m,∞),

cf. [24]. This shows, in particular, that A0 is not semi-bounded from above or below.
For z ∈ ρ(A0) = C\((−∞,−m] ∪ [m,∞)) the resolvent of A0 can be expressed via
the convolution with a function Gz,q given in (2.3) below, i.e. as an integral operator.
With the help of this function we can formally introduce for a smooth and closed curve
� ⊂ R

2 or a smooth and closed surface� ⊂ R
3 the boundary integral operator acting

on sufficiently smooth functions ϕ : � → C
N as

Czϕ(x) := lim
ε↘0

∫
�\B(x,ε)

Gz,q(x − y)ϕ(y)dσ(y), x ∈ �, (1.4)

where B(x, ε) is the ball centered at x with radius ε and N = 2 for q = 2 and N = 4
for q = 3. It is known that Cz gives rise to a bounded operator in L2(�; C

N ), but in a
similar way as A0 also Cz lacks ellipticity [2, 5, 10].

The operator Cz plays an important role in the analysis of boundary value and
transmission problems for the Dirac equation and motivated by this Cz was studied
intensively in the recent years, cf. [2, 4, 6, 9–11, 13–15, 22]. In the present paper this
study is continued and, in particular, detailed mapping properties and a more detailed
analysis of the contribution of Cz associated with the ‘positive’ and the ‘negative’ part
of its spectrum are provided. More precisely, as a consequence of the main results, it
is shown in dimension q = 2 in Corollary 3.8 that

Cz = 1

2
(σ1ν1 + σ2ν2)V

∗
(

0 P− − P+
P− − P+ 0

)
V (σ1ν1 + σ2ν2) + K,

and similarly in dimension q = 3 in Corollary 4.12 that

Cz = 1

2
(α1ν1 + α2ν2 + α3ν3)V

∗
(

0 P− − P+
P− − P+ 0

)
V (α1ν1 + α2ν2 + α3ν3) + K,

where ν = (ν1, . . . , νq) is the unit normal vector on � pointing outwards of the
bounded domain with boundary �, V is a unitary matrix-valued function defined
in (3.14) and (4.15) below, K is an operator with good mapping properties between
different Sobolev spaces (and hence, K is compact in Hs(�; C

N ) for s ∈ [−1, 1]),
and P± are self-adjoint operators in L2(�; C

N/2) that satisfy

P+ + P− = I , dim ran P± = ∞, P2± = P±, and P±P∓ = 0, (1.5)

i.e. P± are orthogonal projections in L2(�; C
N/2). While for dimension q = 2 the

operators P± are also orthogonal projections in Hs(�; C), s ∈ R, that satisfy (1.5),
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in dimension q = 3 we prove that P± give rise to bounded maps in Hs(�; C
2),

s ∈ [−1, 1], that fulfil (1.5) in Hs(�; C
2). We remark that in dimension q = 3

similar, but not exactly the same decompositions of Cz were considered in [4, 22] with
skew projections onto Hardy spaces on �; cf. Remark 4.13 for details. However, we
believe that the above representations are of interest, as the projections in [4, 22] are
not self-adjoint in L2(�; C

N/2) unless � is a sphere, but which is useful in some
applications. One possible application of this fact is shown in the very recent paper
[11], where Dirac operators perturbed by singular potentials involving electrostatic,
Lorentz scalar, and anomalous magnetic interactions combined in a critical way are
studied.

It should be remarked that the above mentioned results are proved in different ways
in dimension two and three. In dimension two Cz is closely related to the Cauchy
transform on �, for its analysis we follow ideas from [10] and apply the theory
of periodic pseudodifferential operators. In dimension three Cz is closely related to
the Riesz transform on � and results on pseudo-homogeneous kernels from [21]
are employed to show similar results as in dimension two. In particular, the latter
approach would allow to weaken the geometric assumptions on � and to consider
also higher space dimensions. We remark that in the recent paper [16], which was
written independently of this article, the operator Cz is studied in the three-dimensional
situation with the help of pseudodifferential techniques and results that are related to
the ones in this paper are recovered there as well.

The paper is organized as follows. In Sect. 2 we rigorously introduce the operator Cz
formally given by (1.4) and discuss its basic properties. Then, in Sect. 3 we recall some
results about periodic pseudodifferential operators and do a more detailed analysis of
Cz in the two-dimensional case. Finally, in Sect. 4 we revise basic notions and results
on pseudo-homogeneous kernels and use them to investigate Cz in dimension three.

2 Notations and Basic Properties of Cz

Throughout this paper, let q ∈ {2, 3} be the space dimension and define the number
N = N (q) by N (2) = 2 and N (3) = 4. Moreover, we assume that � ⊂ R

q is a
bounded and simply connected domain withC∞-smooth boundary� := ∂� and unit
normal vector field ν which is pointing outwards of �. Let

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(2.1)

be the Pauli spin matrices and define the 4 × 4 Dirac matrices by

α j =
(

0 σ j

σ j 0

)
, j ∈ {1, 2, 3}, β =

(
I2 0
0 −I2

)
, (2.2)



Single Layer Boundary Integral Operator for the Dirac Equation Page 5 of 28 135

where In is the n × n-identity matrix. We will often use for x = (x1, x2) ∈ C
2 the

notation

σ · x = σ1x1 + σ2x2

and for x = (x1, x2, x3) ∈ C
3

α · x = α1x1 + α2x2 + α3x3 and σ · x = σ1x1 + σ2x2 + σ3x3.

Next, we introduce the function Gz,q evaluated at x ∈ R
q\{0} by

Gz,2(x) =
√
z2 − m2

2π
K1

(
− i

√
z2 − m2|x |

) (σ · x)
|x |

+ 1

2π
K0

(
− i

√
z2 − m2|x |)(z I2 + mσ3

)
,

Gz,3(x) =
(
z I4 + mβ +

(
1 − i

√
z2 − m2|x |

) i(α · x)
|x |2

)
1

4π |x |e
i
√
z2−m2|x |,

(2.3)

where we write K j for the modified Bessel functions of the second kind and choose√
w forw ∈ C\[0,∞) such that Im

√
w > 0. It is well-known that Gz,q is the integral

kernel of the resolvent of the free Dirac operator A0 in (1.2) & (1.3); cf. [10, 11, 24].
Now, we are prepared to rigorously introduce and discuss the properties of the

operator Cz , z ∈ ρ(A0) = C \ ((−∞,−m] ∪ [m,∞)), formally given by (1.4), i.e.
we consider now the strongly singular integral operator

Czϕ(x) := lim
ε↘0

∫
�\B(x,ε)

Gz,q (x − y)ϕ(y)dσ(y), ϕ ∈ C∞(�; C
N ), x ∈ �; (2.4)

here B(x, ε) is the ball of radius ε centered at x . The basic properties of Cz are
summarized in the following proposition; in the proof we mostly refer to [11], but
parts of the results were shown before in [10] in dimension q = 2 and in [2, 3, 8, 9, 15,
22] in dimension q = 3. Below, Hs(�), s ∈ R, are the Sobolev spaces on � defined
as in [20] and we denote by (·, ·)Hs (�;CN )×H−s (�;CN ) the sesquilinear duality product
in Hs(�; C

N ) × H−s(�; C
N ).

Proposition 2.1 For the operator Cz , z ∈ ρ(A0) = C\((−∞,−m] ∪ [m,∞)),
introduced in (2.4) and any s ∈ R the following holds:

(i) The map Cz gives rise to a bounded operator in Hs(�; C
N ).

(ii) For ϕ ∈ Hs(�; C
N ) and ψ ∈ H−s(�; C

N ) one has

(Czϕ,ψ)Hs (�;CN )×H−s (�;CN ) = (ϕ, Czψ)Hs (�;CN )×H−s (�;CN ).

In particular, for the realization of Cz in L2(�; C
N ) the relation C∗

z = Cz holds.
(iii) For q = 2 one has −4(Cz(σ · ν))2 = −4((σ · ν)Cz)2 = I2 and for q = 3 the

relation −4(Cz(α · ν))2 = −4((α · ν)Cz)2 = I4 holds.
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Proof The mapping properties of Cz in item (i) follow from [10, Proposition 3.3] for
q = 2 and [15, Theorem 4.1] for q = 3. The claim in statement (ii) is shown for
s ∈ [− 1

2 ,
1
2 ] in [11, Proposition 4.4] taking into account that the spaces Hs

α(�; C
N ) in

[11] coincide forC∞-smooth� with Hs(�; C
N ). Together with this a simple density

and continuity argument yields the claim for s /∈ [− 1
2 ,

1
2 ]. Similarly, assertion (iii) can

be found for s ∈ [− 1
2 ,

1
2 ] in [11, equations (4.6) and (4.24)], the statement for general

s ∈ R follows then by restriction for s > 1
2 and duality for s < − 1

2 .

3 AMore Detailed Analysis in Dimension q = 2

In this section we investigate Cz in space dimension q = 2 in a more detailed way.
For this, we make use of the theory of periodic pseudodifferential operators. Their
definition and some basic properties are recalled in Sect. 3.1. With the help of these
results we analyze Cz in Sect. 3.2.

3.1 Periodic Pseudodifferential Operators

In this subsectionwe follow closely the short exposition on periodic pseudodifferential
operators in [10, Section 2.1], for amore comprehensive presentation see [23]. In order
to define periodic pseudodifferential operators, some notations are necessary. We set
T := R/Z and denote byD(T) the set of all 1-periodic test functions and byD′(T) the
set of all 1-periodic distributions. We will often make use of the functions en ∈ D(T)

defined by

en(t) := e2π int , n ∈ Z. (3.1)

For f ∈ D′(T) we introduce the Fourier coefficients by

f̂ (n) := 〈 f , e−n〉D′(T)×D(T), (3.2)

where 〈·, ·〉D′(T)×D(T) denotes the bilinear duality product in D′(T) × D(T). Set

n :=
{
1, if n = 0,

|n|, if n ∈ Z \ {0}.

With the help of the Fourier coefficients one can define for s ∈ R the Sobolev space
Hs(T) of order s on T by

Hs(T) :=
{
f ∈ D′(T) :

∑
n∈Z

n2s | f̂ (n)|2 < ∞
}

(3.3)
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and endow it with the natural inner product

( f , g)Hs (T) :=
∑
n∈Z

n2s f̂ (n)ĝ(n), u, v ∈ Hs(T).

The Fourier coefficients in (3.2) allow us also to establish periodic pseudodifferen-
tial operators.

Definition 3.1 A linear map A defined on D(T) is called periodic pseudodifferential
operator of order s ∈ R, if there exists a function h : T × Z → C such that the
following holds:

(i) For any fixed n ∈ Z one has h(·, n) ∈ D(T).
(ii) The action of A is given by

A f =
∑
n∈Z

h(·, n) f̂ (n)en

with the sum converging in D′(T).
(iii) For all p, q ∈ N0 there exists cp,q > 0 such that for all n ∈ Z and t ∈ R

∣∣∣∣
(
dp

dt p
ωqh

)
(t, n)

∣∣∣∣ ≤ cp,q(1 + |n|)s−q

holds, where ωh(t, n) := h(t, n + 1) − h(t, n).

The set of all periodic pseudodifferential operators of order s is denoted by �s .
Moreover, we set �−∞ := ⋂

s∈R �s .

In the following let � ⊂ R
2 be the boundary of a bounded and simply connected

C∞-domain, let � be the length of �, and let γ : [0, �] → R
2 be an arc-length

parametrization of � that is orientated in the counter clockwise way. Similarly as
above, we denote by D(�) the set of all C∞-smooth functions defined on � and by
D′(�) the set of all distributions on �. In order to define periodic pseudodifferential
operators on �, we introduce the mapping U : D′(�) → D′(T) by

U f (ϕ) := f
(
�−1ϕ(�−1γ −1(·))), f ∈ D′(�), ϕ ∈ D(T). (3.4)

If f is a regular distribution, then U f is also a regular distribution generated by
U f = f (γ (�·)). With the map U one can translate the Sobolev spaces Hs(T) on T

to Sobolev spaces on � by

Hs(�) := {
ϕ ∈ D′(�) : Uϕ ∈ Hs(T)

}
, s ∈ R, (3.5)

and endow them with the inner product

(ϕ, ψ)Hs (�) := (Uϕ,Uψ)Hs (T), ϕ, ψ ∈ Hs(�).
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By this construction the map U defined in (3.4) is for any s ∈ R a unitary operator
from Hs(�) to Hs(T) and the corresponding norm is equivalent to the norm in Hs(�)

defined as in [20].

Definition 3.2 Amap A defined onD(�) is called periodic pseudodifferential operator
on � of order s ∈ R, if there exists A0 ∈ �s such that A = U−1A0U . The set of all
periodic pseudodifferential operators on � of order s is denoted by �s

� . Moreover,
we set �−∞

� := ⋂
s∈R �s

� .

An important feature of periodic pseudodifferential operators is the fact that they
are automatically bounded in Sobolev spaces [23, Theorems 7.3.1 and 7.8.1].

Lemma 3.3 Let A ∈ �s
� and B ∈ � t

� for some s, t ∈ R. Then, the following is true:

(i) For any r ∈ R the map A can be extended to a well-defined and bounded operator
A : Hr (�) → Hr−s(�).

(ii) AB ∈ �s+t
� .

(iii) AB − BA ∈ �s+t−1
� .

There are three types of periodic pseudodifferential operators that we are going
to use frequently. First, if f ∈ D(�), then one has for the associated multiplication
operator

(
D(�) � ϕ �→ f · ϕ

) ∈ �0
�. (3.6)

Next, consider for a constant c� > 0 and t ∈ R the map

Lt f :=
(
4π

�

)t/2 ∑
n∈Z

(c� + |n|)t/2 f̂ (n)en, f ∈ D(T).

Then it is not difficult to see that Lt1Lt2 = Lt1+t2 holds for all t1, t2 ∈ R and Lt ∈ � t/2.
Hence, we can define

�t := U−1LtU ∈ �
t/2
� . (3.7)

Taking the definition of Hr (�) in (3.3) and (3.5) into account it is not difficult to
show that for any r ∈ R the map �t : Hr (�) → Hr−t/2(�) is bijective and that the
realization of �t as a possibly unbounded operator in L2(�) defined on dom�t =
H τ (�) with τ = max { t2 , 0} is self-adjoint, cf. [10].

The third periodic pseudodifferential operator that will play a crucial role in our
analysis is a multiple of the Cauchy transform on �. We define formally the integral
operator R acting on ϕ ∈ D(�) by

Rϕ(x) = − 2

π
lim
ε↘0

∫
�\B(x,ε)

ν1(y) + iν2(y)

x1 + i x2 − (y1 + iy2)
ϕ(y)dσ(y), x ∈ �. (3.8)
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We also consider the formal adjoint R∗ of R in L2(�), which acts on ϕ ∈ D(�) as

R∗ϕ(x) = 2

π
lim
ε↘0

∫
�\B(x,ε)

ν1(x) − iν2(x)

x1 − i x2 − (y1 − iy2)
ϕ(y)dσ(y), x ∈ �. (3.9)

Let C� be the Cauchy transform on �, i.e. the strongly singular boundary integral
operator that acts on ϕ ∈ D(�) evaluated at x = x1 + i x2 ∈ � ⊂ C ∼ R

2 as

C�ϕ(x) = − 1

iπ
lim
ε↘0

∫
�\B(x,ε)

1

x − ζ
ϕ(ζ )dζ

= − 1

iπ
lim
ε↘0

∫
[0,�)\(γ −1(x)−ε,γ −1(x)+ε)

γ̇1(t) + i γ̇2(t)

x1 + i x2 − (γ1(t) + iγ2(t))
ϕ(γ (t))dt,

where the first integral is a complex line integral, cf. [23, Section 5.9]. As we have
ν(γ (s)) = (γ̇2(s),−γ̇1(s)), s ∈ [0, �), the map C� is related toR by

R = 2C�. (3.10)

By [10, Proposition 2.8] this implies that

R,R∗ ∈ �0
�. (3.11)

In particular, R,R∗ give rise to bounded operators in Hs(�) for all s ∈ R. Since R
andR∗ are adjoint to each other, a continuity argument shows for all ϕ ∈ Hs(�) and
ψ ∈ H−s(�), s ∈ R, that

(Rϕ,ψ)Hs (�)×H−s (�) = (ϕ,R∗ψ)Hs (�)×H−s(�), (3.12)

where (·, ·)Hs (�)×H−s (�) denotes the sesquilinear duality product.

3.2 Analysis of Cz

In the following proposition, which is the starting point for our further considerations
and which is a direct consequence of [10, Proposition 3.3], we provide a link ofR and
R∗ defined in (3.8) and (3.9), respectively, and the operator Cz given in (2.4). Recall
that the map � is introduced in (3.7).

Proposition 3.4 Let z ∈ (−m,m). Then there exists an operator K ∈ �−2
� such that

Cz =
(

(z + m)�−2 − i
4R(ν1 − iν2)

i
4 (ν1 + iν2)R∗ (z − m)�−2

)
+ K. (3.13)

In particular, for any r ∈ R the mapping K gives rise to a compact operator K :
Hr (�; C

2) → Hr+1(�; C
2) and the realization of K in L2(�; C

2) is self-adjoint.
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Proof Denote the operator defined in [10, equation (2.7)] by �̃. Then one easily
sees that the map � in (3.7) satisfies � = ( 4π

�

)1/2
�̃. Moreover, the tangential vec-

tor (γ̇1, γ̇2) on � and the normal vector are related by ν(γ (s)) = (γ̇2(s),−γ̇1(s)),
s ∈ [0, �]. Hence, the representation in (3.13) follows from (3.10) and [10, Proposi-
tion 3.3]. Moreover, asK : Hr (�; C

2) → Hr+2(�; C
2) is bounded for any r ∈ R by

Lemma 3.3 and Hr+2(�; C
2) is compactly embedded in Hr+1(�; C

2) by Rellich’s
embedding theorem, K is compact from Hr (�; C

2) to Hr+1(�; C
2). Eventually,

since the realization of Cz in L2(�; C
2) is self-adjoint for z ∈ (−m,m) by Proposi-

tion 2.1 (ii), the map K must be self-adjoint in L2(�; C
2) as well. Hence, all claims

are shown.

In the following lemma we state a variant of (3.13) that is particularly useful in the
application in the boundary triple framework, as it is done, e.g., in [11]. Define the
matrix V ∈ C

2×2 by

V =
(
1 0
0 −i(ν1 − iν2)

)
. (3.14)

Then we have the following result:

Lemma 3.5 Let R and R∗ be defined by (3.8) and (3.9), respectively, let Cz , z ∈
(−m,m), be given by (2.4), let � be as in (3.7), and let s ∈ R. Then there exists
an operator K that is compact in Hs(�; C

2) such that the bounded and everywhere
defined operator

4�V (σ · ν)Cz(σ · ν)V ∗� : Hs(�; C
2) → Hs−1(�; C

2)

can be written as

4�V (σ · ν)Cz(σ · ν)V ∗� = −�

(
0 R∗
R 0

)
� + 4

(
z − m 0
0 z + m

)
+ K. (3.15)

In particular, the realization of K in L2(�; C
2) is self-adjoint.

Proof The claim follows immediately from Proposition 3.4 and a direct calculation
taking the identity

V (σ · ν) =
(
0 ν1 − iν2
−i 0

)
,

Lemma 3.3 (iii), and (3.6) into account.

In the following proposition some further properties ofR andR∗ that follow from
known results about the Cauchy transform (cf. [23, Section 4.1.3]), (3.10), Lemma 3.3,
and [10, Proposition 2.8] are stated.

Proposition 3.6 Let R and R∗ be defined by (3.8) and (3.9), respectively. Then, the
following holds:
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(i) R − R∗ ∈ �−∞
� . In particular, for any s, t ∈ R the map R − R∗ : Hs(�) →

Ht (�) is compact.
(ii) One has R2 = 4I2 and (R∗)2 = 4I2. In particular, RR∗ − 4I2 ∈ �−∞

� and for
all s, t ∈ R the operator RR∗ − 4I2 : Hs(�) → Ht (�) is compact.

(iii) �−2R − R�−2 ∈ �−2
� .

Eventually, we show thatR+R∗ can bewritten as the difference of two projections,
which is useful in the analysis of boundary value and transmission problems for the
Dirac equation with critical combinations of the coefficients, see, e.g., [11] for an
application. In order to formulate the result, we define the operators P± ∈ �0

� by

U P+U−1 f =
∞∑
n=0

f̂ (n)en and U P−U−1 f =
∞∑
n=1

f̂ (−n)e−n, f ∈ D(T),

(3.16)

where U is the map in (3.4). Remark that P± are orthogonal projections in Hs(�)

defined by (3.5) for all s ∈ R and with H± := ran P± one has Hs(�) = H+ ⊕ H−,
dimH± = ∞, and H± �⊂ Hr (�) for any r > s. Moreover, P± commute with the
operator �t defined in (3.7). The map P+ can be interpreted as the projection onto the
Hardy space on the unit circle.

Theorem 3.7 LetR andR∗ be defined by (3.8) and (3.9), respectively, and let P± be
given as above. Then, there exists K ∈ �−∞

� such that

R + R∗ = 4P+ − 4P− + K.

In particular, for all s, t ∈ R the operator K : Hs(�) → Ht (�) is compact.

Proof Let C ⊂ R
2 be the circle of radius 1 centered at the origin and let UC be the

map in (3.4) defined for C instead of �. Then, by [23, Section 5.8] one has for the
Cauchy transform CC on C

UCCCU
−1
C = U P+U−1 −U P−U−1.

Moreover, by [23, Section 5.9 and Theorem 7.6.1] there exists K1 ∈ �−∞ such that

UC�U
−1 = UCCCU

−1
C + K1.

With (3.10) and the last two displayed formulas one gets

URU−1 = 2UC�U
−1 = 2UCCCU

−1
C + 2K1 = 2U P+U−1 − 2U P−U−1 + 2K1.

Similarly, there exists K2 ∈ �−∞ such that

UR∗U−1 = 2U P+U−1 − 2U P−U−1 + K2.

By adding the last two displayed formulas one gets the claim.
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Finally, combining the results from Lemma 3.5 and Theorem 3.7, we get the fol-
lowing decomposition of Cz into a positive and a negative part. In particular, this result
implies that ± 1

2 belongs to the essential spectrum of Cz , when this operator is viewed
as a mapping in Hs(�; C

2).

Corollary 3.8 Let Cz , z ∈ (−m,m), be defined by (2.4), let P± be as in (3.16), and let
V be given by (3.14). Then, there exists an operator K ∈ �−1

� such that

Cz = 1

2
(σ · ν)V ∗

(
0 P− − P+

P− − P+ 0

)
V (σ · ν) + K.

In particular, the realization of K in L2(�; C
2) is self-adjoint.

4 AMore Detailed Analysis in Dimension q = 3

In this section we are going to prove similar results as in Sect. 3, but instead of pseu-
dodifferential operators we use the theory of pseudo-homogeneous kernels from [21].
Throughout this section we assume that � ⊂ R

3 is the boundary of a bounded and
simply connected C∞-smooth domain. First, in Sect. 4.1 we follow closely [21, Sec-
tion 4.3] and recall the main definitions and results related to pseudo-homogeneous
kernels, which are employed in Sect. 4.2 to analyze Cz .

4.1 Pseudo-Homogeneous Kernels

With the notion of pseudo-homogeneous kernels one can easily describe mapping
properties of the associated integral operators. In the following,we restrict our attention
to the three-dimensional case, but a similar construction can be done in any space
dimension, cf. [21, Section 4.3]. To define pseudo-homogeneous kernels, one first
introduces homogeneous kernels [21, Section 4.3.2].

Definition 4.1 Let m ∈ N0. A function K ∈ C∞(R3 × (R3\{0})) is called a
homogeneous kernel of class −m, if the following conditions hold:

(i) For all α, β ∈ N
3
0 there exists a constant Cα,β such that

sup
y∈R3

sup
|ζ |=1

∣∣∣∣ ∂ |α|

∂ yα

∂ |β|

∂ζβ
K (y, ζ )

∣∣∣∣ ≤ Cα,β .

(ii) For any β ∈ N
3
0 with |β| = m the function ∂ |β|

∂ζβ K (y, ζ ) is homogeneous of degree
−2 with respect to ζ .

(iii) For any plane H which is constituted by the equation (h, ζ ) = 0 and any m-tuple
of vectors ζ1, . . . , ζm in H the condition

∫
S1

Dm
ζ K (y, ζ ′)(ζ1, . . . , ζm)dζ ′ = 0
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holds, where S1 is the intersection of the sphere S2 with H .

In the following lemma we consider a type of homogeneous kernels that will play
an important role in the analysis of Cz in the next section.

Lemma 4.2 Let κ ∈ C∞(R3) such that κ and all of its derivatives are bounded, let
k ∈ Z, and let α ∈ N

3
0 such that |α| + 2k + 1 > 0. Then the function K (y, ζ ) =

κ(y)ζ α|ζ |2k−1 is a homogeneous kernel of class −(|α| + 2k + 1).

Proof First, one shows as in [21, Example 4.2] that K̃ (y, ζ ) = ζ α|ζ |2k−1 is a homo-
geneous kernel of class−(|α|+2k+1). Since the multiplication by a smooth function
depending only on y does not affect the conditions in Definition 4.1, the claim on K
follows.

With the help of homogeneous kernels we can introduce now pseudo-homogeneous
kernels [21, Section 4.3.3].

Definition 4.3 Let m ∈ N0. A function K : R
3 × (R3\{0}) → C is called a pseudo-

homogeneous kernel of class −m, if for any s ∈ N there exist l ∈ N, homogeneous
kernels Km+ j of class −(m + j), j ∈ {0, . . . , l − 1}, and a function Km+l that is s
times differentiable such that

K (y, ζ ) = Km(y, ζ ) +
l−1∑
j=1

Km+ j (y, ζ ) + Km+l(y, ζ ).

The important property of pseudo-homogeneous kernels is that one can provide the
mapping properties of the associated integral operators [21, Theorem 4.3.2].

Proposition 4.4 Let m ∈ N0 and let K be a pseudo-homogeneous kernel of class −m.
Then, for any r ∈ R the operator that is formally defined by

Kϕ(x) :=
∫

�

K (y, x − y)ϕ(y)dσ(y), ϕ ∈ C∞(�), x ∈ �,

gives rise to a bounded operator K : Hr (�) → Hr+m(�).

4.2 Analysis of Cz

Let−� be the free Laplacian defined on H2(R3).We use forμ ∈ ρ(−�) = C\[0,∞)

the notation S(μ) for the single layer boundary integral operator associated with
−� − μ, which acts on a sufficiently smooth function ϕ : � → C as

S(μ)ϕ(x) =
∫

�

ei
√

μ|x−y|

4π |x − y|ϕ(y)dσ(y), x ∈ �, (4.1)

where
√

μ is the complex square root satisfying Im
√

μ > 0 for μ /∈ [0,∞), cf. [20].
If μ < 0, then it is well-known that S(μ) : Hs(�) → Hs+1(�) is bounded and
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bijective for all s ∈ R and that the realization of S(μ) in L2(�) is non-negative and
self-adjoint; cf. [7, Lemma 2.6] for a similar argument for μ = −1, space dimension
2, and s ≥ − 1

2 ; the property for negative s follows then by duality due to the formal
symmetry of S(μ) for μ < 0. For a constant c� > 0 we define

� := (
S(−1)−1 + c�

)1/2
. (4.2)

The following mapping properties � should be well-known, but for the sake of
completeness we present a proof:

Proposition 4.5 For any s ∈ R the operator � defined in (4.2) gives rise to a bounded
and bijective map� : Hs(�) → Hs−1/2(�). Moreover, the realization of� in L2(�)

viewed as an unbounded operator defined on H1/2(�) is self-adjoint.

Proof Step 1: First, we show the claim for s = 1
2 and about the realization of � in

L2(�). In exactly the same way as in [7, Lemma 2.6 (ii)] one finds that the map
S(−1)1/2 : L2(�) → H1/2(�) is a non-negative and bijective operator that is self-
adjoint in L2(�). Hence, for any c� > 0 the quadratic form

a[ϕ,ψ] := (
S(−1)−1/2ϕ,S(−1)−1/2ψ

)
L2(�)

+ c�(ϕ,ψ)L2(�),

ϕ, ψ ∈ dom a = ran S(−1)1/2 = H1/2(�),

that is associated with the self-adjoint operator S(−1)−1 + c�, is closed and strictly
positive. By the second representation theorem [19, Chapter VI, Theorem 2.23] one
has that (S(−1)−1 + c�)1/2 is self-adjoint on the set dom (S(−1)−1 + c�)1/2 =
dom a = H1/2(�) and, since this operator is strictly positive, it is bijective from its
domain H1/2(�) into L2(�). This implies all claims for s = 1

2 .
Step 2: Next, we show the claim for s = l + 1

2 with l ∈ N. Since the map S(−1) :
Hr (�) → Hr+1(�) is bijective for all r ∈ R and c� > 0, it is not difficult to see that
S(−1)−1 + c� gives for any r ∈ R rise to a bounded and bijective operator

S(−1)−1 + c� : Hr+1(�) → Hr (�).

In particular, the mapping

Al,r := (
S(−1)−1 + c�

)l : Hl+r (�) → Hr (�)

is bounded and bijective for any r ∈ R. Hence, we conclude with the result from Step 1
and the spectral theorem that

� := A−1
l,0 (S(−1)−1 + c�)1/2Al,1/2 : Hl+1/2(�) → Hl(�)

is a bounded and bijective map that is a restriction of (S(−1)−1 + c�)1/2.
Step 3: To conclude, we mention first that the statement for s = −l with l ∈ N0

follows from the results in Steps 1 & 2 by duality and the formal symmetry of �. An
interpolation argument yields the claim for arbitrary s ∈ R.
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The main object in this section is the operator R formally acting on a sufficiently
smooth function ϕ : � → C

2 as

Rϕ(x) = lim
ε↘0

∫
�\B(x,ε)

r(x, y)ϕ(y)dσ(y), (4.3)

where the integral kernel r is the C
2×2-valued function

r(x, y) = −σ · (x − y)

π |x − y|3 (σ · ν(y)), x �= y.

The map R is closely related to the Riesz transform on �. We define also the formal
adjoint of R with respect to the inner product in L2(�; C

2) by

R∗ϕ(x) = lim
ε↘0

∫
�\B(x,ε)

r(y, x)∗ϕ(y)dσ(y). (4.4)

We remark that the definitions of R and R∗ imply the simple, but useful relations

(σ · ν)R = −R∗(σ · ν) and (σ · ν)R∗ = −R(σ · ν). (4.5)

In the following proposition we provide a link ofR andR∗ and the operator Cz given
by (2.4). In particular, this implies the mapping properties ofR and R∗.

Proposition 4.6 Let R and R∗ be defined by (4.3) and (4.4), respectively, let � be
as in (4.2), let Cz , z ∈ (−m,m), be given by (2.4), and let s ∈ R. Then R and R∗
give rise to bounded operators in Hs(�; C

2) and there exists an operator K that is
compact from Hs(�; C

4) to Hs+1(�; C
4) such that

Cz =
(

(z + m)�−2 I2 − i
4R(σ · ν)

i
4 (σ · ν)R∗ (z − m)�−2 I2

)
+ K. (4.6)

In particular, the realization of K in L2(�; C
4) is self-adjoint.

Proof Denote byT the integral operator that is formally acting on a sufficiently smooth
function ϕ : � → C

2 as

T ϕ(x) := lim
ε↘0

∫
�\B(x,ε)

t(x − y)ϕ(y)dσ(y), x ∈ �,

where the integral kernel t : R
3\{0} → C

2×2 is given by

t(x) :=
(
1 − i

√
z2 − m2|x |

) i(σ · x)
4π |x |3 e

i
√
z2−m2|x |. (4.7)
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Recall that S(z2 − m2) denotes the single layer boundary integral operator for the
expression −� + m2 − z2. With these notations we conclude from (2.3) that

Cz =
(

(z + m)S(z2 − m2)I2 T
T (z − m)S(z2 − m2)I2

)
. (4.8)

Note that (4.8) implies that T gives rise to a bounded operator in Hs(�; C
2), as Cz is

bounded in Hs(�; C
4) by Proposition 2.1.

First, we analyze the diagonal terms and show that

S(z2 − m2) = �−2 + K1 (4.9)

with a compact operator K1 : Hs(�) → Hs+1(�). Indeed (4.2) implies that

S(z2 − m2) = �−2 + K2 + K3,

where

K2 := S(z2 − m2) − S(−1) and K3 := S(−1) − (S(−1)−1 + c�)−1.

With (4.1) we get that K2 is an integral operator with kernel k2(x − y), where

k2(x) = e−√
m2−z2|x |

4π |x | − e−|x |

4π |x | , x ∈ R
3 \ {0}.

By making a power series expansion we see that the first term in the sums cancels,

k2(x) =
∞∑
k=0

ck |x |2k +
∞∑
k=0

dk |x |2k+1

with some suitable coefficients ck, dk ∈ R, and that both sums converge absolutely, as
the power series expansion of the exponential function has this property aswell. Hence,
the first sum is an analytic function, while the second sum is a pseudo-homogeneous
kernel of class −3 in the sense of Definition 4.3, cf. Lemma 4.2. Thus, we conclude
with Proposition 4.4 that K2 : Hs(�) → Hs+3(�) is bounded for any s ∈ R and in
particular, K2 is compact as an operator from Hs(�) to Hs+1(�).

Next, using the resolvent identity we see that

K3 = c�S(−1)(S(−1)−1 + c�)−1 = c�S(−1)�−2, (4.10)

which is due to the mapping properties of S(−1) and � bounded from Hs(�) to
Hs+2(�) and hence compact from Hs(�) to Hs+1(�). Thus, we have shown (4.9).
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It remains to consider the anti-diagonal blocks. The integral kernel t of the operator
T in (4.7) has the series expansion

t(x) = i(σ · x)
4π |x |3 +

∞∑
k=0

c̃k(σ · x)|x |2k +
∞∑
k=0

d̃k(σ · x)|x |2k−1 (4.11)

with some suitable coefficients c̃k, d̃k ∈ C, as the terms with |x |−2 cancel. Since
the power series for the exponential function is absolutely converging, both sums
in (4.11) are absolutely converging as well for any x �= 0. In particular, the first sum
defines an analytic function. Moreover, by Lemma 4.2 the second sum is a pseudo-
homogeneous kernel of class −2 in the sense of Definition 4.3. Hence, we conclude
with Proposition 4.4 that

T = − i

4
R(σ · ν) + K4, (4.12)

where K4 is bounded from Hs(�; C
2) to Hs+2(�; C

2) and, in particular, compact
from Hs(�; C

2) to Hs+1(�; C
2). Combining (4.12) with (4.5), we can also write

T = i

4
(σ · ν)R∗ + K4. (4.13)

In particular, as T is bounded in Hs(�; C
2) and σ · ν is a bijection in Hs(�; C

2),
we conclude that R and R∗ give rise to bounded operators in Hs(�; C

2). Finally,
Eqs. (4.8), (4.9), (4.12), and (4.13) imply (4.6). Furthermore, as the realization of Cz
in L2(�; C

4) is self-adjoint for z ∈ (−m,m) by Proposition 2.1 (ii), also the operator
K in (4.6) must be self-adjoint in L2(�; C

4).

Let us mention that, sinceR andR∗ are formally adjoint to each other with respect
to the inner product in L2(�; C

2), a continuity argument shows for all ϕ ∈ Hs(�; C
2)

and ψ ∈ H−s(�; C
2), s ∈ R, that

(Rϕ,ψ)Hs (�;C2)×H−s (�;C2) = (ϕ,R∗ψ)Hs (�;C2)×H−s (�;C2), (4.14)

where (·, ·)Hs (�;C2)×H−s (�;C2) denotes the sesquilinear duality product in
Hs(�; C

2) × H−s(�; C
2).

In the following lemma we state a variant of (4.6) that is particularly useful in the
application in the boundary triple framework, as it is done, e.g., in [11]. Define the
matrix V ∈ C

4×4 by

V =
(
I2 0
0 −i(σ · ν)

)
. (4.15)

Then we have the following result:
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Lemma 4.7 Let R and R∗ be defined by (4.3) and (4.4), respectively, let � be as
in (4.2), and let Cz , z ∈ (−m,m), be given by (2.4). Then, for any s ∈ R there exists
an operator K that is compact in Hs(�; C

4) such that the bounded and everywhere
defined operator

4�V (α · ν)Cz(α · ν)V ∗� : Hs(�; C
4) → Hs−1(�; C

4)

can be written as

4�V (α · ν)Cz(α · ν)V ∗� = −�

(
0 R∗
R 0

)
� + 4

(
z − m 0
0 z + m

)
+ K. (4.16)

In particular, the realization of K in L2(�; C
4) is self-adjoint.

Proof First, Eq. (4.6) and a simple calculation imply

4�V (α · ν)Cz(α · ν)V ∗�

= �

(
4(z − m)(σ · ν)�−2(σ · ν) −R∗

−R 4(z + m)�−2

)
� + K1,

(4.17)

where K1 is a compact operator in Hs(�; C
4) due to the mapping properties of �.

By (4.2) we can write

(σ · ν)�−2 − �−2(σ · ν) = T + K2,

where T is the integral operator acting as

T ϕ(x) = (
(σ · ν)S(−1) − S(−1)(σ · ν)

)
ϕ(x) =

∫
�

t(x, y)ϕdσ(y) (4.18)

with

t(x, y) = (
σ · (ν(x) − ν(y))

) e−|x−y|

4π |x − y| (4.19)

and K2 is given by

K2 = (σ · ν)
(
(S(−1) + c�)−1 − S(−1)

) + (
S(−1) − (S(−1) + c�)−1)(σ · ν).

A similar argument as in (4.10) shows that K2 is compact as a mapping from
Hs−1/2(�; C

2) to Hs+1/2(�; C
2).

Next, we show that T in (4.18) is compact as an operator from Hs−1/2(�; C
2)

to Hs+1/2(�; C
2). Denote by ν̃ = (ν̃1, ν̃2, ν̃3) a smooth and compactly supported
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extension of ν that is defined on R
3. Then, this function has a Taylor series expansion

of the form

ν̃(x) = ν̃(y) + Dν̃(y)(x − y) +
3∑
j=1

(x − y)�H ν̃ j (y)(x − y)e j + . . . ,

where Dν̃ and H ν̃ j are the Jacobi matrix and the Hessian of ν̃ and ν̃ j , respectively,
and e j are the canonical basis vectors inR

3. Using this and the power series expansion
of the exponential function we find that the function t defined in (4.19) can be written
as

t(x, y) = σ ·
(
Dν̃(y)(x − y) +

3∑
j=1

(x − y)�H ν̃ j (y)(x − y)e j + . . .

)

·
∞∑
k=0

|x − y|2k−1

4π(2k)! − σ · (ν̃(x) − ν̃(y))
∞∑
k=0

|x − y|2k
4π(2k + 1)! .

Since the second term is a smooth function, we find with Lemma 4.2 that t(x, y) is
a pseudo-homogeneous kernel of class −2. Therefore, we get with Proposition 4.4
that T is bounded from Hs−1/2(�; C

2) to Hs+3/2(�; C
2) and, in particular, compact

from Hs−1/2(�; C
2) to Hs+1/2(�; C

2). Hence, we conclude that

�(σ · ν)�−2(σ · ν)� = I2 + K3

holds, where K3 is compact in Hs(�; C
2). Together with (4.17) this implies (4.16).

Finally, Eq. (4.16) and the fact that the realization of Cz in L2(�; C
4) is self-

adjoint for z ∈ (−m,m) by Proposition 2.1 yield that also K must be self-adjoint in
L2(�; C

4).

In the following proposition some further properties ofR andR∗ that follow from
known properties of Cz are stated:

Proposition 4.8 Let R and R∗ be defined by (4.3) and (4.4), respectively, and let
s ∈ R. Then, the following holds:

(i) The operator R − R∗ : Hs−1(�; C
2) → Hs(�; C

2) gives rise to a bounded
operator.

(ii) One has R2 = 4I2 and (R∗)2 = 4I2. In particular, this implies that

RR∗ − 4I2 : Hs−1(�; C
2) → Hs(�; C

2) (4.20)

gives rise to a bounded operator.
(iii) The operator �−2R − R�−2 : Hs−1(�; C

2) → Hs(�; C
2) is compact.
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Proof (i) Taking the definitions ofR andR∗ into account, we see that their difference
is a singular integral operator with kernel

r(x, y) − r(y, x)∗ = −σ · (x − y)

π |x − y|3 (σ · ν(y)) − (σ · ν(x))
σ · (x − y)

π |x − y|3
= σ · (x − y)

π |x − y|3 σ · (ν(x) − ν(y)) − 2
ν(x) · (x − y)

π |x − y|3 =: s1(x, y) + s2(x, y).

(4.21)

Following ideas from the proof of [22, Proposition 2.8], we remark first that the kernel
s2(x, y) := −2 ν(x)·(x−y)

π |x−y|3 is pseudo-homogeneous of class −1, as ν(x) · (x − y) ∼
|x − y|2 for x → y (for details see the considerations on the kernel K1 in the proof
of [22, Proposition 2.8]). Concerning the first term in the sum in (4.21), one gets in
a similar way as in the study of (4.19) with Lemma 4.2 that s1(x, y) is a pseudo-
homogeneous kernel of class −1 in the sense of Definition 4.3. Summing up, we find
that r(x, y)−r(y, x)∗ is a kernel of class−1 and hence, by Proposition 4.4 the operator
R − R∗ : Hs−1(�; C

2) → Hs(�; C
2) is bounded, which is the claim of item (i).

(ii) First, we show thatR2 = 4I2 holds. It is known from [6, Proposition 3.5 (i)] that
Cm := limz→m Cz exists with respect to the norm in the space of bounded operators
in L2(�; C

4) and the limit is given by

Cm = 1

4

(
2mŜ −iR(σ · ν)

−iR(σ · ν) 0

)

with

Ŝϕ(x) =
∫

�

1

π |x − y|ϕ(y)dσ(y), ϕ ∈ L2(�; C
2).

Combining this with Proposition 2.1 (iii) yields

I4 = 4
(
Cm(iα · ν)

)2 = 4

(
1

4

(
2mŜ −iR(σ · ν)

−iR(σ · ν) 0

)(
0 i(σ · ν)

i(σ · ν) 0

))2

= 1

4

(
R 2imŜ(σ · ν)

0 R

)2

= 1

4

(
R2 2imRŜ(σ · ν) + 2imŜ(σ · ν)R
0 R2

)
,

which shows R2 = 4I2. By taking the adjoint this implies (R∗)2 = 4I2. Using this
we also find that

RR∗ − 4I2 = R
(
R∗ − R

)

holds. This and the result from item (i) yield the mapping properties in (4.20).
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(iii) First we note that Proposition 4.6 implies that

Cz(α · ν) = 1

4

( −iR 4(z + m)�−2(σ · ν)

4(z − m)�−2(σ · ν) i(σ · ν)R∗(σ · ν)

)
+ K1 (4.22)

holds, whereK1 : Hs−1(�; C
4) → Hs(�; C

4) is compact. Using this representation
in −4(Cz(α · ν))2 = I4, see Proposition 2.1 (iii), we find that the upper right block of
this equation has the form

0 = i(z + m)R�−2(σ · ν) − i(z + m)�−2R∗(σ · ν) + K2

= i(z + m)
(
R�−2 − �−2R

)
(σ · ν) + i(z + m)�−2(R − R∗)(σ · ν) + K2

with a compact operator K2 : Hs−1(�; C
2) → Hs(�; C

2). Since �−2(R − R∗) is
bounded from Hs−1(�; C

2) to Hs+1(�; C
2) by item (i) and the mapping properties

of �, the last equation and Rellich’s embedding theorem yield the claim.

Next, we show that R + R∗ can be written as the difference of two projections,
which is useful in the analysis of boundary value and transmission problems for the
Dirac equation with critical combinations of the coefficients, see, e.g., [11] for an
application.

Theorem 4.9 Let R and R∗ be defined as above and let s ∈ [−1, 1]. Then, there
exist a bounded operator K : Hs(�; C

2) → H1(�; C
2) and closed subspaces H±

of Hs(�; C
2) satisfying dimH+ = dimH− and Hs(�; C

2) = H++̇H− such that
the realization of R + R∗ in the space Hs(�; C

2) can be written as

R + R∗ = 4P+ − 4P− + K,

where P± is the projection onto H±.

Proof The proof of this result is separated in four steps. In Step 1 we consider the
realization ofR+R∗ in the space L2(�; C

2) and prove a spectral representation that
is suitable to define the map K. In Step 2 we show an auxiliary embedding result,
which is then used in Step 3 to conclude the mapping properties of K. Finally, in Step
4 we show the claims about H± and P±. Throughout the proof, we will denote by
(·, ·) the inner product in L2(�; C

2).
Step 1: Consider R and R∗ as bounded operators in L2(�; C

2). Then, Proposi-
tion 4.8 (ii) implies that

(R + R∗)2 = R2 + (R∗)2 + R∗R + RR∗ = 16I2 + A2, (4.23)

where we have set

A := iR − iR∗.

By definition, A is a bounded and self-adjoint operator in L2(�; C
2) and by Propo-

sition 4.8 (i) A gives rise to a bounded operator from L2(�; C
2) to H1(�; C

2) and
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hence, byRellich’s embedding theorem,A is compact in L2(�; C
2). Thus, the spectral

theorem implies that

σ(R + R∗) ⊂
{
±

√
16 + λ2 : λ ∈ σ(A)

}
(4.24)

andσ(R+R∗)\{±4} is purely discrete.We claim that the inclusion in (4.24) is actually
an equality. To see this, it suffices to show that σp(R+R∗) is symmetric with respect
to the origin. Let μ ∈ σp(R + R∗) and e ∈ L2(�; C

2) such that (R + R∗)e = μe.
With (4.5) we see that

(R + R∗)(σ · ν)e = −(σ · ν)(R + R∗)e = −μ(σ · ν)e, (4.25)

i.e. also −μ ∈ σp(R + R∗) and hence

σ(R + R∗) =
{
±

√
16 + λ2 : λ ∈ σ(A)

}
.

Thus, if we denote by μk = signμk ·
√
16 + λ2k all eigenvalues of R + R∗ with

some λk ∈ σp(A) and by e±
k the corresponding eigenfunctions (where the superscript

corresponds to the sign of the associated eigenvalue and which are by (4.23) also
eigenfunctions of A), and that are by the spectral theorem an orthonormal basis in
L2(�; C

2), we can write

(R + R∗)ϕ =
∑
k

μk(ϕ, e±
k )e±

k = 4P̃+ϕ − 4P̃−ϕ + K̃ϕ (4.26)

with

P̃+ϕ :=
∑
μk>0

(ϕ, e+
k )e+

k , P̃−ϕ :=
∑
μk<0

(ϕ, e−
k )e−

k ,

K̃ϕ :=
∑
μk>0

(√
16 + λ2k − 4

)
(ϕ, e+

k )e+
k +

∑
μk<0

(
4 −

√
16 + λ2k

)
(ϕ, e−

k )e−
k .

(4.27)

It remains to show that P̃± give rise to bounded operators P± in Hs(�; C
2), that

H± := ran P± fulfil Hs(�; C
2) = H++̇H−, and that K̃ can be extended to a bounded

operator from Hs(�; C
2) to H1(�; C

2).
Step 2: Define the space G := ranA and endow it with the norm

‖ϕ‖2G = ∥∥(A � (L2(�; C
2) � ker A))−1ϕ

∥∥2
L2(�;C2)

+ ‖ϕ‖2L2(�;C2)

=
∑

λk∈σ(A)\{0}
(λ−2

k + 1)|(ϕ, e±
k )|2.
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Remark that (A � (L2(�; C
2) � ker A))−1 is self-adjoint in the Hilbert space ranA

and hence, it is closed and G is a Hilbert space. Clearly, those eigenfunctions e±
k of

A that correspond to eigenvalues λk �= 0 are an orthogonal basis in G. Note that
Proposition 4.8 (i) implies that G = ran (R − R∗) ⊂ H1(�; C

2). In this step, we
show that the embedding ι : G → H1(�; C

2) is continuous.
For that, we show that ι is closed. So let (ϕn) ⊂ G such that ϕn → ϕ in G and

ιϕn = ϕn → ψ in H1(�; C
2). Then, as G is complete ϕ ∈ G and by the same

argument ψ ∈ H1(�; C
2). Since both G and H1(�; C

2) are boundedly embedded in
L2(�; C

2), we have that (ϕn) converges to ϕ and ψ in L2(�; C
2). This can only be

true if ϕ = ψ . This finishes the proof that ι is closed and thus, continuous.
Step 3: In this step we prove that the map K̃ introduced in (4.27) can be extended

to a bounded operator from H−1(�; C
2) to H1(�; C

2), which gives then rise to a
bounded mapping K : Hs(�; C

2) → H1(�; C
2).

To show the stated boundedness property, let ϕ ∈ L2(�; C
2) be fixed. We claim

that K̃ϕ ∈ G. To see this, we use that the definition of K̃ in (4.27) yields |(K̃ϕ, e±
k )| =(√

16 + λ2k − 4

)
|(ϕ, e±

k )| and thus,

‖K̃ϕ‖2G =
∑

λk∈σ(A)\{0}
(λ−2

k + 1)|(K̃ϕ, e±
k )|2

=
∑

λk∈σ(A)\{0}
(λ−2

k + 1)

⎛
⎝ λ2k√

16 + λ2k + 4

⎞
⎠

2

|(ϕ, e±
k )|2

≤ c1
∑

λk∈σ(A)\{0}
λ2k |(ϕ, e±

k )|2 = c1‖Aϕ‖2L2(�;C2)
< ∞.

(4.28)

Therefore, we have shown K̃ϕ ∈ G. Combining now (4.28) with Proposition 4.8 (i)
(applied with s = 0) and the result in Step 2 we conclude

‖K̃ϕ‖2H1(�;C2)
≤ c2‖K̃ϕ‖2G ≤ c3‖Aϕ‖2L2(�;C2)

≤ c4‖ϕ‖H−1(�;C2).

Since L2(�; C
2) is a dense subspace of H−1(�; C

2), the latter estimate shows that
K̃ can indeed be extended to a bounded map from H−1(�; C

2) to H1(�; C
2).

Step 4: It remains to show that P̃± give rise to bounded operators P± in Hs(�; C
2)

and that H± := ran P± fulfil Hs(�; C
2) = H++̇H−. To see the first claim, remark

that the eigenfunctions e±
k of R + R∗ form an orthonormal basis of L2(�; C

2) and
that the definition of P̃± in (4.27) implies P̃++ P̃− = I2. Hence, formula (4.26) yields

P̃± = ±1

8

(
R + R∗ ± 4I2 − K̃

)
. (4.29)

Since the operator on the right hand side gives rise to a continuous map in Hs(�; C
2),

the same is true for the left hand side and we denote this realization by P±.
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It remains to show that the direct sum decomposition Hs(�; C
2) = H++̇H−

holds. First, we note that (4.29) implies P+ + P− = I2 and hence, Hs(�; C
2) =

H+ +H−. To see that the sum is direct, assume that ϕ ∈ H+ ∩H−. Then, there exist
ϕ−, ϕ+ ∈ Hs(�; C

2) such that

ϕ = P+ϕ+ = P−ϕ−. (4.30)

Note that the definition of P̃± in (4.27) implies that P̃± P̃∓ = 0. Thus, also P±P∓ = 0.
An Application of P± to (4.30) shows then P±ϕ = 0, i.e. ϕ = P+ϕ + P−ϕ = 0.
Therefore, Hs(�; C

2) = H++̇H− as a direct sum and all claims are shown.

Remark 4.10 It follows from the proof of Theorem 4.9 that σ · ν is an isomorphism
from H± to H∓. Indeed, it is shown in (4.25) that (σ · ν)ker (R + R∗ − μ) =
ker (R + R∗ + μ) holds for any μ �= 0. Since H± is defined for s ∈ [−1, 0] as the
completion of

ran P̃± = span
{
u ∈ L2(�; C

2) : u ∈ ker (R + R∗ − μ) for ± μ > 0
}

in Hs(�; C
2) and for s ∈ [0, 1] as the completion of

span
{
u ∈ L2(�; C

2) : u ∈ ker (R + R∗ − μ) for ± μ > 4
}

+(
ker (R + R∗ ∓ 4) ∩ Hs(�; C

2)
)

in Hs(�; C
2), cf. (4.27), and σ · ν gives rise to a bounded map in Hs(�; C

2), this
map is indeed an isomorphism between H± and H∓.

Eventually, we state a result about a special operator in L2(�; C
2) involving the

realizations R̃, R̃∗ ofR,R∗ in H−1/2(�; C
2). In the following proposition we show

that zero belongs to the essential spectrum of �(R̃R̃∗ − 4I2)� under some suitable
assumptions on the surface �. Remark that in the recent paper [16], that was devel-
oped independently from this note, a related result was shown with pseudodifferential
techniques.

Proposition 4.11 Assume that there exists an open subset �0 ⊂ � such that �0 is
contained in a plane. Then, there exists a sequence (ϕn) ⊂ L2(�; C

2) such that
‖ϕn‖L2(�;C2) = 1, ϕn converges weakly to zero, and �(R̃R̃∗ − 4I2)�ϕn → 0 in
L2(�; C

2). It is possible to choose this sequence such that (�ϕn) ⊂ H±.

Proof The proof of this proposition is split into two steps. In Step 1 we follow closely
arguments from [8, Theorem 5.9 (i)] to show that there exists a singular sequence (ϕn)

for �(R̃R̃∗ − 4I2)�, while in Step 2 we prove that this sequence (ϕn) can be chosen
such that �ϕn ∈ H±.

Step 1: We show the existence of the singular sequence for �(R̃R̃∗ − 4I2)�. For
this we note that by Proposition 4.8 (ii) the operator �(R̃R̃∗ − 4I2)� is bounded
and self-adjoint in L2(�; C

2) and hence, the claim follows, if we can show that
0 ∈ σess(�(R̃R̃∗ − 4I2)�), which is true, if

�G ⊂ L2(�; C
2) : dim G < ∞ and ran (�(R̃R̃∗ − 4I2)�) = L2(�; C

2) � G. (4.31)
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Let �1 ⊂ �0 such that �1 ⊂ �0, where the closure is understood in the relative
topology on �0. Following closely arguments from Step 4 from the proof of [8,
Theorem 5.9 (i)], we will show that ((R̃∗ − R̃)�ϕ) � �1 ∈ H1(�1; C

2) for all ϕ ∈
L2(�; C

2). Since Proposition 4.8 (ii) implies that�R̃ is a bijection from H1/2(�; C
2)

to L2(�; C
2), this yields (4.31).

Recall that R̃∗ − R̃ is an integral operator with integral kernel

t(x, y) := r(y, x)∗ − r(x, y) = σ · (x − y)

π |x − y|3 σ · (ν(y) − ν(x)) + 2
ν(x) · (x − y)

π |x − y|3 ,

cf. (4.21). Clearly, t(x, y) = 0 holds for all x, y ∈ �0. LetU1 ⊂ R
2 and φ : U1 → R

3

be a map that parametrizes �1, i.e. ran φ = �1. Since for any y ∈ � the map
U1 � u �→ t(φ(u), y) is C∞-smooth and � � y �→ ∂u j t(φ(u), y) is C1-smooth for
any fixed j ∈ {1, 2} and u ∈ U1, we find for any ψ ∈ L2(�; C

2) that

∂u j

(
(R̃∗ − R̃)ψ

)
(φ(u)) =

∫
�

∂u j t(φ(u), y)ψ(y)dσ(y)

holds. With this, we get

∥∥∂u j

(
(R̃∗ − R̃)ψ

)∥∥2
L2(�1;C2)

= C1

∫
U1

∣∣∣∣
∫

�

∂u j t(φ(u), y)ψ(y)dσ(y)

∣∣∣∣
2

du

= C1

∫
U1

∣∣∣(∂u j t(φ(u), ·), ψ)
H1/2(�;C2)×H−1/2(�;C2)

∣∣∣2 du

≤ C1

∫
U1

∥∥∂u j t(φ(u), ·)∥∥2H1/2(�;C2×2)
· ‖ψ‖2H−1/2(�;C2)

du

= C2‖ψ‖2H−1/2(�;C2)
.

By continuity, this can be extended for all ψ ∈ H−1/2(�; C
2), which shows that

(R̃∗ − R̃)�ϕ) � �1 ∈ H1(�1; C
2) for all ϕ ∈ L2(�; C

2) and yields the claim of the
first step.

Step 2: By the result of Step 1 there exists a sequence (ϕn) ⊂ L2(�; C
2) such

that ‖ϕn‖L2(�;C2) = 1, ϕn converges weakly to zero, and �(R̃R̃∗ − 4I2)�ϕn → 0 in
L2(�; C

2). It remains to verify that this sequence can be chosen such that�ϕn ∈ H±.
First, we show that at least one of the sequences (�−1P±�ϕn) has the claimed

properties. Since by Proposition 4.8 (ii) the map R is bijective in H1/2(�; C
2) with

R2 = 4I2, we find with the mapping properties of � that

(R̃∗ − R̃)�ϕn = 1

4
R̃(R̃R̃∗ − 4I2)�ϕn → 0 in H1/2(�; C

2). (4.32)
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Taking the construction of P± in (4.29) into account, we conclude that

(R̃∗ − R̃)P±�ϕn = ±1

8
(R̃∗ − R̃)

(
R̃ + R̃∗ ± 4I2 − K

)
�ϕn

= ∓1

8

(
R + R∗ ∓ 4I2

)
(R̃∗ − R̃)�ϕn ∓ 1

8
(R̃∗ − R̃)K�ϕn → 0

in H1/2(�; C
2) due to (4.32), asR,R∗ give rise to bounded operators in H1/2(�; C

2)

by Proposition 4.6 and K : H−1/2(�; C
2) → H1/2(�; C

2) is compact by Theo-
rem 4.9 and hence, it turns the weakly convergent sequence (�ϕn) into a strongly
convergent one. Using again R2 = 4I2 and the mapping properties of �, we con-
clude that �(R̃R̃∗ − 4I2)P±�ϕn → 0 in L2(�; C

2). Moreover, both sequences
(�−1P±�ϕn) are weakly converging to zero in L2(�; C

2) and at least one of these
sequences satisfies ‖�−1P±�ϕn‖L2(�;C2) ≥ c for a constant c > 0. Hence, at
least one of the sequences (�−1P±�ϕn) ⊂ L2(�; C

2) is a singular sequence for
�(R̃R̃∗ − 4I2)�.

So we can assume w.l.o.g. that (�ϕn) ⊂ H+ such that ‖ϕn‖L2(�;C2) = 1, ϕn

converges weakly to zero, and �(R̃R̃∗ − 4I2)�ϕn → 0 in L2(�; C
2). But then, in

view of Remark 4.10, also the sequence defined by ψn := �−1(σ · ν)�ϕn satisfies
‖ψn‖L2(�;C2) ≥ c for some c > 0, ψn converges weakly to zero, and �ψn ∈ H−.
Moreover, the relations in (4.5) and Proposition 4.8 (ii) imply that

�(R̃R̃∗ − 4I2)�ψn = �(R̃R̃∗ − 4I2)(σ · ν)�ϕn = �(σ · ν)(R̃∗R̃ − 4I2)�ϕn

= �(σ · ν)R̃∗R̃
(
I2 − 1

4
R̃R̃∗

)
�ϕn → 0

in L2(�; C
2). Thus, also (ψn) fulfils all claimed properties and all claims are shown.

Finally, combining the results from Lemma 4.7 and Theorem 4.9, we get the fol-
lowing decomposition of Cz into a positive and a negative part. In particular, this result
implies that ± 1

2 belongs to the essential spectrum of Cz , when this operator is viewed
as a mapping in Hs(�; C

4), s ∈ [−1, 1].
Corollary 4.12 Let Cz , z ∈ (−m,m), be defined by (2.4), let P± be as in Theorem 4.9,
and let V be given by (4.15). Then, for any s ∈ [−1, 1] there exists a bounded operator
K : Hs(�; C

4) → H τ (�; C
4) with τ = min {1, s + 1} such that

Cz = 1

2
(α · ν)V ∗

(
0 P− − P+

P− − P+ 0

)
V (α · ν) + K.

In particular, the realization of K in L2(�; C
4) is self-adjoint.

Remark 4.13 In [4, Section 4.2] projections that are defined by

Q± := 1

2
I2 ± 1

4
R and Q∗± = 1

2
I2 ± 1

4
R∗
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were considered and they were identified as skew projections onto Hardy spaces. Note
that Theorem 4.9 and P+ + P− = I2 imply

Q± = 1

2

(
I2 ± 1

4
(R + R∗)

)
± 1

8
(R − R∗) = P± ± 1

8
(R − R∗ + K)

and similarly

Q∗± = 1

2

(
I2 ± 1

4
(R + R∗)

)
∓ 1

8
(R − R∗) = P± ∓ 1

8
(R − R∗ − K).

Hence, the projections P± constructed in Theorem 4.9 coincide, up to the map-
ping ± 1

8 (R − R∗ + K), which is by Proposition 4.8 bounded from Hs−1(�; C
2)

to Hs(�; C
2) and hence compact in Hs(�; C

2) for any s ∈ R, with the skew pro-
jections onto Hardy spaces considered in [4, Section 4.2]. However, in contrast to P±
the projections Q± are not self-adjoint in L2(�; C

2), unless � is a sphere. This is a
drawback, as Q±Q∗∓ �= 0, unless� is a sphere, which makes the application of Q± in
problems involving the Schur complement of Cz and related operators more involved.
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