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Abstract. We prove a fixed point result for nonlinear operators, acting
on some classes of functions with values in a dq-metric space, and show
some applications of it. The result has been motivated by some issues
arising in Ulam stability. We use a restricted form of a contraction con-
dition.
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1. Introduction

The name of Ulam has been somehow connected with various definitions
of stability (see, e.g., [1,12,16,24]), but roughly speaking, the following one
describes our considerations in this paper (AB denotes the family of all func-
tions mapping a nonempty set B into a nonempty set A, R stands for the set
of all real numbers and R+:=[0,∞)).

Definition 1. Let (Y, d) be a metric space, E be a nonempty set, D0 ⊂ D ⊂
Y E and E ⊂ R+

E be nonempty, T : D → Y E and S : E → R+
E . We say that

the equation

T (ψ)(t) = ψ(t), t ∈ E,

is S-stable in D0 provided, for any ψ ∈ D0 and δ ∈ E with

d(T (ψ)(t), ψ(t)) ≤ δ(t), t ∈ E,

there is a solution φ ∈ D of the equation, such that

d(φ(t), ψ(t)) ≤ Sδ(t), t ∈ E.

There are some close connections between Ulam stability and fixed-
point theory (see, e.g., [6]). In particular, the subsequent theorem has been
presented in [7, Theorem 2] and it has been shown there how to deduce some
quite general Ulam stability results from it (see also [6,9,14]). To formulate
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it, we need the following hypothesis concerning operators Λ : R+
E → R+

E

(E is a nonempty set):

(C) If (δn)n∈N is a sequence in R+
E with limn→∞ δn(t) = 0 for t ∈ E, then

lim
n→∞ Λδn(t) = 0, t ∈ E.

Let us yet recall that Λ : R+
E → R+

E is non-decreasing provided

Λξ(t) ≤ Λη(t), t ∈ E,

for every ξ, η ∈ R+
E with ξ(t) ≤ η(t) for every t ∈ E.

Theorem 2. Assume that (Y, d) is a complete metric space, E is a nonempty
set, Λ : R+

E → R+
E is non-decreasing and satisfies hypothesis (C), and

T : Y E → Y E is such that

d
(
(T ξ)(t), (T μ)(t)

)
≤ Λ

(
d(ξ, μ)

)
(t), ξ, μ ∈ Y E , t ∈ E, (1)

and functions ε : E → R+ and ϕ : E → Y fulfil

d
(
(T ϕ)(t), ϕ(t)

)
≤ ε(t), t ∈ E,

and

σ(t):=
∑

n∈N0

(Λnε)(t) < ∞, t ∈ E.

Then, for every t ∈ E, the limit

lim
n→∞(T nϕ)(t) =: ψ(t)

exists and the function ψ ∈ Y E, defined in this way, is a fixed point of T
with

d
(
ϕ(t), ψ(t)

)
≤ σ(t), t ∈ E.

In the next section, we present a similar fixed-point theorem for dis-
located quasi-metric spaces that generalizes Theorem 2 and several similar
outcomes in [5,7,8]. In particular, we apply a restricted version of a weaker
form of condition (1) (see Remark 3).

Let us recall that a dislocated quasi-metric (dq-metric, for short), in a
nonempty set Y , is a function d : Y ×Y → [0,+∞) that satisfies the following
two conditions:

(A1) if d(x, y) = d(y, x) = 0, then x = y,
(A2) d(x, y) � d(x, z) + d(z, y)

for all x, y, z ∈ Y . The notion of a dq-metric space is a natural generalization
of the usual definitions of metric, quasi-metric, partial metric, and metric-
like spaces and plays crucial roles in computer science and cryptography (see,
e.g., [2,4,11,13,15,20–22,25,26]).
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Remark 1. Let a, b ∈ (0,∞), n, k ∈ N (positive integers), α : R → R+ and
α−1({0}) = {0}. Then, it is easy to check that the function d : R×R → [0,∞),
given by any of the following six formulas, is a dq-metric:

d(x, y) = α(x), x, y ∈ R,

d(x, y) = max {a|x|k, b|y|n}, x, y ∈ R,

d(x, y) = a|x|k + b|y|n, x, y ∈ R,

d(x, y) =
√

a|x|k + b|y|n, x, y ∈ R,

d(x, y) = n
√

max {x − y, 0}, x, y ∈ R,

d(x, y) = max {x − [y], 0}, x, y ∈ R,

where [y] denotes the integer part of y, i.e., [y]:= max {n ∈ Z : n ≤ y} and
Z stands for the set of integers. For some further examples we refer to, e.g.,
[2,4,13,22] and the references therein.

Let d be a dq-metric in a nonempty set Y . We say that x ∈ Y is a limit
of a sequence (xn)∞

n=1 in Y provided

lim
n→∞ max {d(xn, x), d(x, xn)} = 0;

then we write xn → x or x = limn→∞ xn; in view of (A2), it is easy to note
that such a limit must be unique. Next, we say that a sequence (xn)∞

n=1 in
Y is Cauchy if

lim
N→∞

sup
m,n�N

d(xn, xm) = 0;

d is complete if every Cauchy sequence in Y has a limit in Y .

Remark 2. Usually, in a dq-metric space, the Cauchy sequence is defined in a
somewhat different way; e.g., in a metric-like space (Y, d), a sequence (xn)∞

n=1

is said to be Cauchy if the limit limN→∞ supm,n�N d(xn, xm) exists and is
finite (see [3]). However, such definitions are too weak and would exclude from
our considerations the metric and quasi-metric spaces. The same concerns the
notion of completeness.

Our definition of a limit of a sequence is stronger than the usual, but this
seems to be necessary in the proof of the main result; moreover, it actually
corresponds to our definition of the Cauchy sequence and makes such limit
unique (which is not the case in general) and, therefore, more useful.

2. The main result

In what follows, we always assume that (Y, d) is a complete dq-metric space,
i.e., d is a complete dq-metric in a nonempty set Y . Moreover, E denotes a
nonempty set and d : Y E × Y E → R+

E is defined by

d(ξ, μ)(t):=d(ξ(t), μ(t)), ξ, μ ∈ Y E , t ∈ E.
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Analogously, as in the classical metric spaces, if (χn)n∈N is a sequence
of elements of Y E , then a function χ ∈ Y E is a pointwise limit of (χn)n∈N

provided

lim
n→∞ max

{
d(χ, χn)(t), d(χn, χ)(t)

}
= 0, t ∈ E;

χ ∈ Y E is a uniform limit of (χn)n∈N provided

lim
n→∞ sup

t∈E
max

{
d(χ, χn)(t), d(χn, χ)(t)

}
= 0.

A nonempty subset F of Y E is called p-closed (u-closed, respectively)
if every χ ∈ Y E , which is a pointwise (uniform, resp.) limit of a sequence
(χn)n∈N of elements of F , belongs to F .

Furthermore, given f, g ∈ R
E , we write f ≤ g if f(t) ≤ g(t) for t ∈ E.

Let ∅ �= C ⊂ Y E , Λ: R+
E → R+

E , and ω ∈ R+
E . We say that T : C → Y E

is (ω,Λ)—contractive provided

d(T ξ, T μ) ≤ Λδ

for any ξ, μ ∈ C and δ ∈ R+
E with

δ ≤ ω, d(ξ, μ) ≤ δ.

Given a set A �= ∅ and f ∈ AA, we define fn ∈ AA (for n ∈ N0) by

f0(x) = x, fn+1(x) = f(fn(x)), x ∈ A,n ∈ N0.

Finally, to simplify some formulas, we denote by Λ0 the identity operator
on R+

E , i.e., Λ0δ = δ for each δ ∈ R+
E .

Now, we are in a position to present the fixed-point theorem, which is
the main result of this paper.

Theorem 3. Let C ⊂ Y E be nonempty, Λn : R+
E → R+

E for n ∈ N, and
T : C → C. Assume that there exist functions ε1, ε2 ∈ R+

E and ϕ ∈ C, such
that

ε∗
j (t):=

∞∑

i=0

Λiεj(t) < ∞, t ∈ E, j = 1, 2, (2)

d(T ϕ,ϕ) ≤ ε1, d(ϕ, T ϕ) ≤ ε2, (3)

lim inf
n→∞ Λ1

( ∞∑

i=n

Λiεj

)
(t) = 0, t ∈ E, j = 1, 2, (4)

and write ε∗(t):= max{ε1(t), ε2(t)} for t ∈ E. Let T n be (ε∗,Λn)—contractive
for n ∈ N and one of the following two hypotheses be valid.

(i) C is p-closed.
(ii) C is u-closed and the sequence

( ∑n
i=0 Λiεj

)
n∈N

tends uniformly to ε∗
j

on E for j = 1, 2.

Then, for each t ∈ E, there exists the limit

ψ(t):= lim
n→∞ T nϕ(t) (5)



Vol. 20 (2018) Fixed-point theorem in a dq-metric space Page 5 of 16 143

and the function ψ ∈ C, defined in this way, is a fixed point of T with

d(T nϕ,ψ) ≤
∞∑

i=n

Λiε1, d(ψ, T nϕ) ≤
∞∑

i=n

Λiε2, n ∈ N0. (6)

Moreover, the following two statements are valid:

(a) for every sequence (kn)n∈N of positive integers with limn→∞ kn = ∞, ψ
is the unique fixed point of T , such that

d(T knϕ,ψ) ≤
∞∑

i=kn

Λiεj , d(ψ, T knϕ) ≤
∞∑

i=kn

Λiεl, n ∈ N,

with some j, l ∈ {1, 2};
(b) if

lim inf
n→∞ Λnε∗

j (t) = 0, j = 1, 2, t ∈ E, (7)

then ψ is the unique fixed point of T with

d(ϕ,ψ) ≤ ε∗
1, d(ψ,ϕ) ≤ ε∗

2,

and for every j, l ∈ {1, 2}

ψ(t) = lim
n→∞ T knξ(t), ξ ∈ C, d(ξ, ψ) ≤ ε∗

j , d(ψ, ξ) ≤ ε∗
l , t ∈ E, (8)

for every sequence (kn)n∈N of positive integers with limn→∞ Λkn
ε∗
m(t) =

0 for t ∈ E and m ∈ {j, l}.

Proof. Clearly, (3) implies that, for any k, l ∈ N and n ∈ N0

d(T n+kϕ, T nϕ) ≤
k−1∑

i=0

d(T n+i+1ϕ, T n+iϕ)

≤
n+k−1∑

i=n

Λiε1 ≤
∞∑

i=n

Λiε1, (9)

d(T nϕ, T n+lϕ) ≤
l−1∑

i=0

d(T n+iϕ, T n+i+1ϕ)

≤
n+l−1∑

i=n

Λiε2 ≤
∞∑

i=n

Λiε2, (10)

whence

d(T n+kϕ, T n+lϕ) ≤ d(T n+kϕ, T nϕ) + d(T nϕ, T n+lϕ)

≤
∞∑

i=n

Λiε1 +
∞∑

i=n

Λiε2.

Therefore, by (2), (T nϕ(t))n∈N is a Cauchy sequence in Y for each t ∈ E.
Since Y is complete, this sequence is convergent. Consequently, (5) defines a
function ψ ∈ C.
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Letting k → ∞ in (9) and l → ∞ in (10), on account of (5), we get

d(T nϕ,ψ) ≤
∞∑

i=n

Λiε1, d(ψ, T nϕ) ≤
∞∑

i=n

Λiε2, n ∈ N0, (11)

which is (6). Next, using (11), we get

d(T n+1ϕ, T ψ) ≤ Λ1

( ∞∑

i=n

Λiε1

)
, d(T ψ, T n+1ϕ) ≤ Λ1

( ∞∑

i=n

Λiε2

)

for n ∈ N0. Hence, for each n ∈ N0

d(ψ, T ψ) ≤ d(ψ, T n+1ϕ) + d(T n+1ϕ, T ψ) ≤ d(ψ, T n+1ϕ) + Λ1

( ∞∑

i=n

Λiε1

)
,

d(T ψ,ψ) ≤ Λ1

( ∞∑

i=n

Λiε2

)
+ d(T n+1ϕ,ψ),

which with n → ∞ yields d(ψ, T ψ) = 0 and d(T ψ,ψ) = 0 [in view of (4)],
and consequently T ψ = ψ.

Let (kn)n∈N be a sequence of positive integers with limn→∞ kn = ∞
and ξ ∈ Y E be a fixed point of T with

d(T knϕ(x), ξ(x)) ≤
∞∑

i=kn

Λiεj(t), d(ξ(x), T knϕ(x)) ≤
∞∑

i=kn

Λiεl(t),

n ∈ N, t ∈ E,

with some j, l ∈ {1, 2}. Then, by (6)

d(ξ(t), ψ(t)) ≤ d(ξ(t), T knϕ(t)) + d(T knϕ(t), ψ(t))

≤
∞∑

i=kn

Λiεl(t) +
∞∑

i=kn

Λiε1(t), n ∈ N0, t ∈ E,

d(ψ(t), ξ(t)) ≤ d(ψ(t), T knϕ(t)) + d(T knϕ(t), ξ(t))

≤
∞∑

i=kn

Λiε2(t) +
∞∑

i=kn

Λiεj(t), n ∈ N0, t ∈ E,

whence letting n → ∞, we get ξ = ψ.
It remains to prove statement (b). Therefore, assume that (7) holds and

ξ ∈ Y E is a fixed point of T with

d(ϕ, ξ) ≤ ε∗
1, d(ξ, ϕ) ≤ ε∗

2.

Then, for any n ∈ N0, we have

d(ψ, ξ) ≤ d(ψ, T nϕ) + d(T nϕ, T nξ)

≤ d(ψ, T nϕ) + Λnε∗
1,

d(ξ, ψ) ≤ d(T nξ, T nϕ) + d(T nϕ,ψ)

≤ Λnε∗
2 + d(ψ, T nϕ),

whence letting n → ∞, we can easily see that ξ = ψ.
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Now, let j, l ∈ {1, 2} and (kn)n∈N be a sequence of positive integers
with

lim
n→∞ Λkn

ε∗
m(t) = 0, t ∈ E,m ∈ {j, l}.

Let ξ ∈ C be a function such that d(ξ, ψ) ≤ ε∗
j and d(ψ, ξ) ≤ ε∗

l . Then

d(T knξ, ψ) = d(T knξ, T knψ) ≤ Λkn
ε∗
j , n ∈ N,

d(ψ, T knξ) = d(T knψ, T knξ) ≤ Λkn
ε∗
l , n ∈ N.

Letting n → ∞, we get (8). �

Theorem 3 implies at once the following.

Theorem 4. Let C ⊂ Y E be nonempty, T : C → C and Λ: R+
E → R+

E.
Assume that there exist functions ε1, ε2 ∈ R+

E and ϕ ∈ C, such that

ε∗
j (x):=

∞∑

i=0

Λiεj(t) < ∞, t ∈ E, j = 1, 2,

d(T ϕ,ϕ) ≤ ε1, d(ϕ, T ϕ) ≤ ε2, (12)

lim inf
n→∞ Λ

( ∞∑

i=n

Λiεj

)
(t) = 0, t ∈ E, j = 1, 2, (13)

and T is (ε∗,Λ)-contractive, where ε∗(t):= max{ε1(t), ε2(t)} for t ∈ E. Next,
let one of the following two hypotheses hold.

(i) C is p-closed.
(ii) C is u-closed and the sequence

( ∑n
i=0 Λiεj

)
n∈N

tends uniformly to ε∗
j

on E for j = 1, 2.
Then, for each t ∈ E, there exists the limit

ψ(t):= lim
n→∞ T nϕ(t)

and the function ψ ∈ C, defined in this way, is a fixed point of T with

d(T nϕ,ψ) ≤
∞∑

i=n

Λiε1, d(ψ, T nϕ) ≤
∞∑

i=n

Λiε2, n ∈ N0.

Moreover, the following two statements are valid:
(a) For every sequence (kn)n∈N of positive integers with limn→∞ kn = ∞,

ψ is the unique fixed point of T with

d(T knϕ,ψ) ≤
∞∑

i=kn

Λiε1, d(ψ, T knϕ) ≤
∞∑

i=kn

Λiε2, n ∈ N.

(b) If

lim inf
n→∞ Λnε∗

j (t) = 0, t ∈ E, j = 1, 2, (14)

then ψ is the unique fixed point of T with

d(ϕ,ψ) ≤ ε∗
1, d(ψ,ϕ) ≤ ε∗

2.
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and for every j, l ∈ {1, 2},
ψ(t) = lim

n→∞ T knξ(t), ξ ∈ C, d(ξ, ψ) ≤ ε∗
j , d(ψ, ξ) ≤ ε∗

l , t ∈ E,

for every sequence (kn)n∈N of positive integers with limn→∞ Λkn
ε∗
m(t) =

0 for t ∈ E and m ∈ {j, l}.

Proof. It is enough to notice that T n is (ε∗,Λn)—contractive for each n ∈ N

and use Theorem 3. �

Remark 3. There arises a natural question whether, in some situations, as-
sumption (2) can be weaker than (12) with Λ:=Λ1. Below, we provide a
somewhat trivial example that this is the case.

Let Y = R
3 be endowed with the euclidean norm, c ∈ R and E = R.

Define the operator T : Y R → Y R by

T φ(x) = (0, φ1(x), φ2(x) + c), x ∈ R,

for every φ = (φ1, φ2, φ3) ∈ Y R. Then

‖T φ(x) − T μ(x)‖ = ‖(0, φ1(x) − μ1(x), φ2(x) − μ2(x))‖
≤ ‖φ(x) − μ(x)‖, x ∈ R,

for every φ = (φ1, φ2, φ3), μ = (μ1, μ2, μ3) ∈ Y R. This shows that Λ1 and Λ2

exist, because it is enough to take any Λ1 and Λ2 with Λiδ ≥ δ for δ ∈ R+
R

and i = 1, 2. Next

T nφ(x) = (0, 0, nc), x ∈ R, n ∈ N, n ≥ 3,

for every φ = (φ1, φ2, φ3) ∈ Y R and we can take Λnδ(x) = 0 for δ ∈ R+
R,

x ∈ R and n ∈ N, n ≥ 3. Clearly, in such a case, (2) holds for any ε1, ε2 ∈ R
R
+.

We show that, for any such Λ1, we must have

Λ1δ ≥ δ, δ ∈ R+
R. (15)

Therefore, take arbitrary δ ∈ R+
R and define φ, ψ ∈ Y R by

φ(x) = (δ(x), 0, 0), ψ(x) = (0, 0, 0), x ∈ R.

Then

T φ(x) = (0, δ(x), c), T ψ(x) = (0, 0, c), x ∈ R,

‖φ(x) − ψ(x)‖ = ‖(δ(x), 0, 0)‖ = δ(x), x ∈ R,

and

‖T φ(x) − T ψ(x)‖ = ‖(0, δ(x), 0)‖ = δ(x) ≤ Λ1δ(x), x ∈ R.

This shows that (15) holds, whence, by induction, we obtain that for
each n ∈ N

Λ1
nδ ≥ δ,

and therefore
∞∑

i=0

Λ1
iδ(x) = ∞, x ∈ R, δ(x) �= 0.
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3. Some comments

We need yet the following hypothesis concerning operators Λ: R+
E → R+

E .
(C) If (δn)n∈N is a sequence of elements of R+

E with

lim
n→∞ δn(t) = 0, t ∈ E,

then

lim inf
n→∞ Λδn(t) = 0, t ∈ E.

Remark 4. Note that if Λ1 fulfils hypothesis (C), then (4) results at once from
(2). Analogously, (12) yields (13) if Λ fulfils (C).

Remark 5. Let j ∈ N and K be either the set of reals R or the set of complex
numbers C. Fix fi : E → E and Li : E → K for i = 1, . . . , j. Then, the
operator T : KE → K

E , given by

T φ(t):=
j∑

i=1

Li(t)φ(fi(t)), φ ∈ K
E , t ∈ E,

is (ω,Λ) contractive, with any ω ∈ R
E
+ and Λ: R+

E → R+
E defined by the

formula

Λδ(t):=
j∑

i=1

|Li(t)|δ(fi(t)), δ ∈ R+
E , t ∈ E.

Moreover, (C) holds.
Next, for any function ε0 : E → R+ with ε∗

0 given by [see (12)]

ε∗
0(x):=

∞∑

i=0

Λiε0(t) < ∞, t ∈ E, j = 1, 2,

we have

Λε∗
0(t) =

j∑

i=1

|Li(t)|
∞∑

k=0

(Λkε0)(fi(t)) =
∞∑

k=0

j∑

i=1

|Li(t)|(Λkε0)(fi(t))

=
∞∑

k=1

(Λkε0)(t), t ∈ E,

and analogously, by induction, we get

Λnε∗
0(t) =

∞∑

k=n

(Λkε0)(t), t ∈ E,n ∈ N0.

This means that (12) yields (14). Therefore, [9, Theorem 1] can be
derived from Theorem 4.

Remark 6. Let F : E × R+ → R+ be subadditive and non-decreasing with
respect to the second variable (i.e., F (x, a + b) ≤ F (x, a) + F (x, b) and
F (x, a) ≤ F (x, c) for a, b, c ∈ R+ with a ≤ c and x ∈ E). Let f : E → E be
given and Λ: R+

E → R+
E be defined by

Λε(x) = F (x, ε(f(x))), x ∈ E,n ∈ N0, ε ∈ R+
E .
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We show that for such Λ, condition (12) yields (13) and (14).
Therefore, assume that (12) holds for some suitable εj with j = 1, 2.

Fix x ∈ E and define a function F0 : R+ → R+ by

F0(a) = F (x, a), a ∈ R+.

Since F0 is non-decreasing and Λnε1(f(x)) ≥ 0 for each n ∈ N0, we
have

Λn+1ε1(x) = F0

(
Λnε1(f(x))

)
≥ F0(0).

Hence, by (12), we get F0(0) = 0.
Fix j ∈ {1, 2}. Next, we prove that F0 is continuous at 0 or there exists

l0 ∈ N with

Λnεj(f(x)) = 0, n ∈ N, n > l0.

To this end suppose that F0 is not continuous at 0 and there is a strictly
increasing sequence

(
kn

)
n∈N

of positive integers, such that Λknεj(f(x)) �= 0
for n ∈ N. Since F0 is non-decreasing and F (0) = 0, there exists d > 0 with
F0(c) > d for every c > 0, whence

Λkn+1εj(x) = F0

(
Λknεj(f(x))

)
≥ d, n ∈ N,

which contradicts to (12).
Thus, we have proved that

lim
j→∞

F0

( ∞∑

n=j

Λnεj(f(x))
)

= 0, j = 1, 2.

Furthermore, by subadditivity of F0, for every k, l ∈ N0, l > k, we get

F0

( ∞∑

n=k

Λnεj(f(x))
)

≤
l∑

n=k

Λn+1εj(x) + F0

( ∞∑

n=l+1

Λnεj(f(x))
)

whence letting l → ∞, we obtain

Λ
( ∞∑

n=k

Λnεj(x)
)

= F0

( ∞∑

n=k

Λnεj(f(x))
)

≤
∞∑

n=k+1

Λnεj(x)

and consequently, by induction (with k = 0)

Λl
( ∞∑

n=0

Λnεj(x)
)

≤
∞∑

n=l

Λnεj(x), l ∈ N.

Clearly, using those inequalities, we can easily deduce (13) and (14)
from (12).

Now, consider a very special situation when the set E has only one
element, E = {s}. Then, actually, each C ⊂ Y E can be considered as a
subset of Y of the form C:={φ(s) : φ ∈ C}.

Given e ∈ R+, λ : R+ → R+ and C ⊂ Y , analogously as before, we say
that T : C → C is (e, λ)—contractive provided

d(Ty, Tz) ≤ λ(δ),

for every y, z ∈ Y and δ ∈ R+, such that d(y, z) ≤ δ ≤ e.
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Next, for λ1 : R+ → R+, hypothesis (C) takes the following form:

(C0) If (δn)n∈N is a sequence in R+ with

lim
n→∞ δn = 0,

then

lim inf
n→∞ λ1(δn) = 0.

Theorem 3, with y0 = ϕ(s) and z0 = ψ(s), takes the following form (we
write λ0(ε):=ε for each ε ∈ R+).

Theorem 5. Let T : Y → Y , λn : R+ → R+ for n ∈ N, and λ1 satisfy
hypothesis (C0). Suppose that there exist y0 ∈ Y and ε1, ε2 ∈ R+, such that

d(T (y0), y0) ≤ ε1, d(y0, T (y0)) ≤ ε2,

ε∗
j :=

∞∑

i=0

λi(εj) < ∞, j = 1, 2, (16)

and Tn is (ε∗, λn)—contractive for n ∈ N with ε∗:= max {ε∗
1, ε

∗
2}. Then, the

limit

z0:= lim
n→∞ Tn(y0)

exists and z0 is a unique fixed point of T with

d(Tn(y0), z0) ≤
∞∑

i=n

λi(ε1), d(z0, Tn(y0)) ≤
∞∑

i=n

λi(ε2), n ∈ N0.

Moreover, the following two statements are valid:

(a) for every sequence (kn)n∈N of positive integers with limn→∞ kn = ∞, z0
is the unique fixed point of T with

d(T kn(y0), z0) ≤
∞∑

i=kn

λi(ε1), d(z0, T kn(y0)) ≤
∞∑

i=kn

λi(ε2), n ∈ N;

(b) if

lim inf
n→∞ λn(ε∗

j ) = 0, j = 1, 2,

then z0 is the unique fixed point of T , such that

d(y0, z0) ≤ ε∗
1, d(z0, y0) ≤ ε∗

2.

Clearly, if there is λ ∈ R+, such that λn(a) = λna for a ∈ R+ and n ∈ N,
then Theorem 5 becomes a natural modification of the Banach Contraction
Principle (with a local contraction condition) and (16) means that λ < 1.
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4. Ulam stability

Now, we show how we can derive some simple Ulam stability outcomes from
the results of the previous section. To this end, given e > 0 or e = ∞, we
need the subsequent hypothesis.
(H1) j ∈ N, Li : E → R+ for i = 1, . . . , j, Φ : E × Y j → Y , and

d(Φ(t, w1, ..., wj),Φ(t, z1, ..., zj)) ≤
j∑

k=1

Lk(t)d(wk, zk)

for any t ∈ E and (w1, ..., wj), (z1, ..., zj) ∈ Y j , such that d(zi, wi) ≤ e
for i = 1, . . . , j.

The following corollary also can be easily deduced from Theorem 2.

Corollary 6. Assume that ε1, ε2 : E → R+, hypothesis (H1) is valid with
e:= sup {ε∗

j (t) : t ∈ E, j = 1, 2}, where

ε∗
j (t):=

∞∑

i=0

Λiεj(t) < ∞, t ∈ E, j = 1, 2,

and Λ : RE
+ → R

E
+ is given by

Λδ(t) =
j∑

k=1

Lk(t)δ(fk(t)), δ ∈ R
E
+, t ∈ E,

with some f1, . . . , fj : E → E, and ϕ : E → Y is such that

d(Φ(t, ϕ(f1(t)), ..., ϕ(fj(t))), ϕ(t)) ≤ ε1(t), t ∈ E, (17)
d(ϕ(t),Φ(t, ϕ(f1(t)), ..., ϕ(fj(t)))) ≤ ε2(t), t ∈ E. (18)

Then, the limit

ψ(t):= lim
n→∞ T nϕ(t) (19)

exists for each t ∈ E, with T given by

T ϕ(t):=Φ(t, ϕ(f1(t)), ..., ϕ(fj(t))), ϕ ∈ Y E , t ∈ E,

and the function ψ : E → Y , defined by (19), is the unique solution of the
functional equation:

Φ(t, ψ(f1(t)), ..., ψ(fj(t))) = ψ(t), t ∈ E, (20)

such that

d(ϕ(t), ψ(t)) ≤ ε∗
1(t), d(ψ(t), ϕ(t)) ≤ ε∗

2(t), t ∈ E. (21)

Proof. Let us note that inequalities (17) and (18) imply (3). Next

lim inf
n→∞ Λnε∗

j (t) = 0, t ∈ E, j = 1, 2,

lim inf
n→∞ Λ

( ∞∑

i=n

Λiεj

)
(t) = 0, t ∈ E, j = 1, 2,

in view of Remarks 4 and 5. Therefore, by Theorem 4, the function ψ defined
by (19) is the unique fixed point of T (that is a solution of (20)) satisfying
(21). �
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Stability of functional equations of form (20) (or related to it) has been
already studied by several authors, and for further information, we refer to
the survey papers [1,8]. A particular case of (20) is the linear functional
equation of the form

φ(t):=
j∑

i=1

Li(t)φ(fi(t)), ϕ ∈ Y E , t ∈ E,

under the assumptions as in Remark 5; some recent results concerning sta-
bility of less general cases of it can be found in [10,18,19,23].

As an example of applications of Corollary 6 consider stability of the
difference equation:

ψ(i) = Φ(i, ψ(i + 1)), i ∈ N, (22)

where Φ : N × Y → Y is given and ψ : N → Y is unknown. Clearly, (22) is a
very simple particular case of (20), with E = N, j = 1 and f1(i) = i + 1 for
i ∈ X.

Let (an)n∈N be a sequence of positive reals, such that
∞∑

k=1

k−1∏

l=0

ai+l < ∞, i ∈ N. (23)

For instance, we can take ρ ∈ (0, 1) and write

a2n =
1
ρ
, a2n−1 = ρ2, n ∈ N.

Then
2k∏

l=0

ai+l = ρ

2k−2∏

l=0

ai+l,

2k+1∏

l=0

ai+l = ρ

2k−1∏

l=0

ai+l, k ∈ N,

whence (23) is valid and
∞∑

k=1

k−1∏

l=0

ai+l =
ai(1 + ai+1)

1 − ρ
, i ∈ N.

Let operator Λ : RN
+ → R

N
+ be defined by

Λδ(i) = aiδ(i + 1), δ ∈ R
N

+, i ∈ N.

Note that

Λkδ(i) = δ(i + k)
k−1∏

l=0

ai+l, k ∈ N, δ ∈ R
N

+,

whence
n∑

k=1

Λkδ(i) =
n∑

k=1

δ(i + k)
k−1∏

l=0

ai+l, n ∈ N, δ ∈ R
N

+. (24)

Take γ > 0 and let φ : N → Y fulfil inequalities (17) and (18) with some
ε1, ε2 : N → [0, γ], that is

d(Φ(i, φ(i + 1)), φ(i)) ≤ ε1(i), d(φ(i),Φ(i, φ(i + 1))) ≤ ε2(i), i ∈ N.
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Then, (24) implies that, for each j ∈ {1, 2}

ε∗
j (i):=

∞∑

k=0

Λkεj(i) ≤ γ
(
1 +

∞∑

k=1

k−1∏

l=0

al+i

)
< ∞, i ∈ N.

Next, if

d(Φ(i, z),Φ(i, w)) ≤ aid(z, w), w, z ∈ Y, i ∈ N, d(z, w) ≤ e,

where e:= sup {ε∗
j (i) : i ∈ N, j = 1, 2}, then Φ is as in (H1) with j = 1, and

the assumptions of Corollary 6 are satisfied with

L1(i) = ai, f1(i) = i + 1, i ∈ N.

Hence, the limit

ψ(i):= lim
n→∞ T nφ(i) (25)

exists for each i ∈ N, with

T ξ(i):=Φ(i, ξ(i + 1)), ξ ∈ Y E , i ∈ N,

and ψ : E → Y , given by (25), is the unique solution of (22), such that

d(φ(i), ψ(i)) ≤ ε∗
1(i), d(ψ(i), φ(i)) ≤ ε∗

2(i), i ∈ N.
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[5] Badora, R., Brzdęk, J.: A note on a fixed point theorem and the Hyers-Ulam
stability. J. Diff. Equ. Appl. 18, 1115–1119 (2012)
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[9] Brzdęk, J., Chudziak, J., Páles, Zs: A fixed point approach to stability of
functional equations. Nonlinear Anal. 74, 6728–6732 (2011)
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