Skip to main content
Log in

The effect of a singular term in a quadratic quasi-linear problem

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

For an open bounded set \(\Omega \subset \mathbb {R}^N\), \(N\ge 3\), \(0\lvertneqq f\in L^m(\Omega )\) with \(m> 1\), \(0\le \mu (x)\in L^\infty (\Omega )\) and assuming in addition \(\Vert \mu \Vert _\infty < \frac{N(m-1)}{N-2m}\) if \(m<\frac{N}{2}\), we prove the existence of a positive solution for the singular b.v.p

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u = \lambda u + \mu (x)\,\frac{|\nabla u |^2}{u}\, + f(x), &{} \text { in } \Omega , \\ u=0, &{} \text { on } \partial \Omega , \end{array}\right. } \end{aligned}$$

provided that \(\lambda <\lambda _1/(1+\Vert \mu \Vert _{ L^\infty (\Omega ) })\) (extending the previous results in [3] for \(\lambda =0\)). The model case \(\mu (x)\equiv B<1\) is studied in more detail obtaining in addition the uniqueness (resp. nonexistence) of positive solution if the parameter \(\lambda <\frac{\lambda _1}{B+1}\) (resp. \(\lambda \ge \frac{\lambda _1}{B+1}\)). Even more, the solutions constitute a continuum of solutions bifurcating from infinity at \(\lambda =\frac{\lambda _1}{B+1}\). This is in contrast with [5], where the multiplicity of solutions of the nonsingular problem (\(\frac{1}{u}\) do not appear in the equation) is deduced due to the bifurcation from infinity at \(\lambda =0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdellaoui, B., Dall’Aglio, A., Peral, I.: Some remarks on elliptic problems with critical growth in the gradient. J. Differ. Equ. 222, 21–62 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosetti, A., Arcoya, D.: An introduction to nonlinear functional analysis and elliptic problems. Birkhauser Verlag AG, Basel (2011)

    Book  MATH  Google Scholar 

  3. Arcoya, D., Boccardo, L., Leonori, T., Porretta, A.: Some elliptic problems with singular natural growth lower order terms. J. Differ. Equ. 249, 2771–2795 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arcoya, D., De Coster, C., Jeanjean, L., Tanaka, K.: Remarks on the uniqueness for quasilinear elliptic equations with quadratic growth conditions. J. Math. Anal. Appl. 420, 772–780 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arcoya, D., De Coster, C., Jeanjean, L., Tanaka, K.: Continuum of solutions for an elliptic problem with critical growth in the gradient. J. Funct. Anal. 268, 2298–2335 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barles, G., Blanc, A.P., Georgelin, C., Kobylanski, M.: Remarks on the maximum principle for nonlinear elliptic PDE with quadratic growth conditions. Ann. Sc. Norm. Super. Pisa Cl. Sci. 28, 381–404 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Barles, G., Murat, F.: Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions. Arch. Rational Mech. Anal. 133, 77–101 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boccardo, L., Gallouët, T.: Nonlinear elliptic equations with right-hand side measures. Commun. Partial Differ. Equ. 17, 641–655 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boccardo, L., Murat, F., Puel, J.-P.: \(L^{\infty }\) estimate for some nonlinear elliptic partial differential equations and application to an existence result. SIAM J. Math. Anal. 23, 326–333 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boccardo, L., Orsina, L.: Sublinear equations in \({L}^s\). Houston J. Math. 20, 99–114 (1994)

    MathSciNet  MATH  Google Scholar 

  11. Brezis, H., Kamin, S.: Sublinear elliptic equations in \(\mathbb{R}^N\). Manuscripta Math. 74, 87–106 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ferone, V., Murat, F.: Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small. Nonlinear Anal. 42, 1309–1326 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giachetti, D., Murat, F.: An elliptic problem with a lower order term having singular behaviour. Boll. Unione Mat. Ital. 2, 349–370 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Jeanjean, L., Sirakov, B.: Existence and multiplicity for elliptic problems with quadratic growth in the gradient. Commun. Part. Differ. Equ. 38, 244–264 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ladyzenskaya, O., Uralt’seva, N.: Linear and quasilinear elliptic equations. Translated by Scripta Technica. Academic Press, New York (1968)

    Google Scholar 

  16. Porretta, A., Segura de León, S.: Nonlinear elliptic equations having a gradient term with natural growth. J. Math. Pures Appl. 85, 465–492 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rabinowitz, P.H.: Théory du degré topologique et applications à des problèmes aux limites non linéaires. Notes Univ. Paris VI et CNRS (1975), written by H. Berestycki

  18. Souplet, P.: A priori estimates and bifurcation of solutions for an elliptic equation with semidefinite critical growth in the gradient. Nonlinear Anal. 121, 412–423 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Arcoya.

Additional information

Dedicated to Paul H. Rabinowitz.

This work was completed with the support of MINECO-FEDER Grant MTM2015-68210-P and Junta de Andalucía FQM-116. The second author has been supported by Ministerio de Educación, Cultura y Deporte (Spain): FPU Grant FPU12/02395.

Appendix

Appendix

Lemma 5.1

The operator K is compact, i.e., if \(0\le \lambda _n\) is convergent to \(\lambda \) and \(w_n\) is \(L^\infty \)-weakly convergent to w, then the sequence of the unique solution \(u_n=K_{\lambda _n}(w_n)\) of

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u_n = B\, \displaystyle \frac{|\nabla u_n |^2}{u_n} +\lambda _n w_n^+ + f(x), &{}\text { in } \Omega , \\ u_n>0, &{}\text { in } \Omega , \\ u_n=0, &{}\text { on } \partial \Omega , \end{array}\right. } \end{aligned}$$
(5.1)

is strongly convergent in \(L^\infty (\Omega )\) to the unique solution \(u=K_{\lambda }(w)\) of

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u = B\, \displaystyle \frac{|\nabla u |^2}{u} + \lambda w^+ + f(x), &{}\text { in } \Omega , \\ u>0, &{}\text { in } \Omega , \\ u=0, &{}\text { on } \partial \Omega . \end{array}\right. } \end{aligned}$$
(5.2)

Proof

First, we observe that the sequence \(\{\lambda _n\,w_n^+\}\) is bounded in \(L^\infty (\Omega )\), and thus, there exists a positive constant C, such that

$$\begin{aligned} 0\le |\lambda _n|\,w_n^+ + f \le C+f. \end{aligned}$$
(5.3)

Next, we divide the proof into several steps.

Step 1. The sequence \(\{u_n\}\) is bounded in \(W_0^{1,2}(\Omega )\) Indeed, thanks to Remark 4.1, it is possible to take \(u_n\) as a test function in the weak formulation of (5.1) to obtain, using (5.3), that

$$\begin{aligned} (1-B)\int _{\Omega }|\nabla u_n|^2 \le \int _{\Omega } (C + f) u_n, \end{aligned}$$

which gives us the result after applying Sobolev and Hölder inequalities.

Consequently, there exists a function \(u\in W_0^{1,2}(\Omega )\), such that, up to a subsequence, \(u_n\) converges to u weakly in \(W_0^{1,2}(\Omega )\).

Step 2. The sequence \(\{u_n\}\) is bounded in \(L^\infty (\Omega )\) Indeed, one can take \(G_k(u_n)\) as a test function (with \(k\ge 1\)) in the weak formulation of (5.1) to obtain, using \(|G_k(u_n)| \le |u_n|\) and (5.3), that

$$\begin{aligned} \big ( 1-B\big ) \int _{\Omega } |\nabla G_k(u_n)|^2 \le \int _{\{u_n>k\}} (C+f)\,G_k(u_n). \end{aligned}$$

Since \(m > N/2\) and \(0<B<1\), one can follow the arguments of Ladyzhenskaya–Ural’tseva ([15]) to deduce the result thanks to Step 1.

As a consequence, the function u given by Step 1 belongs to \(L^\infty (\Omega )\).

Step 3. The sequence \(\{u_n\}\) is bounded in \(C^{0,\alpha }(\overline{\Omega })\) for some \(\alpha \in (0,1).\) To do it, we consider a function \(\xi \in C_c^\infty (\Omega )\) with \(0\le \xi (x) \le 1\) for all \(x\in \Omega \) and compact support in a ball \(B_\rho \) of radius \(\rho \). Given a solution \(u_n\) of (5.1), we take \(\varphi = \xi ^2 G_k(u_n)\) as a test function in the weak formulation of (5.1). Thanks to the smoothness of \(\Omega \), we follow the same arguments of Theorem 1.1 of Chapter 4 in [15] to deduce \(u_n\in C^{0,\alpha }(\overline{\Omega })\) and \(\Vert u_n\Vert _{C^{0,\alpha }(\overline{\Omega })} \le C(\Vert u_n\Vert _{\infty },f,B,\Omega )\). Therefore, using Step 2, we deduce the boundedness of \(\{u_n\}\) in \(C^{0,\alpha }(\overline{\Omega })\). Since, by Ascoli–Arzela’s theorem, the embedding \(C^{0,\alpha }(\overline{\Omega }) \hookrightarrow C^0(\overline{\Omega })\) is compact, then the sequence \(\{u_n\}\) strongly converges in \(L^\infty (\Omega )\) to the function u given by Step 1.

Step 4. The function u given by Step 1 is a solution of (5.2) Following the arguments of [3] and using the above a priori estimates, we can pass to the limit in the weak formulation of the problem (5.1) to prove that u is a solution of (5.2). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arcoya, D., Moreno-Mérida, L. The effect of a singular term in a quadratic quasi-linear problem. J. Fixed Point Theory Appl. 19, 815–831 (2017). https://doi.org/10.1007/s11784-016-0374-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-016-0374-0

Keywords

Mathematics Subject Classification

Navigation