Skip to main content

Advertisement

Log in

A simultaneous confidence corridor for varying coefficient regression with sparse functional data

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

We consider a varying coefficient regression model for sparse functional data, with time varying response variable depending linearly on some time-independent covariates with coefficients as functions of time-dependent covariates. Based on spline smoothing, we propose data-driven simultaneous confidence corridors for the coefficient functions with asymptotically correct confidence level. Such confidence corridors are useful benchmarks for statistical inference on the global shapes of coefficient functions under any hypotheses. Simulation experiments corroborate with the theoretical results. An example in CD4/HIV study is used to illustrate how inference is made with computable p values on the effects of smoking, pre-infection CD4 cell percentage and age on the CD4 cell percentage of HIV infected patients under treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bosq D (1998) Nonparametric statistics for stochastic processes. Springer, New York

    Book  MATH  Google Scholar 

  • Brumback B, Rice JA (1998) Smoothing spline models for the analysis of nested and crossed samples of curves (with Discussion). J Am Stat Assoc 93:961–994

    Article  MATH  MathSciNet  Google Scholar 

  • Cao G, Yang L, Todem D (2012) Simultaneous inference for the mean function based on dense functional data. J Nonparametr Stat 24:359–377

    Article  MATH  MathSciNet  Google Scholar 

  • Cao G, Wang J, Wang L, Todem D (2012) Spline confidence bands for functional derivatives. J Stat Plan Inference 142:1557–1570

    Article  MATH  MathSciNet  Google Scholar 

  • Chiang CT, Rice JA, Wu CO (2001) Smoothing spline estimation for varying coefficient models with repeatedly measured dependent variables. J Am Stat Assoc 96:605–619

    Article  MATH  MathSciNet  Google Scholar 

  • Claeskens G, Van Keilegom I (2003) Bootstrap confidence bands for regression curves and their derivatives. Ann Stat 31:1852–1884

    Article  MATH  Google Scholar 

  • de Boor C (2001) A practical guide to splines. Springer, New York

    MATH  Google Scholar 

  • Fan J, Zhang JT (2000) Functional linear models for longitudinal data. J R Stat Soc Ser B 62:303–322

    Article  MathSciNet  Google Scholar 

  • Fan J, Zhang WY (2000) Simultaneous confidence bands and hypothesis testing in varying-coefficient models. Scand J Stat 27:715–731

    Article  MATH  MathSciNet  Google Scholar 

  • Fan J, Zhang WY (2008) Statistical methods with varying coefficient models. Stat Interface 1:179–195

    Article  MathSciNet  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer, New York

    Google Scholar 

  • Gabrys R, Horváth L, Kokoszka P (2010) Tests for error correlation in the functional linear model. J Am Stat Assoc 105:1113–1125

    Article  Google Scholar 

  • Hall P, Müller HG, Wang JL (2006) Properties of principal component methods for functional and longitudinal data analysis. Ann Stat 34:1493–1517

    Article  MATH  Google Scholar 

  • Hall P, Titterington DM (1988) On confidence bands in nonparametric density estimation and regression. J Mult Anal 27:228–254

    Article  MATH  MathSciNet  Google Scholar 

  • Härdle W, Luckhaus S (1984) Uniform consistency of a class of regression function estimators. Ann Stat 12:612–623

    Article  MATH  Google Scholar 

  • Hastie T, Tibshirani R (1993) Varying-coefficient models. J R Stat Soc Ser B 55:757–796

    MATH  MathSciNet  Google Scholar 

  • Hoover DR, Rice JA, Wu CO, Yang LP (1998) Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data. Biometrika 85:809–822

    Article  MATH  MathSciNet  Google Scholar 

  • Horváth L, Kokoszka P (2012) Inference for functional data with applications. Springer, New York

    Book  MATH  Google Scholar 

  • Huang JZ, Wu CO, Zhou L (2002) Varying-coefficient models and basis function approximations for the analysis of repeated measurements. Biometrika 89:111–128

    Article  MATH  MathSciNet  Google Scholar 

  • Huang JZ, Wu CO, Zhou L (2004) Polynomial spline estimation and inference for varying coefficient models with longitudinal data. Stat Sin 14:763–788

    MATH  MathSciNet  Google Scholar 

  • James GM, Hastie T, Sugar C (2000) Principal component models for sparse functional data. Biometrika 87:587–602

    Article  MATH  MathSciNet  Google Scholar 

  • James GM, Sugar CA (2003) Clustering for sparsely sampled functional data. J Am Stat Assoc 98:397–408

    Article  MATH  MathSciNet  Google Scholar 

  • Leadbetter MR, Lindgren G, Rootzén H (1983) Extremes and related properties of random sequences and processes. Springer, New York

    Book  MATH  Google Scholar 

  • Liu R, Yang L (2010) Spline-backfitted kernel smoothing of additive coefficient model. Econ Theory 26:29–59

    Article  MATH  Google Scholar 

  • Ma S, Yang L, Carroll RJ (2012) A simultaneous confidence band for sparse longitudinal regression. Stat Sin 22:95–122

    MATH  MathSciNet  Google Scholar 

  • Manteiga W, Vieu P (2007) Statistics for functional data. Comput Stat Data Anal 51:4788–4792

    Article  MATH  MathSciNet  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional data analysis. Springer, New York

    Google Scholar 

  • Wang L, Li H, Huang JZ (2008) Variable selection in nonparametric varying-coefficient models for analysis of repeated measurements. J Am Stat Assoc 103:1556–1569

    Article  MATH  MathSciNet  Google Scholar 

  • Wang L, Yang L (2009) Polynomial spline confidence bands for regression curves. Stat Sin 19:325–342

    MATH  Google Scholar 

  • Wu CO, Chiang CT (2000) Kernel smoothing on varying coefficient models with longitudinal dependent variable. Stat Sin 10:433–456

    MATH  MathSciNet  Google Scholar 

  • Wu CO, Chiang CT, Hoover DR (1998) Asymptotic confidence regions for kernel smoothing of a varying-coefficient model with longitudinal data. J Am Stat Assoc 93:1388–1402

    Article  MATH  MathSciNet  Google Scholar 

  • Wu Y, Fan J, Müller HG (2010) Varying-coefficient functional linear regression. Bernoulli 16:730–758

    Article  MATH  MathSciNet  Google Scholar 

  • Xue L, Yang L (2006) Additive coefficient modelling via polynomial spline. Stat Sin 16:1423–1446

    MathSciNet  Google Scholar 

  • Xue L, Zhu L (2007) Empirical likelihood for a varying coefficient model with longitudinal data. J Am Stat Assoc 102:642–654

    Article  MATH  MathSciNet  Google Scholar 

  • Yao W, Li R (2013) New local estimation procedure for a non-parametric regression function for longitudinal data. J R Stat Soc Ser B 75:123–138

    Article  MathSciNet  Google Scholar 

  • Yao F, Müller HG, Wang JL (2005a) Functional linear regression analysis for longitudinal data. Ann Stat 33:2873–2903

    Article  MATH  Google Scholar 

  • Yao F, Müller HG, Wang JL (2005b) Functional data analysis for sparse longitudinal data. J Am Stat Assoc 100:577–590

    Article  MATH  Google Scholar 

  • Zhou L, Huang J, Carroll RJ (2008) Joint modelling of paired sparse functional data using principal components. Biometrika 95:601–619

    Article  MATH  MathSciNet  Google Scholar 

  • Zhu H, Li R, Kong L (2012) Multivariate varying coefficient model for functional responses. Ann Stat 40:2634–2666

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is part of Lijie Gu’s dissertation and has been supported in part by the Deutsche Forschungsgemeinschaft through the CRC 649 “Economic Risk”, the US National Science Foundation awards DMS 0905730, 1007594, 1106816, 1309800, Jiangsu Specially Appointed Professor Program SR10700111, Jiangsu Province Key-Discipline Program (Statistics) ZY107002, National Natural Science Foundation of China award 11371272, and Research Fund for the Doctoral Program of Higher Education of China award 20133201110002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijian Yang.

Appendix A

Appendix A

Throughout this section, \(a_{n}\sim b_{n}\) means \(\lim \nolimits _{n \rightarrow \infty }b_{n}/a_{n}=c\), where \(c\) is some nonzero constant. For functions \(a_{n}(t)\), \(b_{n}(t)\), \(a_{n}(t)={\scriptstyle {\mathcal {U}}} \left\{ b_{n}(t)\right\} \) means \(a_{n}(t)/b_{n}(t)\rightarrow 0\) as \( n\rightarrow \infty \) uniformly for \(t\in \left[ 0,1\right] \), and \(a_{n}(t)= \mathcal {U}\left\{ b_{n}(t)\right\} \) means \(a_{n}(t)/b_{n}(t)=\mathcal {O} (1) \) as \(n\rightarrow \infty \) uniformly for \(t\in \left[ 0,1\right] \). We use \({\scriptstyle {\mathcal {U}}}_{p}(\cdot )\) and \(\mathcal {U}_{p}(\cdot )\) if the convergence is in the sense of uniform convergence in probability.

1.1 A.1 Technical assumptions

We define the modulus of continuity of a continuous function \(\phi \) on \( \left[ a,b\right] \) by \(\omega \left( \phi ,\delta \right) =\max \nolimits _{t,t^{\prime }\in \left[ a,b\right] ,\left| t-t^{\prime }\right| \le \delta }\left| \phi (t)-\phi \left( t^{\prime }\right) \right| \). For any \(r\in \left( 0,1\right] \), denote the collection of order \(r\) Hõlder continuous function on \(\left[ 0,1\right] \) by

$$\begin{aligned} C^{0,r}\left[ 0,1\right] =\left\{ \phi :\Vert \phi \Vert _{0,r}=\sup _{t\ne t^{\prime },t,t^{\prime }\in \left[ 0,1\right] }\frac{\left| \phi (t)-\phi \left( t^{\prime }\right) \right| }{\left| t-t^{\prime }\right| ^{r}}<+\infty \right\} , \end{aligned}$$

in which \(\left\| \phi \right\| _{0,r}\) is the \(C^{0,r}\)-seminorm of \( \phi \). Let \(C\left[ 0,1\right] \) be the collection of continuous function on \(\left[ 0,1\right] \). Clearly, \(C^{0,r}\left[ 0,1\right] \subset C\left[ 0,1\right] \) and, if \(\phi \in C^{0,r}\left[ 0,1\right] \), then \(\omega \left( \phi ,\delta \right) \le \left\| \phi \right\| _{0,r}\delta ^{r}\).

The following regularity assumptions are needed for the main results.

  1. (A1)

    The regression functions \(m_{l}(t)\in C^{0,1}\left[ 0,1 \right] \), \(l=1,\ldots ,d\).

  2. (A2)

    The set of random variables \(\left( T_{ij},\varepsilon _{ij},N_{i},\xi _{ik,l},X_{il}\right) _{i=1,j=1,k=1,l=1}^{n,N_{i},\infty ,d}\) is a subset of variables \(\left( T_{ij},\varepsilon _{ij},N_{i},\xi _{ik,l},X_{il}\right) _{i=1,j=1,k=1,l=1}^{\infty ,\infty ,\infty ,d}\) consisting of independent random variables, in which all \(T_{ij}\)’s i.i.d with \(T_{ij}\sim T\), where \(T\) is a random variable with probability density function \(f(t)\); \(X_{il}\)’s i.i.d for each \(l=1,\ldots ,d\); \( N_{i}\)’s i.i.d with \(N_{i}\sim N \), where \(N>0\ \) is a positive integer-valued random variable with \({{\mathsf {E}}} \{N^{2r}\}\le r!c_{N}^{r}\), \(r=2,3,\ldots \), for some constant \(c_{N}>0\). Variables\(\left( \xi _{ik,l}\right) _{i=1,k=1,l=1}^{\infty ,\infty ,d}\) and \(\left( \varepsilon _{ij}\right) _{i=1,j=1}^{\infty ,\infty }\) are i.i.d \(N\left( 0,1\right) \).

  3. (A3)

    The functions \(f(t)\), \(\sigma (t)\) and \(\phi _{k,l}(t)\in C^{0,r}\left[ 0,1\right] \) for some \(r\in \left( 0,1 \right] \) with \(f(t)\in \left[ c_{f},C_{f}\right] \), \(\sigma (t)\in \left[ c_{\sigma },C_{\sigma }\right] \), \(t\in \left[ 0,1\right] \), for constants \(0<c_{f}\le C_{f}<+\infty \), \(0<c_{\sigma }\le C_{\sigma }<+\infty .\)

  4. (A4)

    For \(l=1,\ldots ,d\), \(\sum _{k=1}^{\infty }\left\| \phi _{k,l}\right\| _{\infty }<+\infty \), and \(G_{l}(t,t)\in \left[ c_{G,l},C_{G,l}\right] \), \(t\in \left[ 0,1\right] \), for constants \(0<c_{G,l}\le C_{G,l}<+\infty \).

  5. (A5)

    There exist constants \(0<c_{\mathbf {H}}\le C_{\mathbf {H }}<+\infty \) and \(0<c_{\eta }\le C_{\eta }<+\infty \), such that \(c_{\mathbf {H}}I_{d\times d}\le \mathbf {H}=\{H_{ll^{\prime }}\}_{l,l^{\prime }=1}^{d}={{\mathsf {E}}}\left( \mathbf {XX}^{ \scriptstyle {\mathsf {T}}}\right) \le C_{\mathbf {H}}I_{d\times d}\). For some \(\eta >4\), \(l=1,\ldots ,d\), \(c_{\eta }\le {{\mathsf {E}}}\left| X_{l}\right| ^{8+\eta }\le C_{\eta }\) .

  6. (A6)

    As \(n\rightarrow \infty \), the number of interior knots \(N_{{\mathrm{s}}}={\scriptstyle {\mathcal {O}}}\left( n^{\vartheta }\right) \) for some \(\vartheta \in \left( 1/3,1/2\right) \) while \(N_{{\mathrm{s}}}^{-1}={\scriptstyle {\mathcal {O}}}\left\{ n^{-1/3}\left( \log (n)\right) ^{-1/3}\right\} \). The subinterval length \(h_{{\mathrm{s}}}\sim N_{ {\mathrm{s}}}^{-1}\).

Assumptions (A1)–(A3) are common conditions used in the literature; see for example, Ma et al. (2012). Assumption (A1) controls the rate of convergence of the spline approximation \(\hat{m}_{l}\), \(l=1,\ldots ,d\). The requirement of \(N_{i}\) in Assumption (A2) ensures that the observation times are randomly scattered, reflecting sparse and irregular designs. Assumption (A4) guarantees that the random variable \(\sum _{k=1}^{\infty }\xi _{ik,l}\phi _{k,l}(t)\) absolutely uniformly converges. Assumption (A5) is analog to Assumption (A2) in Liu and Yang (2010), ensuring that the \(X_{il}\)s are not multicollinear. Assumption (A6) describes the requirement of the growth rate of the dimension of the spline spaces relative to the sample size.

1.2 A.2 Preliminaries

Lemma 1

(Bosq (1998), Theorem 1.2). Suppose that \(\left\{ \xi _{i}\right\} _{i=1}^{n}\) are i.i.d with \({{\mathsf {E}}}(\xi _{1})=0,\sigma ^{2}={{\mathsf {E}}}\xi _{1}^{2}\), and there exists \(c>0\) such that for \(r=3,4,\ldots \), \( {{\mathsf {E}}}\left| \xi _{1}\right| ^{r}\le c^{r-2}r!{{\mathsf {E}}}\xi _{1}^{2}<+\infty \). Then for each \(n>1\), \(t>0\), \(P(\left| S_{n}\right| \ge \sqrt{n} \sigma t)\le 2\exp \left( -t^{2}\left( 4+2ct/\sqrt{n}\sigma \right) ^{-1}\right) \), in which \(S_{n}=\sum _{i=1}^{n}\xi _{i}.\)

Lemma 2

Under Assumptions (A2)–(A6), we have

$$\begin{aligned} A_{n,1}=\underset{0\le J\le N_{{\mathrm{s}}},1\le l,l^{\prime }\le d}{ \sup }\frac{\left| \left\langle B_{J}X_{l},B_{J}X_{l^{\prime }}\right\rangle _{N_{{\mathrm{T}}}}-\left\langle B_{J}X_{l},B_{J}X_{l^{\prime }}\right\rangle \right| }{\sqrt{\left\langle B_{J}X_{l},B_{J}X_{l}\right\rangle }\sqrt{\left\langle B_{J}X_{l^{\prime }},B_{J}X_{l^{\prime }}\right\rangle }}=\mathcal {O}_{p}\left( \sqrt{\frac{ \log \left( n\right) }{nh_{{\mathrm{s}}}}}\right) , \end{aligned}$$

where for any \(J=0,\ldots ,N_{{\mathrm{s}}}\) and \(l,l^{\prime }=1,\ldots ,d\),

$$\begin{aligned} \left\langle B_{J}X_{l},B_{J}X_{l^{\prime }}\right\rangle _{N_{{\mathrm{T}}}}&= N_{{\mathrm{T}}}^{-1}\sum \nolimits _{i=1}^{n}\sum \nolimits _{j=1}^{N_{i}}B_{J}^{2}(T_{ij})X_{il}X_{il^{\prime }}, \\ \left\langle B_{J}X_{l},B_{J}X_{l^{\prime }}\right\rangle&= {{\mathsf {E}}}\left\{ B_{J}^{2}(T_{ij})X_{il}X_{il^{\prime }}\right\} =H_{ll^{\prime }}. \end{aligned}$$

Proof

Let \(\omega _{i,J}=\omega _{i,J,l,l^{\prime }}=\sum _{j=1}^{N_{i}}B_{J}^{2}(T_{ij})X_{il}X_{il^{\prime }}\), then \( {{\mathsf {E}}}\omega _{i,J}={{\mathsf {E}}}N_{1}H_{ll^{\prime }}\sim 1\) and \({{\mathsf {E}}}\left( \omega _{ij,J}\right) ^{2}= {{\mathsf {E}}}\left\{ \sum _{j=1}^{N_{i}}B_{J}^{2}(T_{ij})\right\} ^{2} {{\mathsf {E}}}\left( X_{il}X_{il^{\prime }}\right) ^{2} \sim h_{ {\mathrm{s}}}^{-1}\). Next define a sequence \(D_{n}=n^{\alpha }\) with \(\alpha (4+\eta /2)>1\) and \(\sqrt{\log \left( n\right) }D_{n}n^{-1/2}h_{{\mathrm{s}} }^{-1/2}\rightarrow 0\), \(n^{1/2}h_{{\mathrm{s}}}^{1/2}D_{n}^{-\left( 3+\eta /2\right) } \rightarrow 0\), which necessitates \(\eta >2\) according to Assumption (A5). We make use of the following truncated and tail decomposition

$$\begin{aligned} X_{ill^{\prime }}=X_{il}X_{il^{\prime }}=X_{ill^{\prime },1}^{D_{n}}+X_{ill^{\prime },2}^{D_{n}}, \end{aligned}$$

where \(X_{ill^{\prime },1}^{D_{n}}=X_{il}X_{il^{\prime }}I\left\{ \left| X_{il}X_{il^{\prime }}\right| >D_{n}\right\} \), \(X_{ill^{\prime },2}^{D_{n}}=X_{il}X_{il^{\prime }}I\left\{ \left| X_{il}X_{il^{\prime }}\right| \le D_{n}\right\} \). Correspondingly, the truncated and tail parts of \(\omega _{i,J}\) are \(\omega _{i,J,m}=B_{J}^{2}(T_{ij})X_{ill^{\prime },m}^{D_{n}}\), \(m=1,2\). According to Assumption (A5), for any \(l,l^{\prime }=1,\ldots ,d\),

$$\begin{aligned} \sum _{n=1}^{\infty }P\left\{ \left| X_{nl}X_{nl^{\prime }}\right| >D_{n}\right\} \le \sum _{n=1}^{\infty }\frac{{{\mathsf {E}}} \left| X_{nl}X_{nl^{\prime }}\right| ^{4+\eta /2}}{D_{n}^{4+\eta /2}} \le C_{\eta }\sum _{n=1}^{\infty }D_{n}^{-\left( 4+\eta /2\right) }<\infty . \end{aligned}$$

By Borel–Cantelli Lemma, one has \(\sum \nolimits _{j=1}^{N_{i}}B_{J}^{2}(T_{ij})X_{ill^{\prime },1}^{D_{n}}=0,a.s.\). So we obtain

$$\begin{aligned} \sup _{J,l,l^{\prime }}\left| n^{-1}\sum _{i=1}^{n}\omega _{i,J,1}\right| =\mathcal {O}_{a.s.}\left( n^{-k}\right) , ~~k\ge 1, \end{aligned}$$

and

$$\begin{aligned} {{\mathsf {E}}}\omega _{i,J,1}&= {{\mathsf {E}}}\left( X_{ill^{\prime },1}^{D_{n}}\right) {{\mathsf {E}}}\left\{ \sum _{j=1}^{N_{i}}B_{J}^{2}(T_{ij})\right\} \\&\le D_{n}^{-\left( 3+\eta /2\right) }{{\mathsf {E}}}\left| X_{il}X_{il^{\prime }}\right| ^{4+\eta /2}{{\mathsf {E}}}N_{1} {{\mathsf {E}}}B_{J}^{2}(T_{ij})\le cD_{n}^{-\left( 3+\eta /2\right) }. \end{aligned}$$

Next we considerate the truncated part \(\omega _{i,J,2}\). For large \(n\), \( {{\mathsf {E}}}\left( \omega _{i,J,2}\right) ={{\mathsf {E}}} \left( \omega _{i,J}\right) -{{\mathsf {E}}}\left( \omega _{i,J,1}\right) \sim 1\), \({{\mathsf {E}}}\left( \omega _{i,J,2}\right) ^{2}={{\mathsf {E}}}\left( \omega _{i,J}\right) ^{2}- {{\mathsf {E}}}\left( \omega _{i,J,1}\right) ^{2}\sim h_{{\mathrm{s}}}^{-1}\). Define \( \omega _{i,J,2}^{*}=\omega _{i,J,2}-{{\mathsf {E}}}\left( \omega _{i,J,2}\right) \), then \({{\mathsf {E}}}\omega _{i,J,2}^{*}=0\), and

$$\begin{aligned} {{\mathsf {E}}}\left( \omega _{i,J,2}^{*}\right) ^{2}&= {{\mathsf {E}}}\left( \omega _{i,J,2}\right) ^{2}-\left( {{\mathsf {E}}}\omega _{i,J,2}\right) ^{2}={{\mathsf {E}}} \left\{ \sum _{j=1}^{N_{i}}B_{J}^{2}(T_{ij})X_{ill^{\prime },2}^{D_{n}}\right\} ^{2}-\mathcal {U}\left( 1\right) \\&= {{\mathsf {E}}}\left( X_{ill^{\prime },2}^{D_{n}}\right) ^{2} {{\mathsf {E}}}\left\{ \sum _{j=1}^{N_{i}}B_{J}^{2}(T_{ij})\right\} ^{2}-\mathcal {U}\left( 1\right) . \end{aligned}$$

Note that

$$\begin{aligned} {{\mathsf {E}}}\left( X_{ill^{\prime },2}^{D_{n}}\right) ^{2} {{\mathsf {E}}}\left\{ \sum _{j=1}^{N_{i}}B_{J}^{2}(T_{ij})\right\} ^{2}&\ge \left\{ {{\mathsf {E}}}\left( X_{ill^{\prime }}\right) ^{2}-{{\mathsf {E}}}\left( X_{ill^{\prime },1}^{D_{n}}\right) ^{2}\right\} {{\mathsf {E}}}\left\{ \sum _{j=1}^{N_{i}}B_{J}^{4}(T_{ij})\right\} \\&\ge \left\{ {{\mathsf {E}}}\left( X_{ill^{\prime }}\right) ^{2}-{ \scriptstyle {\mathcal {U}}}\left( 1\right) \right\} {{\mathsf {E}}}N_{1} {{\mathsf {E}}}B_{J}^{4}(T_{ij}). \end{aligned}$$

Thus, there exists \(c_{\omega }\) such that for large \(n\), \( {{\mathsf {E}}}\left( \omega _{i,J,2}^{*}\right) ^{2}\ge c_{\omega } {{\mathsf {E}}}\left( X_{ill^{\prime }}\right) ^{2}h_{{\mathrm{s}}}^{-1}\). Next for any \(r>2\)

$$\begin{aligned}&{{\mathsf {E}}}\left| \omega _{i,J,2}^{*}\right| ^{r}= {{\mathsf {E}}}\left| \omega _{i,J,2}-{{\mathsf {E}}}\left( \omega _{i,J,2}\right) \right| ^{r}\le 2^{r-1}\left( {{\mathsf {E}}}\left| \omega _{i,J,2}\right| ^{r}+\left| {{\mathsf {E}}}\left( \omega _{i,J,2}\right) \right| ^{r}\right) \\&\quad = 2^{r-1}\left\{ {{\mathsf {E}}}\left| X_{ill^{\prime },2}^{D_{n}}\right| ^{r}{{\mathsf {E}}}\left| \sum _{j=1}^{N_{i}}B_{J}^{2}(T_{ij})\right| ^{r}+\mathcal {U}(1)\right\} \\&\quad =2^{r-1}\!\left[ \!{{\mathsf {E}}}\left| X_{ill^{\prime },2}^{D_{n}}\right| ^{r}{{\mathsf {E}}}\left\{ \,\sum _{0\le \, r_{1},\ldots ,r_{N_{i}}\le \, r}^{r_{1}+\cdots + r_{N_{i}} =\, r}\left( {\begin{array}{c}r\\ r_{1}\cdots r_{N_{i}}\end{array}}\right) \prod \limits _{j=1}^{N_{i}}{{\mathsf {E}}} B_{J}^{2r_{j}}\left( T_{ij}\right) \right\} \!\!+\!\mathcal {U}(1)\!\right] \!, \end{aligned}$$

then there exists \(C_{\omega }>0\) such that for any \(r>2\) and large \(n\),

$$\begin{aligned} {{\mathsf {E}}}\left| \omega _{i,J,2}^{*}\right| ^{r}&\le 2^{r-1}\left[ D_{n}^{r-2}{{\mathsf {E}}}\left( X_{ill^{\prime }}\right) ^{2}{{\mathsf {E}}}\left\{ N_{1}^{r}\max \prod \limits _{j=1}^{N_{i}}{{\mathsf {E}}}B_{J}^{2r_{j}}\left( T_{ij}\right) \right\} +\mathcal {U}(1)\right] \\&\le 2^{r-1}\left[ D_{n}^{r-2}{{\mathsf {E}}}\left( X_{ill^{\prime }}\right) ^{2}\left( {{\mathsf {E}}}N_{1}^{r}\right) C_{B}h_{{\mathrm{s }}}^{1-r}+\mathcal {U}(1)\right] \\&\le 2^{r}D_{n}^{r-2}\left( c_{N}^{r}r!\right) ^{1/2}C_{B}h_{{\mathrm{s}} }^{2-r}c_{\omega }^{-1}{{\mathsf {E}}}\left( \omega _{i,J,2}^{*}\right) ^{2} \\&\le \left( C_{\omega }D_{n}h_{{\mathrm{s}}}^{-1}\right) ^{r-2}r! {{\mathsf {E}}}\left( \omega _{i,J,2}^{*}\right) ^{2}, \end{aligned}$$

which implies that \(\left\{ \omega _{i,J,2}^{*}\right\} _{i=1}^{n}\) satisfies Cramér’s condition with constant \(C_{\omega }D_{n}h_{{\mathrm{s}} }^{-1}\). Applying Lemma 1 to \(\sum _{i=1}^{n}\omega _{i,J,2}^{*}\), for \(r>2\) and any large enough \(\delta >0\), \(P\left\{ \left| n^{-1}\sum _{i=1}^{n}\omega _{i,J,2}^{*}\right| \ge \delta \left( nh_{{\mathrm{s}}}\right) ^{-1/2}(\log (n))^{1/2}\right\} \) is bounded by

$$\begin{aligned} 2\exp \left\{ \frac{-\delta ^{2}\left( \log (n)\right) }{4+2C_{\omega }D_{n}h_{{\mathrm{s}}}^{-1}\delta \left( \log (n)\right) ^{1/2}n^{-1/2}h_{{\mathrm{s }}}^{1/2}}\right\} \le 2n^{-8}. \end{aligned}$$

Hence

$$\begin{aligned} \sum _{n=1}^{\infty }P\left\{ \sup _{0\le J\le N_{{\mathrm{s}}},1\le l,l^{\prime }\le d}\left| n^{-1}\sum _{i=1}^{n}\omega _{i,J,2}^{*}\right| \ge \delta \left( nh_{{\mathrm{s}}}\right) ^{-1/2}(\log (n))^{1/2}\right\} <\infty . \end{aligned}$$

Thus, \(\sup _{J,l,l^{\prime }}\left| n^{-1}\sum _{i=1}^{n}\omega _{i,J,2}^{*}\right| =\mathcal {O}_{a.s.}\left\{ \left( nh_{{\mathrm{s}} }\right) ^{-1/2}(\log (n))^{1/2}\right\} \) as \(n\rightarrow \infty \) by Borel–Cantelli Lemma. Furthermore,

$$\begin{aligned}&\sup _{J,l,l^{\prime }}\left| n^{-1}\sum _{i=1}^{n}\omega _{i,J}- {{\mathsf {E}}}\omega _{i,J}\right| \\&\qquad \le \sup _{J,l,l^{\prime }}\left| n^{-1}\sum _{i=1}^{n}\omega _{i,J,1}\right| +\sup _{J,l,l^{\prime }}\left| n^{-1}\sum _{i=1}^{n}\omega _{i,J,2}^{*}\right| +\sup _{J,l,l^{\prime }}\left| {{\mathsf {E}}}\omega _{i,J,1}\right| \\&\qquad =\mathcal {U}_{a.s.}\left( n^{-k}\right) +\mathcal {O}_{a.s.}\left\{ \left( nh_{{\mathrm{s}}}\right) ^{-1/2}(\log (n))^{1/2}\right\} +\mathcal {U} \left( D_{n}^{-\left( 3+\eta /2\right) }\right) \\&\qquad =\mathcal {O}_{a.s.}\left\{ \left( nh_{{\mathrm{s}}}\right) ^{-1/2}(\log (n))^{1/2}\right\} . \end{aligned}$$

Finally, we notice that

$$\begin{aligned}&\sup _{J,l,l^{\prime }}\left| \left\langle B_{J}X_{l},B_{J}X_{l^{\prime }}\right\rangle _{N_{{\mathrm{T}}}}\!-\!\left\langle B_{J}X_{l},B_{J}X_{l^{\prime }}\right\rangle \right| \!=\!\sup _{J,l,l^{\prime }}\left| \left( nN_{ {\mathrm{T}}}^{-1}\right) n^{-1}\sum _{i=1}^{n}\omega _{i,J}-\left( {{\mathsf {E}}}N_{1}\right) ^{-1}{{\mathsf {E}}}\omega _{i,J}\right| \\&\quad \le \! \sup _{J,l,l^{\prime }}\left( {{\mathsf {E}}}N_{1}\right) ^{-1}\left| \left( n{{\mathsf {E}}}N_{1}\right) N_{{\mathrm{T}} }^{-1}\!-\!1\right| \left| n^{-1}\sum _{i=1}^{n}\omega _{i,J}\right| \!+\!\sup _{J,l,l^{\prime }}\left( {{\mathsf {E}}}N_{1}\right) ^{-1}\left| n^{-1}\sum _{i=1}^{n}\omega _{i,J}\!-\!{{\mathsf {E}}} \omega _{i,J}\right| \\&\quad =\mathcal {O}_{p}\left( n^{-1/2}\right) +\mathcal {O}_{a.s.}\left\{ \left( nh_{{\mathrm{s}}}\right) ^{-1/2}(\log (n))^{1/2}\right\} =\mathcal {O} _{p}\left\{ \left( nh_{{\mathrm{s}}}\right) ^{-1/2}(\log (n))^{1/2}\right\} , \end{aligned}$$

and \(\left\langle B_{J}X_{l},B_{J}X_{l}\right\rangle =H_{ll}=\mathcal {U}(1)\). Hence, \(A_{n,1}=\mathcal {O}_{p}\left\{ \left( nh_{{\mathrm{s}}}\right) ^{-1/2}(\log (n))^{1/2}\right\} \). \(\square \)

For the random matrix \(\hat{\mathbf {V}}_{J}\) defined in (18), the lemma below shows that its inverse can be approximated by the inverse of a deterministic matrix \(\mathbf {H}={{\mathsf {E}}}(\mathbf {XX}^{ \scriptstyle {\mathsf {T}}})\).

Lemma 3

Under Assumptions (A2) and (A4)–(A6), for any \( J=0,\ldots , N_{{\mathrm{s}}}\), we have

$$\begin{aligned} \hat{\mathbf {V}}_{J}^{-1}=\mathbf {H}^{-1}+\mathcal {O}_{p}\left\{ \left( nh_{{\mathrm{s}} }\right) ^{-1/2}(\log (n))^{1/2}\right\} . \end{aligned}$$
(25)

Proof

By Lemma 2, we have

$$\begin{aligned} \left\| \hat{\mathbf {V}}_{J}-\mathbf {H}\right\| _{\infty }=\mathcal {O} _{p}\left\{ \left( nh_{{\mathrm{s}}}\right) ^{-1/2}(\log (n))^{1/2}\right\} . \end{aligned}$$

Using the fact that for any matrices \(\mathbf {A}\) and \(\mathbf {B}\),

$$\begin{aligned} \left( \mathbf {A}+h\mathbf {B}\right) ^{-1}=\mathbf {A}^{-1}-h\mathbf {A}^{-1} \mathbf {B}\mathbf {A}^{-1}+\mathcal {O}(h^{2}), \end{aligned}$$

we obtain (25). \(\square \)

The next lemma implies that the difference between \(\tilde{\varvec{\xi }} \left( t\right) \) and \(\hat{\varvec{\xi }}\left( t\right) \) and the difference between \(\tilde{\varvec{\varepsilon }}(t)\) and \(\hat{ \varvec{\varepsilon }}(t)\) are both negligible uniformly over \(t\in \left[ 0,1\right] \).

Lemma 4

Under Assumption (A2)–(A6), for \(\tilde{\varvec{ \xi }}(t)\), \(\tilde{\varvec{\varepsilon }}(t)\) given in (36), (37) and \(\hat{\varvec{\xi }}(t)\), \(\hat{\varvec{\varepsilon } }(t)\) given in (38), (39), as \(n\rightarrow \infty \), we have

$$\begin{aligned} \sup _{t\in \left[ 0,1\right] }\left\| \tilde{\varvec{\xi }}\left( t\right) -\hat{\varvec{\xi }}\left( t\right) \right\| _{\infty }&= \mathcal {O}_{p}\left\{ n^{-1}h_{{\mathrm{s}}}^{-3/2}\log (n)\right\} , \end{aligned}$$
(26)
$$\begin{aligned} \sup _{t\in \left[ 0,1\right] }\left\| \tilde{\varvec{\varepsilon }} \left( t\right) -\hat{\varvec{\varepsilon }}\left( t\right) \right\| _{\infty }&= \mathcal {O}_{p}\left\{ n^{-1}h_{{\mathrm{s}}}^{-3/2} \log (n)\right\} . \end{aligned}$$
(27)

Proof

Comparing the equations of \(\tilde{\varvec{\xi }}(t)\) and \(\hat{\varvec{\xi }}(t)\) given in (A.2) and (A.4), we let

$$\begin{aligned} \frac{1}{N_{{\mathrm{T}}}}\sum _{i=1}^{n}\sum _{j=1}^{N_{i}}B_{J}(T_{ij})X_{il} \sum _{l^{\prime \prime }=1}^{d}\sum _{k=1}^{\infty }\xi _{ik,l^{\prime \prime }}\phi _{k,l^{\prime \prime }}\left( T_{ij}\right) X_{il^{\prime \prime }}= \frac{n}{N_{{\mathrm{T}}}}\sum _{l^{\prime \prime }=1}^{d}\sum _{i=1}^{n}\Omega _{i,J,l^{\prime \prime },l}. \end{aligned}$$

where \(\Omega _{i,J,l^{\prime \prime },l}=\Omega _{i}=n^{-1}\left[ X_{il}X_{il^{\prime \prime }}\sum _{k=1}^{\infty }\left\{ \sum _{j=1}^{N_{i}}B_{J}(T_{ij})\phi _{k,l^{\prime \prime }}\left( T_{ij}\right) \right\} \xi _{ik,l^{\prime \prime }}\right] \). Note that \( {{\mathsf {E}}}\Omega _{i}=0\) and

$$\begin{aligned} \sigma _{\Omega _{i},n}^{2}&= {{\mathsf {E}}}\left( \Omega _{i}^{2}\left| \left( T_{ij},N_{i},X_{il}\right) _{i=1,j=1,l=1}^{n,N_{i},d}\right. \right) \\&= n^{-2}\left[ X_{il}X_{il^{\prime \prime }}\sum _{k=1}^{\infty }\left\{ \sum _{j=1}^{N_{i}}B_{J}(T_{ij})\phi _{k,l^{\prime \prime }}\left( T_{ij}\right) \right\} ^{2}\right] \\&\le n^{-2}\left\{ X_{il}^{2}X_{il^{\prime \prime }}^{2}\sum _{k=1}^{\infty }N_{i}\sum _{j=1}^{N_{i}}B_{J}^{2}(T_{ij})\phi _{k,l^{\prime \prime }}^{2}\left( T_{ij}\right) \right\} \\&= n^{-2}\left\{ X_{il}^{2}X_{il^{\prime \prime }}^{2}N_{i}\sum _{j=1}^{N_{i}}B_{J}^{2}(T_{ij})G_{l^{\prime \prime }}\left( T_{ij},T_{ij}\right) \right\} \\&\le Cn^{-2}h_{{\mathrm{s}}}^{-1}X_{il}^{2}X_{il^{\prime \prime }}^{2}N_{i}^{2}. \end{aligned}$$

Given \(\left( T_{ij},N_{i},X_{il}\right) _{i=1,j=1,l=1}^{n,N_{i},d}\), \( \left\{ \sigma _{\Omega _{i},n}^{-1}\Omega _{i}\right\} _{i=1}^{n}\) are i.i.d \(N\left( 0,1\right) \). It is easy to show that for any large enough \( \delta >0\),

$$\begin{aligned}&P\left\{ \frac{\left| \sum _{i=1}^{n}\Omega _{i}\right| }{\sqrt{ \sum _{i=1}^{n}\sigma _{\Omega _{i},n}^{2}}}\ge \left. \delta \sqrt{\log (n)} \right| \left( T_{ij},N_{i},X_{il}\right) _{i=1,j=1,l=1}^{n,N_{i},d}\right\} \\&\quad \le 2\exp \left\{ -\frac{1}{2}\delta ^{2}\log (n)\right\} \le 2n^{-8}, \end{aligned}$$
$$\begin{aligned} P\left[ \!\left| \!\sum _{i=1}^{n}\!\Omega _{i}\right| \!\ge \! \left. \!\delta \! \left\{ \frac{C\log (n)}{nh_{{\mathrm{s}}}}n^{-1}\!\sum _{i=1}^{n}X_{il}^{2}X_{il^{ \prime \prime }}^{2}N_{i}^{2}\right\} ^{1/2}\right| \!\left( T_{ij},N_{i},X_{il}\right) _{i=1,j=1,l=1}^{n,N_{i},d}\right] \!\le \! 2n^{-8}. \end{aligned}$$

Note that \(n^{-1}\sum _{i=1}^{n}X_{il}^{2}X_{il^{\prime \prime }}^{2}N_{i}^{2}=\mathcal {O}_{p}\left( 1\right) \), hence

$$\begin{aligned} \sum _{n=1}^{\infty }P\left\{ \sup _{0\le J\le N_{{\mathrm{s}}},1\le l,l^{\prime \prime }\le d}\left| \sum _{i=1}^{n}\Omega _{i,J,l^{\prime \prime },l}\right| \ge \delta \left( nh_{{\mathrm{s}}}\right) ^{-1/2}(\log (n))^{1/2}\right\} <\infty . \end{aligned}$$

Thus, \(\sup _{J,l,l^{\prime \prime }}\left| \sum _{i=1}^{n}\Omega _{i,J,l^{\prime \prime },l}\right| =\mathcal {O}_{p}\left\{ \left( nh_{ {\mathrm{s}}}\right) ^{-1/2}(\log (n))^{1/2}\right\} \) as \(n\rightarrow \infty \) by Borel–Cantelli Lemma. It follows that \(\sup _{J,l}\left| nN_{ {\mathrm{T}}}^{-1}\sum _{l^{\prime \prime }=1}^{d}\sum _{i=1}^{n}\Omega _{i,J,l^{\prime \prime },l}\right| = \mathcal {O}_{p}\big \{\left( nh_{{\mathrm{s}}}\right) ^{-1/2}(\log (n))^{1/2}\big \} \). Finally, according to Lemma 25, we obtain (26). (27) is proved similarly. \(\square \)

Denote the inverse matrix of \(\mathbf {H}\) by \(\mathbf {H}^{-1}=\{z_{ll^{ \prime }}\}_{l,l^{\prime }=1}^{d}\). For any \(l=1,\ldots ,d\), we rewrite the \( l \)th element of \(\hat{\xi }_{l}(t)\) and \(\hat{\varepsilon }_{l}(t)\) in (38) and (39) as the following

$$\begin{aligned} \hat{\xi }_{l}(t)&= c_{J(t),n}^{-1/2}N_{{\mathrm{T}}}^{-1}\sum _{l^{\prime \prime }=1}^{d}\sum _{i=1}^{n}\sum _{k=1}^{\infty }R_{ik,\xi ,J(t),l^{\prime \prime },l}\xi _{ik,l^{\prime \prime }}, \end{aligned}$$
(28)
$$\begin{aligned} \hat{\varepsilon }_{l}(t)&= c_{J(t),n}^{-1/2}N_{{\mathrm{T}} }^{-1}\sum _{i=1}^{n}\sum _{j=1}^{N}R_{ij,\varepsilon ,J(t),l}\varepsilon _{ij}, \end{aligned}$$
(29)

where for any \(0\le J\le N_{{\mathrm{s}}}\),

$$\begin{aligned}&\displaystyle R_{ik,\xi ,J,l^{\prime \prime },l}=\left( \sum _{l^{\prime }=1}^{d}z_{ll^{\prime }}X_{il^{\prime }}X_{il^{\prime \prime }}\right) \left\{ \sum _{j=1}^{N_{i}}B_{J}\left( T_{ij}\right) \phi _{k,l^{\prime \prime }}\left( T_{ij}\right) \right\} , \end{aligned}$$
(30)
$$\begin{aligned}&\displaystyle R_{ij,\varepsilon ,J,l}=\left( \sum _{l^{\prime }=1}^{d}z_{ll^{\prime }}X_{il^{\prime }}\right) B_{J}\left( T_{ij}\right) \sigma \left( T_{ij}\right) . \end{aligned}$$
(31)

Further denote

$$\begin{aligned} S_{ill^{\prime \prime }}=\left( \sum _{l^{\prime }=1}^{d}z_{ll^{\prime }}X_{il^{\prime }}X_{il^{\prime \prime }}\right) ^{2},\quad s_{ll^{\prime \prime }}={{\mathsf {E}}}\left( S_{ill^{\prime \prime }}\right) ,\quad 1\le l,l^{\prime \prime }\le d. \end{aligned}$$
(32)

Lemma 5

Under Assumptions (A2)–(A6), for \(R_{ik,\xi ,J,l^{\prime \prime },l},\) \(R_{ij,\varepsilon ,J,l}\) in (30), (31),

$$\begin{aligned}&{{\mathsf {E}}}\left( \sum _{k=1}^{\infty }R_{ik,\xi ,J,l^{\prime \prime },l}^{2}\right) =c_{J,n}^{-1}s_{ll^{\prime \prime }}\left[ \left( {{\mathsf {E}}}N_{1}\right) \int \nolimits b_{J}\left( u\right) G_{l^{\prime \prime }}\left( u,u\right) f\left( u\right) \mathrm{d}u\right. \\&\quad \left. +{{\mathsf {E}}}\left\{ N_{1}(N_{1}-1)\right\} \int b_{J}\left( u\right) b_{J}\left( v\right) G_{l^{\prime \prime }}\left( u,v\right) f\left( u\right) f\left( v\right) \mathrm{d}u\mathrm{d}v\!\right] \!, \end{aligned}$$
$$\begin{aligned} {{\mathsf {E}}}R_{ij,\varepsilon ,J,l}^{2}=c_{J,n}^{-1}z_{ll}\int b_{J}\left( u\right) \sigma ^{2}\left( u\right) f\left( u\right) \mathrm{d}u, \end{aligned}$$

for \(0\le J\le N_{{\mathrm{s}}}\) and \(0\le l,l^{\prime \prime }\le d\). In addition, there exist \(0<c_{R}<C_{R}<\infty \), such that

$$\begin{aligned} c_{R}s_{ll^{\prime \prime }} \le {{\mathsf {E}}}\left( \sum _{k=1}^{\infty }R_{ik,\xi ,J,l^{\prime \prime },l}^{2}\right) \le C_{R}s_{ll^{\prime \prime }},\quad c_{R}\le {{\mathsf {E}}}R_{ij,\varepsilon ,J,l}^{2} \le C_{R}, \end{aligned}$$

for \(0\le J\le N_{{\mathrm{s}}}\), \(0\le l,l^{\prime \prime }\le d\), and as\(\ n\rightarrow \infty \)

$$\begin{aligned} A_{n,\xi }&= \sup _{J,l^{\prime \prime },l}\left| n^{-1}\sum _{i=1}^{n}\sum _{k=1}^{\infty }R_{ik,\xi ,J,l^{\prime \prime },l}^{2}-{{\mathsf {E}}}\left( \sum _{k=1}^{\infty }R_{ik,\xi ,J,l^{\prime \prime },l}^{2}\right) \right| \\&= \mathcal {O}_{a.s.}\left\{ \left( nh_{{\mathrm{s}}}\right) ^{-1/2}(\log (n))^{1/2}\right\} , \\ A_{n,\varepsilon }&= \sup _{J,l}\left| N_{{\mathrm{T}}}^{-1}\sum _{i=1}^{n} \sum _{j=1}^{N_{i}}R_{ij,\varepsilon ,J,l}^{2}-{{\mathsf {E}}}R_{ij,\varepsilon ,J,l}^{2}\right| =\mathcal {O}_{a.s.}\left\{ \left( nh_{{\mathrm{s}}}\right) ^{-1/2}( \log (n))^{1/2}\right\} . \end{aligned}$$

Proof

By independence of \(\left\{ T_{ij}\right\} _{j=1}^{\infty }\), \(\left\{ X_{il}\right\} _{l=1}^{d},N_{i}\), the definition of \(B_{J}\) and (32),

$$\begin{aligned}&{{\mathsf {E}}}\left( \sum _{k=1}^{\infty }R_{ik,\xi ,J,l^{\prime \prime },l}^{2}\right) ={{\mathsf {E}}}\left( S_{ill^{\prime \prime }}\right) {{\mathsf {E}}}\sum _{k=1}^{\infty }\left\{ \sum _{j=1}^{N_{i}}B_{J}\left( T_{ij}\right) \phi _{k,l^{\prime \prime }}\left( T_{ij}\right) \right\} ^{2} \\&\quad =s_{ll^{\prime \prime }}{{\mathsf {E}}} \sum _{j=1}^{N_{i}}\sum _{j^{\prime }=1}^{N_{i}}B_{J}\left( T_{ij}\right) B_{J}\left( T_{ij^{\prime }}\right) G_{l^{\prime \prime }}\left( T_{ij},T_{ij^{\prime }}\right) \\&\quad =s_{ll^{\prime \prime }}c_{J,n}^{-1}\left\{ \left( {{\mathsf {E}}}N_{1}\right) \int b_{J}\left( u\right) G_{l^{\prime \prime }}\left( u,u\right) f\left( u\right) \mathrm{d}u\right. \\&\left. \quad \quad +{{\mathsf {E}}}\left\{ N_{1}(N_{1}-1)\right\} \int b_{J}\left( u\right) b_{J}\left( v\right) G_{l^{\prime \prime }}\left( u,v\right) f\left( u\right) f\left( v\right) \mathrm{d}u\mathrm{d}v\right\} , \end{aligned}$$

thus there exist constants \(0<c_{R}<C_{R}<\infty \) such that \( c_{R}s_{ll^{\prime \prime }}\le {{\mathsf {E}}}\left( \sum _{k=1}^{\infty }R_{1k,\xi ,J,l^{\prime \prime },l}^{2}\right) \le C_{R}s_{ll^{\prime \prime }}\), \(0\le J\le N_{{\mathrm{s}}}\), \(0\le l,l^{\prime \prime }\le d\).

If \(s_{ll^{\prime \prime }}=0\), one has \(S_{ill^{\prime \prime }}=0\), almost surely. Hence \(n^{-1}\sum _{i=1}^{n}\sum _{k=1}^{\infty }R_{ik,\xi ,J,l^{\prime \prime },l}^{2}=0\), almost surely. In the case of \( s_{ll^{\prime \prime }}>0\), let \(\zeta _{i,J}=\zeta _{i,J,l^{\prime \prime },l}=\sum _{k=1}^{\infty }R_{ik,\xi ,J,l^{\prime \prime },l}^{2}\) for brevity. Under Assumption (A5), it is easy to verify that

$$\begin{aligned} 0\!<\!s_{ll^{\prime \prime }}^{2}\!\le \! {{\mathsf {E}}}\left( S_{ill^{\prime \prime }}\right) ^{2} \!&\le \!d^{3}\sum _{l^{\prime }\!=\!1}^{d}\! {{\mathsf {E}}}\left| z_{ll^{\prime }}X_{il^{\prime }}X_{il^{\prime \prime }}\right| ^{4} \!\le \! d^{3}\sum _{l^{\prime }\!=\!1}^{d}z_{ll^{\prime }}\left\{ {{\mathsf {E}}}\left| X_{il^{\prime }}\right| ^{8} {{\mathsf {E}}}\left| X_{il^{\prime \prime }}\right| ^{8}\right\} ^{1/2}\!<\!\infty . \end{aligned}$$

So for large \(n\),

$$\begin{aligned} {{\mathsf {E}}}\left( \zeta _{i,J}\right) ^{2}&= {{\mathsf {E}}} \left\{ \left( S_{ill^{\prime \prime }}\right) ^{2}\left( \sum _{j=1}^{N_{i}}\sum _{j^{\prime }=1}^{N_{i}}B_{J}\left( T_{ij}\right) B_{J}\left( T_{ij^{\prime }}\right) G_{l^{\prime \prime }}\left( T_{ij},T_{ij^{\prime }}\right) \right) ^{2}\right\} \\&\ge {{\mathsf {E}}}\left( S_{ill^{\prime \prime }}\right) ^{2}\frac{ 1}{4}c_{G,l^{\prime \prime }}^{2}{{\mathsf {E}}}\left\{ \sum _{j=1}^{N_{i}}B_{J}\left( T_{ij}\right) \right\} ^{4}\ge c {{\mathsf {E}}}\sum _{j=1}^{N_{i}}B_{J}^{4}\left( T_{ij}\right) \ge ch_{{\mathrm{s}}}^{-1}, \end{aligned}$$

and

$$\begin{aligned} {{\mathsf {E}}}\left( \zeta _{i,J}\right) ^{2}&\le {{\mathsf {E}}}\left( S_{ill^{\prime \prime }}\right) ^{2}4C_{G,l^{\prime \prime }}^{2}{{\mathsf {E}}}\left\{ \sum _{j=1}^{N_{i}}B_{J}\left( T_{ij}\right) \right\} ^{4} \\&\le c{{\mathsf {E}}}\left[ \left. N_{1}^{3}\sum _{j=1}^{N_{i}} {{\mathsf {E}}}B_{J}^{4}\left( T_{ij}\right) \right| N_{1}\right] \le c{{\mathsf {E}}}N_{1}^{4}{{\mathsf {E}}}B_{J}^{4}\left( T_{ij}\right) \le ch_{{\mathrm{s}}}^{-1}. \end{aligned}$$

Define a sequence \(D_{n}=n^{\alpha }\) that satisfies \(\alpha \left( 2+\eta /4\right) >1\), \(D_{n}n^{-1/2}h_{{\mathrm{s}}}^{-1/2}(\log (n))^{1/2} \rightarrow 0 \), \(n^{1/2}h_{{\mathrm{s}}}^{1/2}D_{n}^{-\left( 1+\eta /4\right) }\rightarrow 0 \), which requires \(\eta >4\) provided by Assumption (A5). We make use of the following truncated and tail decomposition

$$\begin{aligned} S_{ill^{\prime \prime }}=\sum _{l^{\prime }=1}^{d}\sum _{l^{\prime \prime \prime }=1}^{d}z_{ll^{\prime }}z_{ll^{\prime \prime \prime }}X_{il^{\prime }}X_{il^{\prime \prime \prime }}X_{il^{\prime \prime }}^{2}=S_{ill^{\prime \prime },1}^{D_{n}}+S_{ill^{\prime \prime },2}^{D_{n}}, \end{aligned}$$

where

$$\begin{aligned} S_{ill^{\prime \prime },1}^{D_{n}}&= \sum _{l^{\prime }=1}^{d}\sum _{l^{\prime \prime \prime }=1}^{d}z_{ll^{\prime }}z_{ll^{\prime \prime \prime }}X_{il^{\prime }}X_{il^{\prime \prime \prime }}X_{il^{\prime \prime }}^{2}I\left\{ \left| X_{il^{\prime }}X_{il^{\prime \prime \prime }}X_{il^{\prime \prime }}^{2}\right| >D_{n}\right\} , \\ S_{ill^{\prime \prime },2}^{D_{n}}&= \sum _{l^{\prime }=1}^{d}\sum _{l^{\prime \prime \prime }=1}^{d}z_{ll^{\prime }}z_{ll^{\prime \prime \prime }}X_{il^{\prime }}X_{il^{\prime \prime \prime }}X_{il^{\prime \prime }}^{2}I\left\{ \left| X_{il^{\prime }}X_{il^{\prime \prime \prime }}X_{il^{\prime \prime }}^{2}\right| \le D_{n}\right\} . \end{aligned}$$

Define correspondingly the truncated and tail parts of \(\zeta _{i,J}\) as

$$\begin{aligned} \zeta _{i,J,m}=S_{ill^{\prime \prime },m}^{D_{n}}\sum _{j=1}^{N_{i}}\sum _{j^{\prime }=1}^{N_{i}}B_{J}\left( T_{ij}\right) B_{J}\left( T_{ij^{\prime }}\right) G_{l^{\prime \prime }}\left( T_{ij},T_{ij^{\prime }}\right) ,\quad m=1,2. \end{aligned}$$

According to Assumption (A5), for any \(l^{\prime },l^{\prime \prime },l^{\prime \prime \prime }=1,\ldots ,d\),

$$\begin{aligned} \sum _{n=1}^{\infty }P\left\{ \left| X_{nl^{\prime }}\!X_{nl^{\prime \prime \prime }}X_{nl^{\prime \prime }}^{2}\right| >D_{n}\right\} \!\le \! \!\sum _{n=1}^{\infty }\frac{{{\mathsf {E}}}\left| X_{nl^{\prime }}X_{nl^{\prime \prime \prime }}X_{nl^{\prime \prime }}^{2}\right| ^{2+\eta /4}}{D_{n}^{2+\eta /4}}\!\le \! C_{\eta }\!\sum _{n=1}^{\infty }D_{n}^{-\left( 2\!+\!\eta /4\right) }\!<\!\infty . \end{aligned}$$

Borel–Cantelli Lemma implies that

$$\begin{aligned}&\displaystyle P\left\{ \omega \left| \exists N\left( \omega \right) ,\left| X_{nl^{\prime }}X_{nl^{\prime \prime \prime }}X_{nl^{\prime \prime }}^{2}\left( \omega \right) \right| \le D_{n}\text { for }n>N\left( \omega \right) \right. \right\} =1,\\&\displaystyle P\left\{ \omega \left| \exists N\left( \omega \right) ,\left| X_{il^{\prime }}X_{il^{\prime \prime \prime }}X_{il^{\prime \prime }}^{2}\left( \omega \right) \right| \le D_{n},i=1,\ldots ,n\text { for } n>N\left( \omega \right) \right. \right\} =1,\\&\displaystyle P\left\{ \omega \left| \exists N\left( \omega \right) ,I\left\{ \left| X_{il^{\prime }}X_{il^{\prime \prime \prime }}X_{il^{\prime \prime }}^{2}\left( \omega \right) \right| \!>\!D_{n}\right\} \!=\!0,i\!=\!1,\ldots ,n\text { for }n>N\left( \omega \right) \right. \right\} =1. \end{aligned}$$

Furthermore, one has

$$\begin{aligned} n^{-1}\sum _{i=1}^{n}\left\{ S_{ill^{\prime \prime },1}^{D_{n}}\sum _{j=1}^{N_{i}}\sum _{j^{\prime }=1}^{N_{i}}B_{J}\left( T_{ij}\right) B_{J}\left( T_{ij^{\prime }}\right) G_{l^{\prime \prime }}\left( T_{ij},T_{ij^{\prime }}\right) \right\} =0,\quad a.s. \end{aligned}$$

Therefore, one has

$$\begin{aligned} \sup _{J,l,l^{\prime \prime }}\left| n^{-1}\sum _{i=1}^{n}\zeta _{i,J,1}\right| =\mathcal {O}_{a.s.}\left( n^{-k}\right) ,\quad k\ge 1. \end{aligned}$$

Notice that

$$\begin{aligned} {{\mathsf {E}}}\left( S_{ill^{\prime \prime },1}^{D_{n}}\right)&= {{\mathsf {E}}}\left[ \sum _{l^{\prime }=1}^{d}\sum _{l^{\prime \prime \prime }=1}^{d}z_{ll^{\prime }}z_{ll^{\prime \prime \prime }}X_{il^{\prime }}X_{il^{\prime \prime \prime }}X_{il^{\prime \prime }}^{2}I\left\{ \left| X_{il^{\prime }}X_{il^{\prime \prime \prime }}X_{il^{\prime \prime }}^{2}\right| >D_{n}\right\} \right] \\&\le D_{n}^{-\left( 1+\eta /4\right) }\sum _{l^{\prime }=1}^{d}\sum _{l^{\prime \prime \prime }=1}^{d}z_{ll^{\prime }}z_{ll^{\prime \prime \prime }}{{\mathsf {E}}}\left| X_{il^{\prime }}X_{il^{\prime \prime \prime }}X_{il^{\prime \prime }}^{2}\right| ^{2+\eta /4} \\&\le cD_{n}^{-\left( 1+\eta /4\right) }. \end{aligned}$$

So for large \(n\),

$$\begin{aligned} {{\mathsf {E}}}\left( \zeta _{i,J,1}\right)&= {{\mathsf {E}}} \left( S_{ill^{\prime \prime },1}^{D_{n}}\right) {{\mathsf {E}}} \left\{ \sum _{j=1}^{N_{i}}\sum _{j^{\prime }=1}^{N_{i}}B_{J}\left( T_{ij}\right) B_{J}\left( T_{ij^{\prime }}\right) G_{l^{\prime \prime }}\left( T_{ij},T_{ij^{\prime }}\right) \right\} \\&\le cD_{n}^{-\left( 1+\eta /4\right) }2C_{G,l^{\prime \prime }} {{\mathsf {E}}}\left\{ \sum _{j=1}^{N_{i}}B_{J}\left( T_{ij}\right) \right\} ^{2} \\&\le cD_{n}^{-\left( 1+\eta /4\right) }{{\mathsf {E}}}\left( N_{1}^{2}\right) {{\mathsf {E}}}B_{J}^{2}\left( T_{ij}\right) \\&\le cD_{n}^{-\left( 1+\eta /4\right) }. \end{aligned}$$

Next we considerate the truncated part \(\zeta _{i,J,2}\). For large \(n\), \( {{\mathsf {E}}}\left( \zeta _{i,J,2}\right) ={{\mathsf {E}}} \left( \zeta _{i,J}\right) -{{\mathsf {E}}}\left( \zeta _{i,J,1}\right) \sim 1\), \({{\mathsf {E}}}\left( \zeta _{i,J,2}\right) ^{2}={{\mathsf {E}}}\left( \zeta _{i,J}\right) ^{2}- {{\mathsf {E}}}\left( \zeta _{i,J,1}\right) ^{2}\sim h_{{\mathrm{s}}}^{-1}\). Define \(\zeta _{i,J,2}^{*}=\zeta _{i,J,2}-{{\mathsf {E}}}\left( \zeta _{i,J,2}\right) \), then \({{\mathsf {E}}}\zeta _{i,J,2}^{*}=0\), and there exist \(c_{\zeta },C_{\zeta }>0\) such that for \(r>2\) and large \(n\),

$$\begin{aligned} {{\mathsf {E}}}\left( \zeta _{i,J,2}^{*}\right) ^{2}&= {{\mathsf {E}}}\left| S_{ill^{\prime \prime },2}^{D_{n}}\right| ^{2}{{\mathsf {E}}}\left| \sum _{j=1}^{N_{i}}\sum _{j^{\prime }=1}^{N_{i}}B_{J}\left( T_{ij}\right) B_{J}\left( T_{ij^{\prime }}\right) G_{l^{\prime \prime }}\left( T_{ij},T_{ij^{\prime }}\right) \right| ^{2}-\left( {{\mathsf {E}}} \zeta _{i,J,2}\right) ^{2} \\&\ge \left\{ {{\mathsf {E}}}\left| S_{ill^{\prime \prime }}\right| ^{2}-{{\mathsf {E}}}\left| S_{ill^{\prime \prime },1}^{D_{n}}\right| ^{2}\right\} \frac{1}{4}c_{G,l^{\prime \prime }}^{2} {{\mathsf {E}}}\left\{ \sum _{j=1}^{N_{i}}B_{J}\left( T_{ij}\right) \right\} ^{4}-\mathcal {U}(1) \\&\ge \left\{ {{\mathsf {E}}}\left| S_{ill^{\prime \prime }}\right| ^{2}-{\scriptstyle {\mathcal {U}}}(1)\right\} \frac{1}{4} c_{G,l^{\prime \prime }}^{2}{{\mathsf {E}}}\left\{ \sum _{j=1}^{N_{i}}B_{J}^{4}\left( T_{ij}\right) \right\} -\mathcal {U}(1) \\&\ge \frac{1}{2}{{\mathsf {E}}}\left| S_{ill^{\prime \prime }}\right| ^{2}\frac{1}{4}c_{G,l^{\prime \prime }}^{2} {{\mathsf {E}}}N_{1}{{\mathsf {E}}}B_{J}^{4}\left( T_{ij}\right) -\mathcal {U}(1) \\&\ge c_{\zeta }{{\mathsf {E}}}\left| S_{ill^{\prime \prime }}\right| ^{2}h_{{\mathrm{s}}}^{-1}, \end{aligned}$$

and

$$\begin{aligned} {{\mathsf {E}}}\left| \zeta _{i,J,2}^{*}\right| ^{r}&= {{\mathsf {E}}}\left| \zeta _{i,J,2}-{{\mathsf {E}}}\left( \zeta _{i,J,2}\right) \right| ^{r}\le 2^{r-1}\left( {{\mathsf {E}}}\left| \zeta _{i,J,2}\right| ^{r}\!+\!\left| {{\mathsf {E}}} \left( \zeta _{i,J,2}\right) \right| ^{r}\right) \\&= 2^{r-1}\!\left\{ {{\mathsf {E}}}\left| S_{ill^{\prime \prime },2}^{D_{n}}\right| ^{r}{{\mathsf {E}}}\!\left| \sum _{j=1}^{N_{i}}\sum _{j^{\prime }=1}^{N_{i}}B_{J}\left( T_{ij}\right) B_{J}\left( T_{ij^{\prime }}\right) G_{l^{\prime \prime }}\left( T_{ij},T_{ij^{\prime }}\right) \right| ^{r}\!+\!\mathcal {U}(1)\right\} \\&\le 2^{r-1}\left[ \left( cD_{n}\right) ^{r-2}{{\mathsf {E}}} \left| S_{ill^{\prime \prime }}\right| ^{2}\left( 2C_{G,l^{\prime \prime }}\right) ^{r}{{\mathsf {E}}}\left\{ \sum _{j=1}^{N_{i}}B_{J}(T_{ij})\right\} ^{2r}+\mathcal {U}(1)\right] \\&\le 2^{r-1}\left[ \left( cD_{n}\right) ^{r-2}{{\mathsf {E}}} \left| S_{ill^{\prime \prime }}\right| ^{2}\left( 2C_{G,l^{\prime \prime }}\right) ^{r}\left( {{\mathsf {E}}}N_{1}^{2r}\right) C_{B}h_{ {\mathrm{s}}}^{1-r}+\mathcal {U}(1)\right] \\&\le 2^{r}\left( cD_{n}\right) ^{r-2}\left( 2C_{G,l^{\prime \prime }}\right) ^{r}c_{N}^{r}r!C_{B}h_{{\mathrm{s}}}^{2-r}c_{\zeta }^{-1} {{\mathsf {E}}}\left( \zeta _{i,J,2}^{*}\right) ^{2} \\&\le \left( C_{\zeta }D_{n}h_{{\mathrm{s}}}^{-1}\right) ^{r-2}r! {{\mathsf {E}}}\left( \zeta _{i,J,2}^{*}\right) ^{2}, \end{aligned}$$

which implies that \(\left\{ \zeta _{i,J,2}^{*}\right\} _{i=1}^{n}\) satisfies Cramér’s condition. Applying Lemma 1 to \( \sum _{i=1}^{n}\zeta _{i,J,2}^{*}\), for \(r>2\) and any large enough \( \delta >0\),

$$\begin{aligned}&P\left\{ \left| n^{-1}\sum _{i=1}^{n}\zeta _{i,J,2}^{*}\right| \ge \delta (nh_{{\mathrm{s}}})^{-1/2}(\log (n))^{1/2}\right\} \\&\quad \le 2\exp \left\{ \frac{-\delta ^{2}\log (n)}{4+2C_{\zeta }D_{n}h_{{\mathrm{s}}}^{-1}\delta \left( \log (n)\right) ^{1/2}n^{-1/2}h_{{\mathrm{s }}}^{1/2}}\right\} \le 2n^{-8}. \end{aligned}$$

Hence

$$\begin{aligned} \sum _{n=1}^{\infty }P\left\{ \sup _{J,l^{\prime \prime },l}\left| n^{-1}\sum _{i=1}^{n}\zeta _{i,J,2}^{*}\right| \ge \delta \left( nh_{ {\mathrm{s}}}\right) ^{-1/2}(\log (n))^{1/2}\right\} <\infty . \end{aligned}$$

Thus, \(\sup _{J,l^{\prime \prime },l}\left| n^{-1}\sum _{i=1}^{n}\zeta _{i,J,2}^{*}\right| =\mathcal {O}_{a.s.}\left\{ \left( nh_{{\mathrm{s}} }\right) ^{-1/2}(\log (n))^{1/2}\right\} \) as \(n\rightarrow \infty \) by the Borel–Cantelli lemma. Furthermore, we have

$$\begin{aligned} A_{n,\xi }&\le \sup _{J,l,l^{\prime \prime }}\left| n^{-1}\sum _{i=1}^{n}\zeta _{i,J,1}\right| +\sup _{J,l^{\prime \prime },l}\left| n^{-1}\sum _{i=1}^{n}\zeta _{i,J,2}^{*}\right| +\sup _{J,l^{\prime \prime },l}\left| {{\mathsf {E}}}\left( \zeta _{i,J,1}\right) \right| \\&= \mathcal {U}_{a.s.}\left( n^{-k}\right) +\mathcal {O}_{a.s.}\left\{ \left( nh_{{\mathrm{s}}}\right) ^{-1/2}(\log (n))^{1/2}\right\} +\mathcal {U}\left( D_{n}^{-\left( 1+\eta /4\right) }\right) \\&= \mathcal {O}_{a.s.}\left\{ \left( nh_{{\mathrm{s}}}\right) ^{-1/2}(\log (n))^{1/2}\right\} . \end{aligned}$$

The properties of \(R_{ij,\varepsilon ,J,l}\) are obtained similarly. \(\square \)

Next define two \(d\times d\) matrices

$$\begin{aligned}&\mathbf {\Gamma }_{\xi ,n}(t) =c_{J(t),n}^{-1}N_{{\mathrm{T}} }^{-2}\sum _{l^{\prime \prime }=1}^{d}\sum _{i=1}^{n}\sum _{k=1}^{\infty }\left\{ \sum _{j=1}^{N_{i}}B_{J(t)}(T_{ij})\phi _{k,l^{\prime \prime }}\left( T_{ij}\right) \right\} ^{2}X_{il^{\prime \prime }}^{2}\mathbf {X}_{i} \mathbf {X}_{i}^{\scriptstyle {\mathsf {T}}}, \\&\mathbf {\Gamma }_{\varepsilon ,n}(t) =c_{J(t),n}^{-1}N_{{\mathrm{T}} }^{-2}\sum _{i=1}^{n}\sum _{j=1}^{N_{i}}B_{J(t)}^{2}(T_{ij})\sigma ^{2}\left( T_{ij}\right) \mathbf {X}_{i}\mathbf {X}_{i}^{\scriptstyle {\mathsf {T}}}. \end{aligned}$$

Lemma 6

For any \(t\in \mathbb {R}\), the conditional covariance matrices of \(\hat{\varvec{\xi }}\left( t\right) \) and \(\hat{\varvec{ \varepsilon }}\left( t\right) \) on \(\left( T_{ij},N_{i},X_{il}\right) _{i=1,j=1,l=1}^{n,N_{i},d}\) are

$$\begin{aligned}&\mathbf {\Sigma }_{\xi ,n}(t)={{\mathsf {E}}}\left\{ \hat{\varvec{\xi }}\left( t\right) \hat{\varvec{\xi }}^{\scriptstyle {\mathsf {T}}}\left( t\right) \left| \left( T_{ij},N_{i},X_{il}\right) _{i=1,j=1,l=1}^{n,N_{i},d}\right. \right\} = \mathbf {H}^{-1}\mathbf {\Gamma }_{\xi ,n}(t)\mathbf {H}^{-1},\\&\mathbf {\Sigma }_{\varepsilon ,n}(t)={{\mathsf {E}}}\left\{ \hat{\varvec{\varepsilon }} \left( t\right) \hat{\varvec{\varepsilon }}^{\scriptstyle {\mathsf {T}}}\left( t\right) \left| \left( T_{ij},N_{i},X_{il}\right) _{i=1,j=1,l=1}^{n,N_{i},d}\right. \right\} =\mathbf {H}^{-1}\mathbf {\Gamma } _{\varepsilon ,n}(t)\mathbf {H}^{-1}, \end{aligned}$$

and with \(\mathbf {\Sigma }_{n}(t)\) defined in (7),

$$\begin{aligned} \sup _{t\in [0,1]}\left\| \left\{ \mathbf {\Sigma }_{\xi ,n}(t)+ \mathbf {\Sigma }_{\varepsilon ,n}(t)\right\} -\mathbf {\Sigma } _{n}(t)\right\| _{\infty }=\mathcal {O}_{a.s.}\left\{ n^{-3/2}h_{{\mathrm{s}}}^{-3/2}( \log (n))^{1/2}\right\} . \end{aligned}$$
(33)

Proof

Note that

$$\begin{aligned} \hat{\varvec{\xi }}\left( t\right) \hat{\varvec{\xi }}^{\scriptstyle { \mathsf {T}}}\left( t\right)&= c_{J(t),n}^{-1}\mathbf {H}^{-1}\left\{ \frac{1 }{N_{{\mathrm{T}}}^{2}}\sum _{i=1}^{n}\sum _{j=1}^{N_{i}}B_{J(t)}(T_{ij})X_{il} \sum _{l^{\prime \prime }=1}^{d}\sum _{k=1}^{\infty }\xi _{ik,l^{\prime \prime }}\phi _{k,l^{\prime \prime }}\left( T_{ij}\right) X_{il^{\prime \prime }}\right. \\&\quad \times \left. \sum _{i=1}^{n}\sum _{j=1}^{N_{i}}B_{J(t)}(T_{ij})X_{il^{\prime }}\sum _{l^{\prime \prime }=1}^{d}\sum _{k=1}^{\infty }\xi _{ik,l^{\prime \prime }}\phi _{k,l^{\prime \prime }}\left( T_{ij}\right) X_{il^{\prime \prime }}\right\} _{l,l^{\prime }=1}^{d}\mathbf {H}^{-1}. \end{aligned}$$

Thus,

$$\begin{aligned} \mathbf {\Sigma }_{\xi ,n}(t)&= {{\mathsf {E}}}\left\{ \hat{ \varvec{\xi }}\left( t\right) \hat{\varvec{\xi }}^{\scriptstyle { \mathsf {T}}}\left( t\right) \left| \left( T_{ij},N_{i},X_{il}\right) _{i=1,j=1,l=1}^{n,N_{i},d}\right. \right\} =c_{J(t),n}^{-1}\mathbf {H}^{-1} \\&\times \left[ N_{{\mathrm{T}}}^{-2}\sum _{l^{\prime \prime }=1}^{d}\sum _{i=1}^{n}\sum _{k=1}^{\infty }\left\{ \sum _{j=1}^{N_{i}}B_{J(t)}(T_{ij})\phi _{k,l^{\prime \prime }}\left( T_{ij}\right) \right\} ^{2}X_{il^{\prime \prime }}^{2}\mathbf {X}_{i}\mathbf {X }_{i}^{\scriptstyle {\mathsf {T}}}\right] \mathbf {H}^{-1} \\ \qquad \qquad&= \mathbf {H}^{-1}\mathbf {\Gamma }_{\xi ,n}(t)\mathbf {H}^{-1}. \end{aligned}$$

Similarly, we can derive the conditional covariance matrix of \(\hat{ \varvec{\varepsilon }}\left( t\right) \). Next let

$$\begin{aligned} \Psi _{ik,\xi ,J,l,l^{\prime },l^{\prime \prime }}&= \left\{ \sum _{j=1}^{N_{i}}B_{J}(T_{ij})\phi _{k,l^{\prime \prime }}\left( T_{ij}\right) \right\} ^{2}X_{il^{\prime \prime }}^{2}X_{il}X_{il^{\prime }},\\ \Psi _{ij,\varepsilon ,J,l,l^{\prime }}&= B_{J}^{2}(T_{ij})\sigma ^{2}\left( T_{ij}\right) X_{il}X_{il^{\prime }}. \end{aligned}$$

Similar to the proof of Lemma 5,

$$\begin{aligned} {{\mathsf {E}}}\left( \sum _{k=1}^{\infty }\Psi _{ik,\xi ,J,l,l^{\prime },l^{\prime \prime }}\right)&= c_{J,n}^{-1}{{\mathsf {E}}}\left( X_{il^{\prime \prime }}^{2}X_{il}X_{il^{\prime }}\right) \left[ \left( {{\mathsf {E}}}N_{1}\right) \int \nolimits _{\chi _{J}}G_{l^{\prime \prime }}\left( u,u\right) f\left( u\right) \mathrm{d}u\right. \\&\left. +{{\mathsf {E}}}\left\{ N_{1}(N_{1}-1)\right\} \int \nolimits _{\chi _{J}\times \chi _{J}}G_{l^{\prime \prime }}\left( u,v\right) f\left( u\right) f\left( v\right) \mathrm{d}u\mathrm{d}v\right] ,\\ {{\mathsf {E}}}\Psi _{ij,\varepsilon ,J,l,l^{\prime }}&= c_{J,n}^{-1} {{\mathsf {E}}}\left( X_{il}X_{il^{\prime }}\right) \int \nolimits _{\chi _{J}}\sigma ^{2}\left( u\right) f\left( u\right) \mathrm{d}u, \end{aligned}$$

and as \(n\rightarrow \infty \),

$$\begin{aligned}&\sup _{J,l,l^{\prime },l^{\prime \prime }}\left| n^{-1}\sum _{i=1}^{n}\sum _{k=1}^{\infty }\Psi _{ik,\xi ,J,l,l^{\prime },l^{\prime \prime }}-{{\mathsf {E}}}\left( \sum _{k=1}^{\infty }\Psi _{ik,\xi ,J,l,l^{\prime },l^{\prime \prime }}\right) \right| \\&\quad = \mathcal {O }_{a.s.}\left\{ \left( nh_{{\mathrm{s}}}\right) ^{-1/2}(\log (n))^{1/2}\right\} , \end{aligned}$$
$$\begin{aligned} \sup _{J,l,l^{\prime }}\left| N_{{\mathrm{T}}}^{-1}\sum _{i=1}^{n}\sum \limits _{j=1}^{N_{i}}\Psi _{ij,\varepsilon ,J,l,l^{\prime }}- {{\mathsf {E}}}\Psi _{ij,\varepsilon ,J,l,l^{\prime }}\right| = \mathcal {O}_{a.s.}\left\{ \left( nh_{{\mathrm{s}}}\right) ^{-1/2}(\log (n))^{1/2}\right\} . \end{aligned}$$

Furthermore,

$$\begin{aligned}&\sup _{J,l,l^{\prime },l^{\prime \prime }}\left| N_{T}^{-2}\sum \limits _{i=1}^{n}\sum \limits _{k=1}^{\infty }\Psi _{ik,\xi ,J,l,l^{\prime },l^{\prime \prime }}-n^{-1}\left( {{\mathsf {E}}} N_{1}\right) ^{-2}{{\mathsf {E}}}\left( \sum \limits _{k=1}^{\infty }\Psi _{ik,\xi ,J,l,l^{\prime },l^{\prime \prime }}\right) \right| \\&\qquad \le \sup _{J,l,l^{\prime },l^{\prime \prime }}n^{-1}\left( {{\mathsf {E}}}N_{1}\right) ^{-2}\left\{ \left| \left( \frac{n {{\mathsf {E}}}N_{1}}{N_{T}}\right) ^{2}-1\right| \left| n^{-1}\sum \limits _{i=1}^{n}\sum \limits _{k=1}^{\infty }\Psi _{ik,\xi ,J,l,l^{\prime },l^{\prime \prime }}\right| \right. \\&\qquad \quad \left. +\left| n^{-1}\sum \limits _{i=1}^{n}\sum \limits _{k=1}^{\infty }\Psi _{ik,\xi ,J,l,l^{\prime },l^{\prime \prime }}-{{\mathsf {E}}} \left( \sum \limits _{k=1}^{\infty }\Psi _{ik,\xi ,J,l,l^{\prime },l^{\prime \prime }}\right) \right| \right\} \\&\qquad =\mathcal {O}_{a.s.}\left\{ n^{-3/2}h_{{\mathrm{s}}}^{-1/2}(\log (n))^{1/2}\right\} , \end{aligned}$$

and

$$\begin{aligned}&\sup _{J,l,l^{\prime }}\left| N_{T}^{-2}\sum \limits _{i=1}^{n}\sum \limits _{j=1}^{N_{i}}\Psi _{ik,\varepsilon ,J,l,l^{\prime }}-\left( n{{\mathsf {E}}}N_{1}\right) ^{-1}{{\mathsf {E}}}\Psi _{ik,\varepsilon ,J,l,l^{\prime }}\right| \\&\qquad \le \sup _{J,l,l^{\prime }}\left( n{{\mathsf {E}}}N_{1}\right) ^{-1}\left\{ \left| \frac{n{{\mathsf {E}}}N_{1}}{N_{T}} -1\right| \left| N_{T}^{-1}\sum \limits _{i=1}^{n}\sum \limits _{j=1}^{N_{i}}\Psi _{ik,\varepsilon ,J,l,l^{\prime }}\right| \right. \\&\qquad \quad \left. +\left| N_{T}^{-1}\sum \limits _{i=1}^{n}\sum \limits _{j=1}^{N_{i}}\Psi _{ik,\varepsilon ,J,l,l^{\prime }}-{{\mathsf {E}}}\Psi _{ik,\varepsilon ,J,l,l^{\prime }}\right| \right\} \\&\qquad =\mathcal {O}_{a.s.}\left\{ n^{-3/2}h_{{\mathrm{s}}}^{-1/2}(\log (n))^{1/2}\right\} . \end{aligned}$$

Notice that

$$\begin{aligned}&\mathbf {\Sigma }_{n}(t)=\mathbf {H}^{-1}c_{J(t),n}^{-1}\left( n {{\mathsf {E}}}N_{1}\right) ^{-1}\\&\qquad \qquad \times \left\{ \left( {{\mathsf {E}}} N_{1}\right) ^{-1}{{\mathsf {E}}}\left( \sum _{l^{\prime \prime }=1}^{d}\sum _{k=1}^{\infty }\Psi _{ik,\xi ,J\left( t\right) ,l,l^{\prime },l^{\prime \prime }}\right) +{{\mathsf {E}}}\Psi _{ij,\varepsilon ,J\left( t\right) ,l,l^{\prime }}\right\} _{l,l^{\prime }=1}^{d}\mathbf {H}^{-1}, \\&\mathbf {\Sigma }_{\xi ,n}(t)+\mathbf {\Sigma }_{\varepsilon ,n}(t) \\&\quad =\mathbf {H}^{-1}c_{J(t),n}^{-1}N_{{\mathrm{T}}}^{-2}\left\{ \sum _{l^{\prime \prime }=1}^{d}\sum _{i=1}^{n}\sum _{k=1}^{\infty }\Psi _{ik,\xi ,J(t),l,l^{\prime },l^{\prime \prime }}\!+\!\sum _{i=1}^{n}\sum _{j=1}^{N_{i}}\Psi _{ij,\varepsilon ,J(t),l,l^{\prime }}\right\} _{l,l^{\prime }\!=\!1}^{d}\mathbf {H}^{-1}, \end{aligned}$$

and (35) implies \(\sup _{t\in \left[ 0,1\right] }\left| c_{J(t),n}\right| =\mathcal {O}\left( h_{{\mathrm{s}}}\right) \). Hence (33) holds. \(\square \)

Given \(\left( T_{ij},N_{i},X_{il}\right) _{i=1,j=1,l=1}^{n,N_{i},d}\), let \( \sigma _{\xi _{l},n}^{2}(t)\) and \(\sigma _{\varepsilon _{l},n}^{2}(t)\) be the conditional variances of \(\hat{\xi }_{l}(t)\) and \(\hat{\varepsilon } _{l}(t) \) defined in (38) and (39), respectively. Lemma 6 implies that

$$\begin{aligned} \sup _{t\in [0,1]}\left| \sigma _{\xi _{l},n}^{2}(t)+\sigma _{\varepsilon _{l},n}^{2}(t)-\sigma _{n,ll}^{2}(t)\right| =\mathcal {O} _{a.s.}\left\{ n^{-3/2}h_{{\mathrm{s}}}^{-3/2}(\log (n))^{1/2}\right\} . \end{aligned}$$
(34)

Lemma 7

Under Assumptions (A2)–(A6), for \(l=1,\ldots , d\), \(\eta _{l}(t)\) defined in (40) is a Gaussian process consisting of \(\left( N_{{\mathrm{s}} }+1\right) \) standard normal variables \(\left\{ \eta _{J,l}\right\} _{J=0}^{N_{{\mathrm{s}}}}\) such that \(\eta _{l}(t)=\eta _{J(t),l}\) for \(t\in \left[ 0,1\right] \), and there exists a constant \(C>0\) such that for large \( n \), \(\sup _{0\le J\ne J^{\prime }\le N_{{\mathrm{s}}}}\left| {{\mathsf {E}}}\eta _{J,l}\eta _{J^{\prime },l}\right| \le Ch_{{\mathrm{s}}}\).

Proof

For any fixed \(l=1,\ldots ,d\) and \(0\le J\le N_{{\mathrm{s}}}\), \(\mathcal {L}\left\{ \eta _{J,l}\left| \left( T_{ij},N_{i},X_{il}\right) _{i=1,j=1,l=1}^{n,N_{i},d}\right. \right\} =N\left( 0,1\right) \) by Assumption (A2), so \(\mathcal {L}\left\{ \eta _{J,l}\right\} =N\left( 0,1\right) \), for \(0\le J\le \) \(N_{{\mathrm{s}}}\).

Next we derive the upper bound for \(\sup _{0\le J\ne J^{\prime }\le N_{ {\mathrm{s}}}}\left| {{\mathsf {E}}}\eta _{J,l}\eta _{J^{\prime },l}\right| \). Let

$$\begin{aligned} \bar{R}_{\xi ,J(t),l}=N_{{\mathrm{T}}}^{-1}\sum _{l^{\prime \prime }=1}^{d}\sum _{i=1}^{n}\sum _{k=1}^{\infty }R_{ik,\xi ,J(t),l^{\prime \prime },l}^{2},\quad \bar{R}_{\varepsilon ,J(t),l}=N_{{\mathrm{T}} }^{-1}\sum _{i=1}^{n}\sum _{j=1}^{N_{i}}R_{ij,\varepsilon ,J(t),l}^{2}, \end{aligned}$$

then we have

$$\begin{aligned} \sigma _{\xi _{l},n}(t)&= \left\{ c_{J(t),n}^{-1}N_{{\mathrm{T}} }^{-2}\sum _{l^{\prime \prime }=1}^{d}\sum _{i=1}^{n}\sum _{k=1}^{\infty }R_{ik,\xi ,J(t),l^{\prime \prime },l}^{2}\right\} ^{1/2}=\left\{ c_{J(t),n}^{-1}N_{{\mathrm{T}}}^{-1}\bar{R}_{\xi ,J(t),l}\right\} ^{1/2},\\ \sigma _{\varepsilon _{l},n}(t)&= \left\{ c_{J(t),n}^{-1}N_{{\mathrm{T}} }^{-2}\sum _{i=1}^{n}\sum _{j=1}^{N_{i}}R_{ij,\varepsilon ,J(t),l}^{2}\right\} ^{1/2}=\left\{ c_{J(t),n}^{-1}N_{{\mathrm{T}}}^{-1}\bar{R}_{ \varepsilon ,J(t),l}\right\} ^{1/2}. \end{aligned}$$

For \(J\ne J^{\prime }\), by (31) and the definition of \(B_{J}\),

$$\begin{aligned} R_{ij,\varepsilon ,J,l}R_{ij,\varepsilon ,J^{\prime },l}=\left( \sum _{l^{\prime }=1}^{d}z_{ll^{\prime }}X_{il^{\prime }}\right) ^{2}B_{J}\left( T_{ij}\right) B_{J^{\prime }}\left( T_{ij}\right) \sigma ^{2}\left( T_{ij}\right) =0, \end{aligned}$$

along with the conditional independence of \(\hat{\xi }_{l}(t),\hat{\varepsilon }_{l}(t)\) on \(\left( T_{ij},N_{i},X_{il}\right) _{i=1,j=1,l=1}^{n,N_{i},d}\), and independence of \(\xi _{ik,l}\), \(T_{ij},N_{i}\), \(\left\{ X_{il}\right\} _{l=1}^{d}\), \(1\le j\le N_{i}\), \(1\le i\le n\), \(k=1,2,\ldots \),

$$\begin{aligned}&{{\mathsf {E}}}\left( \eta _{J,l}\eta _{J^{\prime },l}\right) = {{\mathsf {E}}}\left[ (\bar{R}_{\xi ,J,l}+\bar{R}_{ \varepsilon ,J,l})^{-1/2}(\bar{R}_{\xi ,J^{\prime },l}+\bar{R} _{\varepsilon ,J^{\prime },l})^{-1/2}\right. \\&\qquad \times N_{{\mathrm{T}}}^{-1}{{\mathsf {E}}}\left\{ \left( \sum _{l^{\prime \prime }=1}^{d}\sum _{i=1}^{n}\sum _{k=1}^{\infty }R_{ik,\xi ,J,l^{\prime \prime },l}\xi _{ik,l^{\prime \prime }}\right) \left( \sum _{l^{\prime \prime }=1}^{d}\sum _{i=1}^{n} \sum _{k=1}^{\infty }R_{ik,\xi ,J^{\prime },l^{\prime \prime },l}\xi _{ik,l^{\prime \prime }}\right) \right. \\&\qquad \left. \left. \left. +\left( \sum _{i=1}^{n}\sum _{j=1}^{N_{i}}R_{ij,\varepsilon ,J,l}\varepsilon _{ij}\right) \left( \sum _{i=1}^{n}\sum _{j=1}^{N_{i}}R_{ij,\varepsilon ,J^{\prime },l}\varepsilon _{ij}\right) \right| \left( T_{ij},N_{i},X_{il}\right) _{i=1,j=1,l=1}^{n,N_{i},d}\right\} \right] \\&\quad ={{\mathsf {E}}}C_{n,J,J^{\prime },l}, \end{aligned}$$

in which

$$\begin{aligned} C_{n,J,J^{\prime },l}&= (\bar{R}_{\xi ,J,l}+\bar{R}_{\varepsilon ,J,l})^{-1/2}( \bar{R}_{\xi ,J^{\prime },l}+\bar{R}_{\varepsilon ,J^{\prime },l})^{-1/2}\\&\times \left\{ N_{{\mathrm{T}}}^{-1}\sum _{l^{\prime \prime }=1}^{d}\sum _{i=1}^{n}\sum _{k=1}^{\infty }R_{ik,\xi ,J,l^{\prime \prime },l}R_{ik,\xi ,J^{\prime },l^{\prime \prime },l}\right\} . \end{aligned}$$

Note that according to definitions of \(R_{ik,\xi ,J,l^{\prime \prime },l},R_{ij,\varepsilon ,J,l}\), and Lemma 5, for \(0\le J\le N_{{\mathrm{s}}}\)

$$\begin{aligned}&\displaystyle \bar{R}_{\xi ,J(t),l}+\bar{R}_{\varepsilon ,J(t),l}\ge \bar{R} _{\varepsilon ,J(t),l}\ge ER_{ij,\varepsilon ,J,l}^{2}-A_{n,\varepsilon }\ge c_{R}-A_{n,\varepsilon },\\&\displaystyle P\left[ \,\inf _{0 \le J \ne J^{\prime } \le N_{{\mathrm{s}}}}\left\{ (\bar{R}_{\xi ,J,l}\!+\!\bar{R}_{\varepsilon ,J,l})(\bar{R}_{\xi ,J^{\prime },l}\!+\!\bar{R} _{\varepsilon ,J^{\prime },l})\right\} \! \!\ge \! \left( c_{R}-\delta \sqrt{\frac{ \log (n)}{nh_{{\mathrm{s}}}}}\right) ^{2}\right] \!\!\ge \! 1\!-\!2n^{-8}. \end{aligned}$$

Thus for large \(n\), with probability \(\ge 1-2n^{-8}\), the denominator of \( C_{n,J,J^{\prime },l}\) is uniformly greater than \(c_{R}^{2}/4\). On the other hand, we consider the numerator of \(C_{n,J,J^{\prime },l}\).

$$\begin{aligned}&{{\mathsf {E}}}\left( N_{{\mathrm{T}}}^{-1}\sum _{l^{\prime \prime }\!=\!1}^{d}\sum _{i=1}^{n}\sum _{k=1}^{\infty }R_{ik,\xi ,J,l^{\prime \prime },l}R_{ik,\xi ,J^{\prime },l^{\prime \prime },l}\right) \!=\! {{\mathsf {E}}}\left\{ N_{{\mathrm{T}}}^{-1}\sum _{l^{\prime \prime }=1}^{d}\sum _{i=1}^{n}\left( \sum _{l^{\prime }\!=\!1}^{d}z_{ll^{\prime }}X_{il^{\prime }}X_{il^{\prime \prime }}\right) ^{2}\right. \\&\quad \times \left. \! \left( \sum _{j=1}^{N_{i}}\sum _{j^{\prime }=1}^{N_{i}}B_{J}\left( T_{ij}\right) B_{J^{\prime }}\left( T_{ij^{\prime }}\right) G_{l^{\prime \prime }}\left( T_{ij},T_{ij^{\prime }}\right) \!\right) \! \right\} \!\sim h_{{\mathrm{s}}}. \end{aligned}$$

Applying Bernstein’s inequality, there exists \(C_{0}>0\) such that, for large \(n\),

$$\begin{aligned} P\left( \sup _{0\le J\ne J^{\prime }\le N_{{\mathrm{s}}}}\left| N_{{\mathrm{T}} }^{-1}\sum _{l^{\prime \prime }=1}^{d}\sum _{i=1}^{n}\sum _{k=1}^{\infty }R_{ik,\xi ,J,l^{\prime \prime },l}R_{ik,\xi ,J^{\prime },l^{\prime \prime },l}\right| \le C_{0}h_{{\mathrm{s}}}\right) \ge 1-2n^{-8}. \end{aligned}$$

Putting the above together, for large \(n\), \(C_{1}=C_{0}\left( c_{R}^{2}/4\right) ^{-1}\),

$$\begin{aligned} P\left( \sup _{0\le J\ne J^{\prime }\le N_{{\mathrm{s}}}}\left| C_{n,J,J^{\prime },l}\right| \le C_{1}h_{{\mathrm{s}}}\right) \ge 1-4n^{-8}. \end{aligned}$$

Note that as a continuous random variable, \(\sup _{0\le J\ne J^{\prime }\le N_{{\mathrm{s}}}}\left| C_{n,J,J^{\prime },l}\right| \in \left[ 0,1 \right] \,\), thus

$$\begin{aligned} {{\mathsf {E}}}\left( \sup _{0\le J\ne J^{\prime }\le N_{{\mathrm{s}} }}\left| C_{n,J,J^{\prime },l}\right| \right) =\int \nolimits _{0}^{1}P\left( \sup _{0\le J\ne J^{\prime }\le N_{{\mathrm{s}}}}\left| C_{n,J,J^{\prime },l}\right| >u\right) \mathrm{d}u. \end{aligned}$$

For large \(n\), \(C_{1}h_{{\mathrm{s}}}<1\) and then \({{\mathsf {E}}}\left( \sup _{0\le J\ne J^{\prime }\le N_{{\mathrm{s}}},l}\left| C_{n,J,J^{\prime }}\right| \right) \) is

$$\begin{aligned}&\int \nolimits _{0}^{C_{1}h_{{\mathrm{s}}}}P\left\{ \,\sup _{0\le J\ne J^{\prime }\le N_{ {\mathrm{s}}},l}\left| C_{n,J,J^{\prime },l}\right| \!>\!u\right\} \mathrm{d}u\!+\!\int \nolimits _{C_{1}h_{{\mathrm{s}}}}^{1}P\left\{ \sup _{0\le J \ne J^{\prime }\le N_{ {\mathrm{s}}},l}\left| C_{n,J,J^{\prime },l}\right| >u\right\} \mathrm{d}u \end{aligned}$$
$$\begin{aligned}&\le \int \nolimits _{0}^{C_{1}h_{{\mathrm{s}}}}1\mathrm{d}u+\int \nolimits _{C_{1}h_{{\mathrm{s}} }}^{1}4n^{-8}\mathrm{d}u\le C_{1}h_{{\mathrm{s}}}+4n^{-8}\le Ch_{{\mathrm{s}}} \end{aligned}$$

for some \(C>0\) and large enough \(n\). The lemma now follows from

$$\begin{aligned} \sup _{0\le J\ne J^{\prime }\le N_{{\mathrm{s}}}}\left| {{\mathsf {E}}}\left( C_{n,J,J^{\prime },l}\right) \right| \le {{\mathsf {E}}} \left( \sup _{0\le J\ne J^{\prime }\le N_{{\mathrm{s}}}}\left| C_{n,J,J^{\prime },l}\right| \right) \le Ch_{{\mathrm{s}}}. \end{aligned}$$

This completes the proof of the lemma. \(\square \)

Lemma 8

Under Assumptions (A2)–(A6), for \(\eta _{l}(t),\sigma _{n,ll}(t),l=1,\ldots , d\), defined in (40) and (7), one has \(\left| \sigma _{n,ll}(t)^{-1}\left\{ \hat{\xi }_{l}(t)+ \hat{\varepsilon }_{l}(t)\right\} -\eta _{l}(t)\right| =\left| r_{n,l}(t)-1\right| \left| \eta _{l}(t)\right| \), where \( r_{n,l}(t)=\sigma _{n,ll}^{-1}(t)\left\{ \sigma _{\xi _{l},n}^{2}(t)+\sigma _{\varepsilon _{l},n}^{2}(t)\right\} ^{1/2}\), and as \(n\rightarrow \infty \),

$$\begin{aligned} \sup _{t\in \left[ 0,1\right] }\left\{ a_{N_{{\mathrm{s}}}+1}\left| r_{n,l}(t)-1\right| \right\} =\mathcal {O}_{a.s.}\left\{ \left( nh_{{\mathrm{s}} }\right) ^{-1/2}(\log \left( N_{{\mathrm{s}}}+1\right) \log (n))^{1/2}\right\} . \end{aligned}$$

Proof

By Lemma 5, \(\sigma _{n,ll}^{2}(t)\) in (7) can be rewritten as

$$\begin{aligned}&\sigma _{n,ll}^{2}(t) =c_{J(t),n}^{-1}\left( n{{\mathsf {E}}} N_{1}\right) ^{-1}\left\{ \left( {{\mathsf {E}}}N_{1}\right) ^{-1}\sum _{l^{\prime \prime }=1}^{d}{{\mathsf {E}}}\left( \sum _{k=1}^{\infty }R_{ik,\xi ,J(t),l^{\prime \prime },l}^{2}\right) + {{\mathsf {E}}}R_{ij,\varepsilon ,J(t),l}^{2}\right\} \\&\qquad \quad \!\! \sim n^{-1}h_{{\mathrm{s}}}^{-1}. \end{aligned}$$

Hence, according to (34) and (10),

$$\begin{aligned} \sup _{t\in \left[ 0,1\right] }\left\{ a_{N_{{\mathrm{s}}}+1} \left| r_{n,l}(t)-1\right| \right\}&= \sup _{t\in \left[ 0,1\right] }\left\{ a_{N_{{\mathrm{s}}}+1}\left| \sigma _{n,ll}^{-1}(t) \left\{ \sigma _{\xi _{l},n}^{2}(t)+\sigma _{\varepsilon _{l},n}^{2}(t)\right\} ^{1/2}-1\right| \right\} \\&\le \sup _{t\in \left[ 0,1\right] }\left\{ a_{N_{{\mathrm{s}}}+1} \left| \sigma _{n,ll}^{-2}(t)\left\{ \sigma _{\xi _{l},n}^{2}(t)+\sigma _{\varepsilon _{l},n}^{2}(t)\right\} -1\right| \right\} \\&= \sup _{t\in \left[ 0,1\right] }\left\{ a_{N_{{\mathrm{s}}}+1} \sigma _{n,ll}^{-2}(t)\left| \sigma _{\xi _{l},n}^{2}(t)+\sigma _{\varepsilon _{l},n}^{2}(t)-\sigma _{n,ll}^{2}(t)\right| \right\} \\&= \mathcal {O}_{a.s.}\left\{ \left( nh_{{\mathrm{s}}}\right) ^{-1/2}( \log \left( N_{{\mathrm{s}}}+1\right) \log (n))^{1/2}\right\} . \end{aligned}$$

This completes the proof. \(\square \)

1.3 A.3 Proofs of Propositions 1– 4

Proof of Proposition 1

By Assumption (A3) on the continuity of functions \(\phi _{k,l}(t)\), \(\sigma ^{2}(t)\) and \(f(t)\) on \(\left[ 0,1\right] \) and Assumption (A4), for any \(t,u\in \left[ 0,1\right] \) satisfying \(\left| t-u\right| \le h_{{\mathrm{s}}}\),

$$\begin{aligned} \left| G_{l}(t,t)-G_{l}(u,u)\right| \le \sum _{k=1}^{\infty }\left| \phi _{k,l}^{2}(t)-\phi _{k,l}^{2}(u)\right| \le 2\sum _{k=1}^{\infty }\left\| \phi _{k,l}\right\| _{\infty } \omega \left( \phi _{k,l},h_{{\mathrm{s}}}\right) \le Ch_{{\mathrm{s}}}^{r}. \end{aligned}$$

Furthermore,

$$\begin{aligned} \left| \int \nolimits _{{\chi _{J(t)}}}\left\{ G_{l}(t,t)f(t)-G_{l}(u,u)f\left( u\right) \right\} \mathrm{d}u\right| \le Ch_{{\mathrm{s}}}^{1+r}=\mathcal {O}\left( h_{{\mathrm{s}}}^{1+r}\right) , \end{aligned}$$
$$\begin{aligned} \left| \int \nolimits _{\chi _{J(t)}\times \chi _{J(t)}}\left\{ G_{l}(t,t)f^{2}(t)-G_{l}\left( u,v\right) f\left( u\right) f\left( v\right) \right\} \mathrm{d}u\mathrm{d}v\right| \le Ch_{{\mathrm{s}}}^{2+r}=\mathcal {O}\left( h_{{\mathrm{ s}}}^{2+r}\right) , \end{aligned}$$
$$\begin{aligned} \left| \int \nolimits _{\chi _{J(t)}}\left\{ \sigma ^{2}(t) f(t)-\sigma ^{2}\left( u\right) f\left( u\right) \right\} \mathrm{d}u\right| \le Ch_{{\mathrm{s}}}^{1+r}= \mathcal {O}\left( h_{{\mathrm{s}}}^{1+r}\right) . \end{aligned}$$

According to the definition of \(C_{J,n}\) in (6),

$$\begin{aligned} C_{J,n}=\int \nolimits _{[\upsilon _{J},\upsilon _{J+1}]}f(x)\mathrm{d}x=f(\upsilon _{J})h_{{\mathrm{s}} }+\int \nolimits _{[\upsilon _{J},\upsilon _{J+1}]} \{f(x)-f(\upsilon _{J})\}\mathrm{d}x, \end{aligned}$$
(35)

thus, \(|C_{J,n}-f(\upsilon _{J})h_{{\mathrm{s}}}|\le w(f,h_{{\mathrm{s}}})h_{{\mathrm{s}} }\) for all \(J=0,\ldots ,N_{{\mathrm{s}}}\). Therefore,

$$\begin{aligned} \mathbf {\Gamma }_{n}(t)&= \left\{ f(t)h_{{\mathrm{s}}}+\mathcal {U}\left( h_{ {\mathrm{s}}}^{1+r}\right) \right\} ^{-2}\left( n{{\mathsf {E}}} N_{1}\right) ^{-1}{{\mathsf {E}}}\left[ \left\{ \sigma _{Y}^{2}\left( t,\mathbf {X}\right) f\left( t\right) h_{{\mathrm{s}}}+\mathcal {U}_{p}\left( h_{ {\mathrm{s}}}^{1+r}\right) \right. \right. \\&\left. \left. \quad +\frac{{{\mathsf {E}}}\left\{ N_{1}(N_{1}-1)\right\} }{ {{\mathsf {E}}}N_{1}}\sum _{l=1}^{d}X_{l}^{2}G_{l}\left( t,t\right) f^{2}\left( t\right) h_{{\mathrm{s}}}^{2}+\mathcal {U}_{p}\left( h_{{\mathrm{s}} }^{2+r}\right) \right\} \mathbf {XX}^{\scriptstyle {\mathsf {T}}}\right] \\&= {{\mathsf {E}}}\left[ \mathbf {XX}^{\scriptstyle {\mathsf {T}}}\sigma _{Y}^{2}\left( t,\mathbf {X}\right) \left\{ f(t)h_{{\mathrm{s}}}n {{\mathsf {E}}}N_{1}\right\} ^{-1}\left\{ 1+\frac{{{\mathsf {E}}} \left\{ N_{1}(N_{1}-1)\right\} }{{{\mathsf {E}}}N_{1}}\right. \right. \\&\quad \left. \left. \times \frac{\sum _{l=1}^{d}X_{l}^{2}G_{l}\left( t,t\right) f\left( t\right) h_{{\mathrm{s}}}}{\sigma _{Y}^{2}\left( t,\mathbf {X}\right) } \right\} \left\{ 1+\mathcal {U}_{p}\left( h_{{\mathrm{s}}}^{r}\right) \right\} \right] =\tilde{\mathbf {\Gamma }}_{n}(t)+\mathcal {U}\left( n^{-1}h_{{\mathrm{s}} }^{r-1}\right) , \end{aligned}$$

establishing the proposition. \(\square \)

Proof of Proposition 2

The result follows from standard theory of kernel and spline smoothing, as in Wang and Yang (2009), thus omitted. \(\square \)

Proof of Proposition 3

According to the result on page 149 of de Boor (2001), there exist functions \(g_{l}\in G^{(-1)}\left[ 0,1\right] \) that satisfies \(\left\| m_{l}-g_{l}\right\| _{\infty }=\mathcal {O}\left( h_{{\mathrm{s}}}\right) \) for \(l=1,\ldots ,d\). By the definition of \(\tilde{m}_{l}\left( t\right) \) in ( 22),

$$\begin{aligned} \tilde{\varvec{m}}(t)=\left( \tilde{m}_{1}(t),\ldots ,\tilde{m} _{d}(t)\right) ^{\scriptstyle {\mathsf {T}}}=c_{J(t),n}^{-1/2}\left( \tilde{ \gamma }_{J(t),1},\ldots ,\tilde{\gamma }_{J(t),d}\right) ^{\scriptstyle { \mathsf {T}}}=c_{J(t),n}^{-1/2}\tilde{\mathbf {\gamma }}_{J(t)}, \end{aligned}$$

where \(\tilde{\mathbf {\gamma }}_{J}=\hat{\mathbf {{V}}}_{J}^{-1}\left\{ N_{ {\mathrm{T}}}^{-1}\sum \nolimits _{i=1}^{n}\sum \nolimits _{j=1}^{N_{i}}B_{J}(T_{ij})X_{il}\sum \nolimits _{l^{\prime }=1}^{d}m_{l^{\prime }}(T_{ij})X_{il^{\prime }}\right\} _{l=1}^{d}\) for \(\hat{\mathbf {{V}}}_{J}\) defined in (18).

Let \(\tilde{\varvec{g}}(t)=(\tilde{g}_{1}\left( t\right) ,\ldots ,\tilde{g} _{d}\left( t\right) )^{\scriptstyle {\mathsf {T}}}\), then \(\tilde{\mathbf {m}} _{l}\left( t\right) -\tilde{\mathbf {g}}_{l}\left( t\right) \) equals to

$$\begin{aligned} c_{J(t),n}^{-1/2}\hat{\mathbf {V}}_{J(t)}^{-1}\left[ \frac{1}{N_{{\mathrm{T}}}} \sum _{i=1}^{n}\sum _{j=1}^{N_{i}}B_{J(t)}(T_{ij})X_{il}\sum \limits _{l^{\prime }=1}^{d}\left\{ m_{l^{\prime }}(T_{ij})-g_{l^{\prime }}(T_{ij})\right\} X_{il^{\prime }}\right] _{l=1}^{d}. \end{aligned}$$

Observing that \(\tilde{g}_{l}\equiv g_{l}\) as \(g_{l}\in G^{(-1)}\left[ 0,1 \right] \), there is a decomposition similar to (24), \( \tilde{m}_{l}\left( t\right) =\tilde{m}_{l}\left( t\right) -\tilde{g} _{l}\left( t\right) +g_{l}\left( t\right) \), \(l=1,\ldots ,d\).

By (35), \(\sup _{t\in \left[ 0,1\right] }\left| c_{J(t),n}\right| =\mathcal {O}\left( h_{{\mathrm{s}}}\right) \). Next \( {{\mathsf {E}}}|B_{J}(T_{ij})|=c_{J,n}^{-1/2}\int b_{J}(x)f(x)\mathrm{d}x \sim h_{{\mathrm{s}}}^{1/2}\), thus \(\sup _{t\in \left[ 0,1\right] }\left| B_{J(t)}(T_{ij})\right| =\mathcal {O}_{p}(h_{{\mathrm{s}}}^{1/2})\). Then it is easy to show that \(\left\| \tilde{m}_{l}-\tilde{g}_{l}\right\| _{\infty }=\mathcal {O}_{p}\left( h_{{\mathrm{s}}}^{-1/2}h_{{\mathrm{s}}}^{1/2}h_{ {\mathrm{s}}}\right) =\mathcal {O}_{p}\left( h_{{\mathrm{s}}}\right) \). Hence, for \( l=1,\ldots ,d\),

$$\begin{aligned} \left\| \tilde{m}_{l}-m_{l}\right\| _{\infty }\le \left\| \tilde{m} _{l}-\tilde{g}_{l}\right\| _{\infty }+\left\| m_{l}-g_{l}\right\| _{\infty }=\mathcal {O}_{p}\left( h_{{\mathrm{s}}}\right) , \end{aligned}$$

which completes the proof. \(\square \)

Note that \(B_{J}(t)\equiv b_{J}c_{J,n}^{-1/2}\), \(t\in \left[ 0,1\right] \), so the terms \(\tilde{\xi }_{l}(t)\) and \(\tilde{\varepsilon }_{l}(t)\), \( l=1,\ldots ,d\), defined in (23) are

$$\begin{aligned} \tilde{\varvec{\xi }}(t)&= \left( \tilde{\xi }_{1}(t),\ldots ,\tilde{\xi } _{d}(t)\right) ^{\scriptstyle {\mathsf {T}}}=c_{J(t),n}^{-1/2}\left( \tilde{ \alpha }_{J(t),1},\ldots ,\tilde{\alpha }_{J(t),d}\right) ^{\scriptstyle { \mathsf {T}}}=c_{J(t),n}^{-1/2}\tilde{\mathbf {\varvec{\alpha } }}_{J(t)}, \quad \end{aligned}$$
(36)
$$\begin{aligned} \tilde{\varvec{\varepsilon }}(t)&= \left( \tilde{\varepsilon } _{1}(t),\ldots ,\tilde{\varepsilon }_{d}(t)\right) ^{\scriptstyle {\mathsf {T}} }=c_{J(t),n}^{-1/2}\left( \tilde{\theta }_{J(t),1},\ldots ,\tilde{\theta } _{J(t),d}\right) ^{\scriptstyle {\mathsf {T}}}=c_{J(t),n}^{-1/2}\tilde{\mathbf { \varvec{\theta } }}_{J(t)}, \end{aligned}$$
(37)

where

$$\begin{aligned} \tilde{\mathbf {\alpha }}_{J}&= \hat{\mathbf {{V}}}_{J}^{-1}\left\{ N_{{\mathrm{T}} }^{-1}\sum _{i=1}^{n}\sum _{j=1}^{N_{i}}B_{J}(T_{ij})X_{il}\sum _{l^{\prime \prime }=1}^{d}\sum _{k=1}^{\infty }\xi _{ik,l^{\prime \prime }}\phi _{k,l^{\prime \prime }}\left( T_{ij}\right) X_{il^{\prime \prime }}\right\} _{l=1}^{d}, \\ \tilde{\mathbf {\theta }}_{J}&= \hat{\mathbf {{V}}}_{J}^{-1}\left\{ N_{{\mathrm{T}} }^{-1}\sum _{i=1}^{n}\sum _{j=1}^{N_{i}}B_{J}(T_{ij})X_{il}\sigma \left( T_{ij}\right) \varepsilon _{ij}\right\} _{l=1}^{d}. \end{aligned}$$

According to Lemma 3, the inverse of the random matrix \(\hat{\mathbf {V}}_{J}\) can be approximated by that of a deterministic matrix \(\mathbf {H}={{\mathsf {E}}}(\mathbf {XX}^{\scriptstyle {\mathsf {T}}})\). Substituting \(\hat{\mathbf {V}}_{J}\) with \(\mathbf {H}\) in (36) and (37), we define the random vectors

$$\begin{aligned} \hat{\varvec{\xi }}(t)&= c_{J(t),n}^{-1/2}\mathbf {H}^{-1}\left\{ \frac{1 }{N_{{\mathrm{T}}}}\sum _{i=1}^{n}\sum \limits _{j=1}^{N_{i}}B_{J(t)}(T_{ij})X_{il} \sum _{l^{\prime \prime }=1}^{d}\sum _{k=1}^{\infty }\xi _{ik,l^{\prime \prime }}\phi _{k,l^{\prime \prime }}\left( T_{ij}\right) X_{il^{\prime \prime }}\right\} _{l=1}^{d}\!\!, \end{aligned}$$
(38)
$$\begin{aligned} \hat{\varvec{\varepsilon }}(t)&= c_{J(t),n}^{-1/2}\mathbf {H} ^{-1}\left\{ \frac{1}{N_{{\mathrm{T}}}}\sum _{i=1}^{n}\sum \limits _{j=1}^{N_{i}}B_{J(t)}(T_{ij})X_{il}\sigma \left( T_{ij}\right) \varepsilon _{ij}\right\} _{l=1}^{d}\!\!. \end{aligned}$$
(39)

Proof of Proposition 4

Given \(\left( T_{ij},N_{i},X_{il}\right) _{i=1,j=1,l=1}^{n,N_{i},d}\), let \(\sigma _{\xi _{l},n}^{2}(t)\) and \(\sigma _{\varepsilon _{l},n}^{2}(t)\) be the conditional variances of \(\hat{\xi }_{l}(t)\) and \(\hat{\varepsilon }_{l}(t) \) defined in ( 38) and (39), respectively. Define

$$\begin{aligned} \eta _{l}(t)=\left\{ \sigma _{\xi _{l},n}^{2}(t)+\sigma _{\varepsilon _{l},n}^{2}(t)\right\} ^{-1/2}\left\{ \hat{\xi }_{l}(t)+\hat{\varepsilon } _{l}(t)\right\} . \end{aligned}$$
(40)

By Lemma 7, \(\eta _{l}(t)\) is a Gaussian process consisting of \( \left( N_{{\mathrm{s}}}+1\right) \) standard normal variables \(\left\{ \eta _{J,l}\right\} _{J=0}^{N_{{\mathrm{s}}}}\) such that \(\eta _{l}(t)=\eta _{J(t),l}\) for \(t\in \left[ 0,1\right] \). Thus, for any \(\tau \in \mathbb {R}\),

$$\begin{aligned}&P\left( \sup _{t\in \left[ 0,1\right] }\left| \eta _{l}(t)\right| \le \tau /a_{N_{{\mathrm{s}}}\!+\!1}\!+\!b_{N_{{\mathrm{s}}}\!+\!1}\right) \\&\quad = P\left( |\max \{\eta _{0,l},\dots ,\eta _{N_{{\mathrm{s}}},l}\}|\le \tau /a_{N_{{\mathrm{s}}}\!+\!1}\!+\!b_{N_{ {\mathrm{s}}}+1}\right) \!. \end{aligned}$$

By Theorem 1.5.3 in Leadbetter et al. (1983), if \( \xi _{0},\dots ,\xi _{N_{{\mathrm{s}}}}\) are i.i.d. standard normal r.v.’s, then for \( \tau \in \mathbb {R}\)

$$\begin{aligned} P\left( |\max \{\xi _{0},\dots ,\xi _{N_{{\mathrm{s}}}}\}|\le \tau /a_{N_{{\mathrm{s}} }}+b_{N_{{\mathrm{s}}}})\rightarrow \exp (-2\mathrm{e}^{-\tau }\right) . \end{aligned}$$

Next by Lemma 11.1.2 in Leadbetter et al. (1983),

$$\begin{aligned}&P\left( |\max \{\eta _{0,l},\dots ,\eta _{N_{{\mathrm{s}}},l}\}|\le \tau /a_{N_{ {\mathrm{s}}}+1}+b_{N_{{\mathrm{s}}}+1}\right) \\&\qquad \quad -P\left( |\max \{\xi _{0},\dots ,\xi _{N_{ {\mathrm{s}}}}\}|\le \tau /a_{N_{{\mathrm{s}}}+1}+b_{N_{{\mathrm{s}}}+1}\right) \\&\quad \le \frac{4}{2\pi }\sum _{0\le J<J^\prime \le N_{{\mathrm{s}}}}\!\!| {{\mathsf {E}}}\eta _{J,l}\eta _{J^{\prime },l}|(1-| {{\mathsf {E}}}\eta _{J,l}\eta _{J^{\prime },l}|^{2})^{-1/2}\exp \left\{ \frac{-(\tau /a_{N_{{\mathrm{s}}}+1}+b_{N_{{\mathrm{s}}}+1})^2}{1+{{\mathsf {E}}}\eta _{J,l}\eta _{J^{\prime },l}}\right\} \!. \end{aligned}$$

According to Lemma 7, there exists a constant \(C>0\) such that \( \sup _{0\le J\ne J^{\prime }\le N_{{\mathrm{s}}}} \left| {{\mathsf {E}}}\eta _{J,l}\eta _{J^{\prime },l}\right| \le Ch_{{\mathrm{s}}}\) for large \(n \). Thus, as \(n\rightarrow \infty \),

$$\begin{aligned}&P\left( |\max \{\eta _{0,l},\dots ,\eta _{N_{{\mathrm{s}}},l}\}|\le \tau /a_{N_{{\mathrm{ s}}}+1}+b_{N_{{\mathrm{s}}}+1}\right) \\&\quad -P\left( |\max \{\xi _{0},\dots ,\xi _{N_{{\mathrm{s}} }}\}|\le \tau /a_{N_{{\mathrm{s}}}+1}+b_{N_{{\mathrm{s}}}+1}\right) \rightarrow 0. \end{aligned}$$

Therefore, for any \(\tau \in \mathbb {R}\),

$$\begin{aligned} \lim \limits _{n\rightarrow \infty }P\left( \sup _{t\in \left[ 0,1\right] }\left| \eta _{l}(t)\right| \le \tau /a_{N_{{\mathrm{s}}}+1}+b_{N_{ {\mathrm{s}}}+1}\right) =\exp \left( -2\mathrm{e}^{-\tau }\right) . \end{aligned}$$
(41)

By Lemma 8, we have

$$\begin{aligned}&a_{N_{{\mathrm{s}}}+1}\left( \sup _{t\in \left[ 0,1\right] }\sigma _{n,ll}^{-1}(t)\left| \hat{\xi _{l}}(t)+\hat{\varepsilon } _{l}(t)\right| -\sup _{t\in \left[ 0,1\right] }\left| \eta _{l}(t)\right| \right) \\&\quad =\mathcal {O}_{p}\left\{ \log \left( N_{{\mathrm{s}}}+1\right) \left( nh_{{\mathrm{s}}}\right) ^{-1/2}(\log (n))^{1/2}\right\} ={ \scriptstyle {\mathcal {O}}}_{p}\left( 1\right) . \end{aligned}$$

On the other hand, Lemma 4 ensures that

$$\begin{aligned}&a_{N_{{\mathrm{s}}}+1}\left( \sup _{t\in \left[ 0,1\right] }\sigma _{n,ll}^{-1}(t)\left| \tilde{\xi }_{l}(t)+\tilde{\varepsilon } _{l}(t)\right| -\sup _{t\in \left[ 0,1\right] }\sigma _{n,ll}^{-1}(t)\left| \hat{\xi _{l}}(t)+\hat{\varepsilon } _{l}(t)\right| \right) \\&\quad =\mathcal {O}_{p}\left\{ (\log \left( N_{{\mathrm{s}}}+1\right) nh_{{\mathrm{s}}})^{1/2}n^{-1}h_{{\mathrm{s}}}^{-3/2}\log (n)\right\} \\&\quad =\mathcal {O}_{p}\left\{ n^{-1/2}h_{{\mathrm{s}}}^{-1}(\log \left( N_{{\mathrm{s}}}+1\right) )^{1/2}\log (n)\right\} ={\scriptstyle { \mathcal {O}}}_{p}\left( 1\right) . \end{aligned}$$

Then the proof follows from (41) and Slutsky’s Theorem. \(\square \)

1.4 A.4 Proof of Theorem 1

For any vector \(\mathbf {a}=\left( a_{1},\ldots ,a_{d}\right) ^{\scriptstyle { \mathsf {T}}}\in \mathbb {R}^{d}\), \({{\mathsf {E}}}\left[ \sum _{l=1}^{d}a_{l}\left\{ \hat{\xi }_{l}\left( t\right) +\hat{\varepsilon } _{l}\left( t\right) \right\} \right] =0.\) Using the conditional independence of \(\hat{\xi }_{l}(t)\), \(\hat{\varepsilon }_{l}(t) \) on \(\left( T_{ij},N_{i},X_{il}\right) _{i=1,j=1,l=1}^{n,N_{i},d}\), we have

$$\begin{aligned}&\mathop {\text{ Var }}\left[ \left. \sum _{l=1}^{d}a_{l}\left\{ \hat{\xi } _{l}\left( t\right) +\hat{\varepsilon }_{l}\left( t\right) \right\} \right| \left( T_{ij},N_{i},X_{il}\right) _{j=1,i=1,l=1}^{N_{i},n,d} \right] \\&\quad =\sum _{l=1}^{d}\sum _{l^{\prime }=1}^{d}a_{l}a_{l^{\prime }} {{\mathsf {E}}}\left\{ \hat{\xi }_{l}\left( t\right) \hat{\xi } _{l^{\prime }}\left( t\right) +\hat{\varepsilon }_{l}\left( t\right) \hat{ \varepsilon }_{l^{\prime }}\left( t\right) \left| \left( T_{ij},N_{i},X_{il}\right) _{j=1,i=1,l=1}^{N_{i},n,d}\right. \right\} \\&\quad =\mathbf {a}^{\scriptstyle {\mathsf {T}}}\left\{ \mathbf {\Sigma }_{\xi ,n}(t)+ \mathbf {\Sigma }_{\varepsilon ,n}(t)\right\} \mathbf {a} ~. \end{aligned}$$

Meanwhile, Assumption (A2) entails that for any \(t\in \left[ 0,1\right] \), given \(\left( T_{ij},N_{i},X_{il}\right) _{j=1,i=1,l=1}^{N_{i},n,d}\), the conditional distribution of \(\left[ \mathbf {a}^{\scriptstyle {\mathsf {T}} }\left\{ \mathbf {\Sigma }_{\xi ,n}(t)\!+\!\mathbf {\Sigma }_{\varepsilon ,n}(t)\right\} \mathbf {a}\right] ^{-1/2}\sum _{l=1}^{d}a_{l}\left\{ \hat{\xi } _{l}\left( t\right) +\hat{\varepsilon }_{l}\left( t\right) \right\} \) is a standard normal distribution. So we have

$$\begin{aligned} \left[ \mathbf {a}^{\scriptstyle {\mathsf {T}}}\left\{ \mathbf {\Sigma }_{\xi ,n}(t)+\mathbf {\Sigma }_{\varepsilon ,n}(t)\right\} \mathbf {a}\right] ^{-1/2}\sum _{l=1}^{d}a_{l}\left\{ \hat{\xi }_{l}\left( t\right) +\hat{ \varepsilon }_{l}\left( t\right) \right\} \sim N\left( 0,1\right) . \end{aligned}$$

Using (33), we have as \(n\rightarrow \infty \)

$$\begin{aligned} \left[ \mathbf {a}^{\scriptstyle {\mathsf {T}}}\mathbf {\Sigma }_{n}(t)\mathbf {a} \right] ^{-1/2}\sum _{l=1}^{d}a_{l}\left\{ \hat{\xi }_{l}\left( t\right) +\hat{ \varepsilon }_{l}\left( t\right) \right\} \overset{\mathcal {L}}{ \longrightarrow }N\left( 0,1\right) . \end{aligned}$$

Therefore, \(\left[ \mathbf {a}^{\scriptstyle {\mathsf {T}}}\mathbf {\Sigma } _{n}(t)\mathbf {a}\right] ^{-1/2}\sum _{l=1}^{d}a_{l}\left\{ \hat{m}_{l}\left( t\right) -m_{l}\left( t\right) \right\} \overset{\mathcal {L}}{\longrightarrow }N\left( 0,1\right) \) follows from (24), Proposition 3, Lemma 4 and Slutsky’s Theorem. Applying Cramér–Wold’s device, we obtain \(\mathbf {\Sigma } _{n}^{-1/2}\left( t\right) \left\{ \hat{m}_{l}\left( t\right) -m_{l}\left( t\right) \right\} _{l=1}^{d}\overset{\mathcal {L}}{\longrightarrow }N\left( \mathbf {0},\mathbf {I}_{d\times d}\right) \), and consequently, \(\sigma _{n,ll}^{-1}(t)\left\{ \hat{m}_{l}(t)-m_{l}(t)\right\} \overset{\mathcal {L}}{ \longrightarrow } N\left( 0,1\right) \) for any \(t\in \left[ 0,1\right] \) and \( l=1,\ldots ,d.\) \(\square \)

1.5 A.5 Proof of Theorem 2

By Proposition 3, \(\left\| \tilde{m} _{l}-m_{l}\right\| _{\infty }=\mathcal {O}_{p}\left( h_{{\mathrm{s}}}\right) \) , \(l=1,\ldots , d\), so

$$\begin{aligned} a_{N_{{\mathrm{s}}}\!+\!1}\left\{ \sup _{t\in \left[ 0,1\right] }\sigma _{n,ll}^{-1}(t)\left| \tilde{m}_{l}(t)-m_{l}(t)\right| \right\} \!=\! \mathcal {O}_{p}\left\{ \left( nh_{{\mathrm{s}}}\right) ^{1/2}(\log \left( N_{{\mathrm{s}}}\!+\!1\right) )^{1/2}h_{{\mathrm{s}}}\right\} \!=\!{\scriptstyle { \mathcal {O}}}_{p}\left( 1\right) . \end{aligned}$$

According to (24), it is easy to show that

$$\begin{aligned} a_{N_{{\mathrm{s}}}+1}\left\{ \sup _{t\in \left[ 0,1\right] }\sigma _{n,ll}^{-1}(t)\left| \hat{m}_{l}(t)-m_{l}(t)\right| -\sup _{t\in \left[ 0,1\right] }\sigma _{n,ll}^{-1}(t)\left| \tilde{\xi }_{l}(t)+ \tilde{\varepsilon }_{l}(t)\right| \right\} ={\scriptstyle {\mathcal {O}}} _{p}\left( 1\right) . \end{aligned}$$

Meanwhile, Proposition 4 entails that, for any \(\tau \in \mathbb {R}\),

$$\begin{aligned} \lim _{n\rightarrow \infty }P\left\{ a_{N_{{\mathrm{s}}}+1}\left( \sup _{t\in \left[ 0,1\right] }\sigma _{n,ll}^{-1}(t)\left| \tilde{\xi }_{l}(t)+ \tilde{\varepsilon }_{l}(t)\right| -b_{N_{{\mathrm{s}}}+1}\right) \le \tau \right\} =\exp \left( -2\mathrm{e}^{-\tau }\right) . \end{aligned}$$

Thus Slutsky’s Theorem implies that

$$\begin{aligned} \lim _{n\rightarrow \infty }P\left\{ a_{N_{{\mathrm{s}}}+1}\left( \sup _{t\in \left[ 0,1\right] }\sigma _{n,ll}^{-1}(t)\left| \hat{m} _{l}(t)-m_{l}(t)\right| -b_{N_{{\mathrm{s}}}+1}\right) \le \tau \right\} =\exp \left( -2\mathrm{e}^{-\tau }\right) . \end{aligned}$$

Let \(\tau =-\log \left\{ -\frac{1}{2}\log \left( 1-\alpha \right) \right\} \), the definition of \(Q_{N_{{\mathrm{s}}}+1}\left( \alpha \right) \) in (9) entails

$$\begin{aligned}&\lim _{n\rightarrow \infty }P\left\{ m_{l}(t)\in \hat{m}_{l}(t)\pm \sigma _{n,ll}(t)Q_{N_{{\mathrm{s}}}+1}\left( \alpha \right) ,\forall t\in \left[ 0,1 \right] \right\} \\&\quad =\lim _{n\rightarrow \infty }P\left\{ \sup _{t\in \left[ 0,1\right] }\sigma _{n,ll}^{-1}(t)\left| \hat{m}_{l}(t)-m_{l}(t)\right| \le Q_{N_{ {\mathrm{s}}}+1}\left( \alpha \right) \right\} =1-\alpha . \end{aligned}$$

Theorem 2 is proved. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, L., Wang, L., Härdle, W.K. et al. A simultaneous confidence corridor for varying coefficient regression with sparse functional data. TEST 23, 806–843 (2014). https://doi.org/10.1007/s11749-014-0392-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-014-0392-4

Keywords

Mathematics Subject Classification (2000)

Navigation