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Abstract
NB-ARC proteins are critical to effector-triggered immunity and play important roles in effector recognition and signal trans-
duction in healthy plant growth. However, their primary protein traits, functions and roles remain incompletely understood in 
Rehmannia glutinosa. Here, we identified 45 NB-ARC protein sequences from the protein sequence sets and transcriptome 
of R. glutinosa. The CC type was the main one, accounting for 84.44% of these sequences. The most conserved motif was a 
288 aa ADP-binding sequence. This motif belongs to the disease-resistance proteins. Differential expression of 36 expressed 
NB-ARC​ genes revealed that NB-ARC​ genes were rarely expressed 30 days after planting and were frequently expressed 
approximately 60 days after planting. To further understand the function of NB-ARC in replanted R. glutinosa, the genes 
encoding NB-ARC domains were profiled using qRT-PCR under the different stress states involved in the formation of con-
secutive monoculture problems. The results showed that NB-ARC​ genes might play a role in the formation of R. glutinosa 
consecutive monoculture problems. This study is the first to identify NB-ARC genes in R. glutinosa and to reveal their roles 
in consecutive monoculture problems in R. glutinosa. These findings provide insights into the mechanism of formation of 
consecutive monoculture problems.
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Introduction

Consecutive monoculture is the dominant agricultural prac-
tice in modern agricultural production due to limited land 
resources (Lin et al. 2016). However, this mode typically 
triggers the formation of consecutive monoculture problems, 
leading to crop yield reduction, quality deterioration, poor 
growth status, and disease aggravation. The formation of 
consecutive monoculture problems involves complex inter-
actions among soil-borne diseases, allelochemicals and soil 
quality deterioration (Zhang and Lin 2009). Consecutive 
monoculture problems are widespread in crop plant produc-
tion, especially in medicinal crops.

Rehmannia glutinosa, which belongs to Scrophulari-
aceae, is an important Chinese medicinal herb. R. gluti-
nosa plants that are cultivated for consecutive years on the 
same land typically exhibit negative characteristics, includ-
ing abnormal growth and death during production. Nota-
bly, these effects affect only R. glutinosa and can persist 
for 8–10 years before R. glutinosa can be replanted (Wen 
et al. 2001). Given these typical characteristics, R. glutinosa 
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is an ideal material for studying the mechanism of forma-
tion of consecutive monoculture problems (Li et al. 2015; 
Wen et al. 2002). Previous studies have indicated that some 
biotic and abiotic stress factors involved in the formation 
of consecutive monoculture problems in R. glutinosa (Tian 
et al. 2017; Wu et al. 2015). In consecutive monocultures 
of R. glutinosa, root exudates selectively attract pathogenic 
microbes, which colonize the root surface in consecutive 
monocultures of R. glutinosa. This effect ultimately causes 
the proliferation of harmful microorganisms in the rhizos-
phere and induces adverse chemotaxis from “bacterial” to 
“fungal” types (Wu et al. 2013, 2015, 2016; Zhang et al. 
2011; Zhang and Lin 2009). A specific pathogenic Fusarium 
oxysporum screened from rhizosphere soil microorganisms 
has been identified as Fusarium oxysporum f.sp. R. gluti-
nosa. The strain can specifically invade R. glutinosa and 
this has been successfully simulated in the laboratory (Wu 
et al. 2016). Previous studies also screened and identified 
allelochemicals, such as ferulic acid, from the exudates of 
rhizosphere in R. glutinosa, which successfully induced the 
characteristics of consecutive monoculture problems in pot 
experiments (Zhang et al. 2016). Approximately 70 percent 
of consecutive monoculture problems can in fact be attrib-
uted to soil-borne diseases (Sun et al. 2008). The results 
suggested that the imbalance of the rhizosphere microecol-
ogy probably is one important cause for the formation of 
consecutive monoculture problems in R. glutinosa. Mod-
ern plant immunology and molecular biology studies have 
showed that pathogen infection is closely related to the false 
response of host plant immune defence system (Smith et al. 
2014; Kushalappa et al. 2016). Previous studies have dem-
onstrated that core biological processes, including DNA 
replication, RNA transcription and protein translation, are 
significantly damaged in consecutive monocultures of R. 
glutinosa. The expression of some genes is closely related 
to fibre root formation and replant disease. In addition, Ca2+, 
MAPK and ethylene signals and chromatin modification are 
specifically up-regulated in consecutive monocultures of R. 
glutinosa (Li et al. 2013; Wu et al. 2016; Yang et al. 2013, 
2014, 2015). Therefore, we infer that the immune defence 
system in R. glutinosa could respond incorrectly to consecu-
tive monoculture stress to aggravate abnormal growth and 
even lead to death.

The plant immune system consists of PTI (pathogen-asso-
ciated molecular pattern (PAMP)-triggered immunity) and 
ETI (effector-triggered immunity) (Jones and Dangl 2006; 
Stael et al. 2015). The pattern recognition receptors (PRRs) 
of PTI systems act on the cytomembrane and can recog-
nize conserved PAMP features of different species or gen-
era. The receptors of ETI systems located in the cytoplasm 
can specifically and robustly respond to pathogen effectors 
through NB-LRR (nucleotide-binding-leucine-rich repeat) 
domain-mediated perception (Bigeard et al. 2015; Dodds 

and Rathjen 2010; Groll et al. 2008; Marone et al. 2013; 
Thomma et al. 2011). NB-LRR mainly consists of a car-
boxy-terminal LRR domain, NB-ARC (nucleotide-binding 
adaptor shared by APAF-1, R proteins, and CED-4) and 
amino-terminal TIR (toll/interleukin-1 receptor/coiled coil) 
or CC domains. LRRs are important for effector recogni-
tion, and TIR/CC transmits signals of pathogen invasion to 
downstream proteins, including EDS (enhanced disease sus-
ceptibility) and NDR (non-race-specific disease resistance), 
to induce a hypersensitive response (Ma et al. 2013). In the 
plant immune response to effectors derived from invading 
pathogens, NB-LRR domians determine whether the ETI 
can be properly initiated (Gassmann and Bhattacharjee 
2012; Pajerowska-Mukhtar et al. 2013). NB-ARC proteins 
are encoded by numerous polymorphic R family genes (Yue 
et al. 2011), whereas the protein properties of NB-ARC and 
their response mechanisms in consecutive monocultures of 
R. glutinosa remain largely unknown. Here, we identified 
R. glutinosa NB-ARC proteins and analysed their differen-
tial expression profiling at different developmental stages. 
The stress factors involved in the formation of consecutive 
monoculture problems in R. glutinosa were used to assess 
the roles of NB-ARC proteins in consecutive monoculture 
problems. These findings provide valuable information for 
understanding the roles of NB-ARC in the formation of con-
secutive monoculture problems.

Materials and methods

Plant materials and treatments

Field experiments with R. glutinosa ‘Wen 85-5’ were 
arranged at the Wenxian Agricultural Institute in Jiaozuo 
City, Henan Province, China. One group of seedlings was 
grown in a field where R. glutinosa had not been planted 
for more than 10 years. Another group was grown in a field 
where the same cultivar had been grown the previous year 
(planted on April 20 and harvested on November 27, 2012). 
For convenience of description, we refer to the former group 
as first-year plants (FP) and the latter group as second-year 
plants (SP). The tuberous roots of R. glutinosa used for cul-
tivation in two groups were planted with the density of 30 
cm × 30 cm on April 10, 2013. A total of 2000 plants were 
contained in each group. Fields were maintained with locally 
normal production conditions. The fresh tuberous roots were 
collected, respectively, at 30, 60, 90, 120, and 150 days after 
planting, and six plants were taken at each time. Each plant 
was regarded as a biological replicate. All samples men-
tioned above were immediately frozen in liquid nitrogen and 
stored at − 80 °C until use.

Pot experiments were performed under controlled condi-
tions (28 °C, 10,000 lx) at the Institute of GAP for Chinese 



Acta Physiologiae Plantarum (2018) 40:95	

1 3

Page 3 of 14  95

Medicinal Materials, Fujian Agriculture and Forestry Uni-
versity. R. glutinosa “wen 85-5” was grown in plastic pots of 
25 cm diameter and 22 cm height. Four treatments, including 
first-year planting (FP), second-year planting (SP), ferulic 
acid chemigation (FA), and invasion of Fusarium oxysporum 
[FO, identified as Fusarium oxysporum f.sp. R. glutinosa 
(Wu et al. 2016)], were conducted, and each treatment was 
assessed in ten pots. The soil used in the FP, FA and FO 
treatments was collected from land where R. glutinosa had 
not been planted for at least the last 10 years, and the soil 
used in the SP treatment was collected from land where R. 
glutinosa had been planted in the previous year. Each treat-
ment was conducted as follows. For the FA treatment, FA 
solution was used for watering until a negative appearance 
was noted that was similar to the appearance caused by con-
secutive monoculture problems. In total, 60 ml of FA solu-
tion was poured each time in a pot, and the final concentra-
tion was 10 mmol L−1 (the FA concentration gradient was 
from 0.3 to 10 mmol L−1 in 30 days). For the FO treatment, 
F. oxysporum strains were isolated from the infected R. glu-
tinosa tuberous roots and cultured in 100 ml of potato dex-
trose broth (PDB) in 250 ml Erlenmeyer flasks for 4–5 days 
at 24 °C, without shaking and in darkness. The mycelia were 
filtered from the PDB and washed three times with ster-
ile, distilled water. Conidial suspensions of F. oxysporum 
f.sp. R. glutinosa were prepared from 5-day-old cultures in 
PDB, followed by filtering through four layers of cheesecloth 
and diluting to 1 × 106 conidia/ml with sterilized water. FO 
suspension solution was irrigated until disease symptoms 
appeared. The amount of FO solution added to a pot was 
60 ml each time. The FP and SP treatments were irrigated 
with the same volume plain water (60 ml) and assessed 
60 days after planting. Each treatment was photographed, 
and fresh tuberous roots were then collected and stored at 
− 80 °C after being frozen by liquid nitrogen for qRT-PCR.

Identification of R. glutinosa NB‑ARC proteins

To identify R. glutinosa-specific NB-ARC proteins, HMM 
files (PF00931) that characterized the conserved properties 
of the NB-ARC structure were extracted from the Pfam 31.0 
database (http://pfam.xfam.org/). HMMER suite (v3.1b2, 
Finn et al. 2015) was used to identify candidate NB-ARC 
proteins in the R. glutinosa database translated from the R. 
glutinosa transcriptome based on the HMM files. NB-ARC 
proteins were further analysed using TMHMM (http://www.
cbs.dtu.dk/servi​ces/TMHMM​/) and PSORT software (http://
psort​.hgc.jp/form.html) to predict the transmembrane and 
subcellular localization, respectively. The proteins located 
in the cytoplasm with loss of transmembrane structure were 
identified as candidate NB-ARC proteins. The genes encod-
ing NB-ARC proteins were simultaneously screened from 
the R. glutinosa transcriptome database (Li et al. 2017). 

NB-ARC functions were further confirmed based on anno-
tation information from the Nr (NCBI non-redundant pro-
tein sequences, http://www.ncbi.nlm.nih.gov/), GO (Gene 
Ontology, http://www.geneo​ntolo​gy.org/) and KEGG (Kyoto 
Encyclopedia of Genes and Genomes, http://www.genom​
e.jp/kegg/) databases.

Protein structure and phylogenetic analysis

The conserved motifs of R. glutinosa NB-ARC proteins 
were identified using the online SMART tool (Marchler-
Bauer et al. 2017) and depicted using IBS 1.0.1 software 
(Liu et al. 2015). The secondary structures of the NB-ARC 
proteins were identified using DNAMAN8.0 software (Lyn-
non BioSoft, Quebec, Canada). The tertiary structures of the 
NB-ARC proteins were analysed based on homology mod-
elling methods using the online SWISS-MODEL software 
(http://www.swiss​model​.expas​y.org/) and were displayed 
using SPDBV 4.10 software (Guex and Peitsch 1997). Phy-
logenetic relationships among candidate NB-ARC proteins 
were constructed based on the neighbour-joining method 
and bootstrap method (1000 replicates) using MEGA6.06 
software (Tamura et al. 2013).

Expression profile analysis of NB‑ARC​ genes

Total RNA in field experiment was extracted from the tuber-
ous root using TRIzol reagent (Invitrogen) according to the 
manufacturer’s protocol and treated with DNase I (Qiagen) to 
degrade any possible DNA contamination. 6 µg total RNA was 
treated with oligo-(dT) magnetic beads to purify the mRNA. 
The mRNA was then fragmented into short (100–200 bp) 
pieces using moderate divalent cations under high-temperature 
conditions. These fragments were reverse transcribed into the 
cDNA first strand with a random hexamer primer, followed by 
cDNA second strand generation using DNA polymerase I. The 
cDNA fragments were enriched using PCR amplification and 
then purified using magnetic beads. The library products were 
sequenced on the Illumina HiSeq™ 2000 (Beijing Genom-
ics Institute, Shenzhen, China). After quality control (QC) 
and further filtration, the clean reads were mapped onto the 
RNA-Seq reference sequence using the BWA software (Kob-
ayashi et al. 2014). Sequence alignment was controlled in no 
more than 2 bp mismatches. The gene expression level was 
calculated using the RPKM (Reads Per Kilobase of transcript 
per Million mapped reads) method (Mortazavi et al. 2008). 
The threshold of “FDR (False Discovery Rate) ≤ 0.001 and 
the absolute value of log2

Ratio (Ratio = RPKM of SP/RPKM 
of FP) ≥ 1” was used to assess the significance of the gene 
expression differences. In 45 NB-ARC​ genes aligned from the 
R. glutinosa transcriptome library, 36 differentially expressed 
NB-ARC​ genes were used in the following studies based on 
the expression profiling. A differential expression heatmap of 

http://pfam.xfam.org/
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identified genes was analysed via the hierarchical clustering 
method using MeV 4.9.0 tool (Saeed et al. 2006).

RNA isolation and reverse transcription

Total RNA in pot experiment was extracted from different 
samples of fresh R. glutinosa. Approximately 50 mg of tissue 
was collected and subjected to RNA extraction using TRI-
zol reagent (Invitrogen). Total RNA samples were treated 
extensively with RNase-free DNase I (Invitrogen) to remove 
any contaminating genomic DNA. RNA concentration was 
measured using a spectrophotometer, and RNA integrity was 
ensured via analysis on a 1.5% (w) agarose gel. First strand 
cDNA was synthesized in a 20 µL of mixture containing 2 µg 
of total RNA, 2 µL of 50 µM oligo-(dT)12–18 primers, 1 µL 
of RNase inhibitor and 1 µL of 40 U/µL M-MLV reverse tran-
scriptase (Invitrogen). The mixture was incubated at 37 °C for 
50 min and then heated to 70 °C for 15 min.

qRT‑PCR analysis

For qRT-PCR, NB-ARC PCR primers (Additional file 1) 
were designed using Beacon designer 8.0 software (Premier 
Biosoft International, Palo Alto, CA, USA). A fragment of 
gene encoding 18S rRNA (Additional file 1) was used as a 
reference. PCR was performed using a Bio-Rad IQ5 instru-
ment (Bio-Rad, Hercules, CA, USA) based on SYBR Green to 
detect transcript abundance. Each 25 µL of reaction contained 
0.5 µM of each primer and approximately 0.5 U enzymes, 
cDNA and SYBR Green. Negative control reactions contained 
no cDNA. Fivefold dilutions of the cDNA template were tested 
under identical conditions. The PCR programme included an 
initial denaturing step (95 °C for 10 s); 40 cycles at 95 °C 
for 5 s, 60 °C for 10 s, and 72 °C for 15 s; and a final stage at 
55–95 °C to determine the dissociation curves of the ampli-
fied products. All reactions were at least replicated for three 
times. The data were analysed using Bio-Rad IQ5 Optical Sys-
tem Software v2.1. The data were normalized on the basis of 
the 18S rRNA threshold cycle (Ct) value. The samples in the 
FP treatment were used as controls, and their normalized Ct 
values were set to 1. The relative gene expression of the SP, 
FA and FO was calculated using the2−∆∆CT method (Livak 
and Schmittgen 2001). The expression data of the different 
treatments were statistically analysed with SAS 9.1 statisti-
cal software using one-factor ANOVA and Duncan multiple 
comparisons.

Results

Identification of the NB‑ARC protein family in R. 
glutinosa

A set of 68 NB-ARC protein sequences were separated 
from the R. glutinosa protein sequence sets obtained from 
our previous study using the Hidden Markov model method 
(Li et al. 2017). Subsequently, 45 sequences were further 
confirmed in Nr and KEGG using blastp. To assess the 
NB-ARC homology with other species, R. glutinosa NB-
ARC sequences were aligned using the NCBI database, 
resulting in 19 sequences highly homologous (38–89%) 
to Sesamum indicum, 21 sequences highly homologous 
(51–85%) to Erythranthe guttata, and 5 sequences highly 
homologous (45–59%) to Nicotiana tomentosiformis, Cap-
sicum annuum, Arachis ipaensis, Nicotiana tabacum and 
Cynara cardunculus (Table 1). Further functional annota-
tion on basis of KEGG and GO analyses of the candidate 
NB-LRR proteins revealed that all sequences were resist-
ance proteins involved in the interaction between plant and 
pathogen (Additional files 2, 3).

Protein structure analysis of the NB‑ARC sequences 
in R. glutinosa

In general, NB-ARC proteins in the ETI system typically 
lack a transmembrane region. To assess the subcellular 
localization of 45 NB-ARC sequences, the correspond-
ing transmembrane trait was predicted using the online 
TMHMM server 2.0 and PSORT software. As a result, all 
candidate NB-LRR proteins were located in the cytoplasm 
and lacked a transmembrane region.

According to the prediction, the conserved domains of 
the 45 NB-ARC sequences and their lengths are presented 
in Fig. 1a. In total, 45 NB-ARC sequences contained at 
least one conserved domain of LRR, NB-ARC or TIR/CC. 
Of these, seven proteins, including CL343.Contig1_All, 
CL4723.Contig1_All, CL6508.Contig2_All, CL6748.
Contig1_All, CL7829.Contig2_All, Unigene907_All and 
Unigene12365_All, contained NB-ARC, LRR and TIR/
CC. NB-ARC sequences with a CC type amino terminal 
were the main type, accounting for 84.44% of the total 
NB-ARC sequences. Moreover, the 45 NB-ARC sequence 
lengths ranged from 195 to 1310 aa.

Based on the conserved motifs in the NB-ARC domain 
(Additional file 4), an ADP (adenosine diphosphate)-bind-
ing element of 288 aa in length was the most conserved 
motif, containing 12 α-helixes and 4 β-strands. Of these 
structures, 4 parallel β-strands located at Ser24–Gly30, 
Leu55–Val61, Leu105–Asp109, and Ile135–Thr139 in the 
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Table 1   NB-ARC family proteins identified in the R. glutinosa transcriptome

Gene ID Amino acid 
length (aa)

Blast results (query cover, E value, identities, accession no., description, [species])

CL343.Contig1_All 1310 100%, 0, 79%, XP_011089052.1, disease resistance protein At3g14460 [Sesamum indicum]
CL698.Contig4_All 476 100%, 9E−166, 59%, XP_012841530.1, late blight resistance protein homologue R1A-3 [Erythranthe 

guttata]
CL788.Contig4_All 760 99%, 0, 64%, XP_012854094.1, disease resistance protein RGA4 [Erythranthe guttata]
CL1151.Contig3_All 626 100%, 0, 60%, XP_012857645.1, late blight resistance protein homologue R1A-3 [Erythranthe guttata]
CL1654.Contig1_All 854 99%, 0, 59%, XP_012853175.1, late blight resistance protein homologue R1A-3 [Erythranthe guttata]
CL3079.Contig2_All 489 100%, 1E−179, 59%, XP_012853244.1, late blight resistance protein homologue R1A-10 isoform X2 

[Erythranthe guttata]
CL4021.Contig1_All 519 100%, 2E−162, 50%, XP_009617577.1, disease resistance protein At5g66900 [Nicotiana tomentosiformis]
CL4439.Contig1_All 233 100%, 2E−110, 71%, XP_012854177.1, disease resistance protein RGA1 [Erythranthe guttata]
CL4447.Contig1_All 862 99%, 0, 88%, XP_011080937.1, uncharacterized protein LOC105164077 [Sesamum indicum]
CL4723.Contig1_All 888 100%, 0, 85%, XP_012855653.1, late blight resistance protein homologue R1A-10 [Erythranthe guttata]
CL6508.Contig2_All 891 100%, 0, 88%, XP_011070823.1, late blight resistance protein homologue R1B-17 [Sesamum indicum]
CL6748.Contig1_All 811 100%, 0, 63%, XP_012849297.1, disease resistance protein RPM1-like isoform X1 [Erythranthe guttata]
CL7604.Contig1_All 306 100%, 2E−119, 60%, XP_011098143.1, disease resistance protein RPM1-like [Sesamum indicum]
CL7774.Contig1_All 867 100%, 0, 59%, XP_012829248.1, late blight resistance protein homologue R1A-3 [Erythranthe guttata]
CL7829.Contig2_All 918 100%, 0, 88%, XP_011073815.1, disease resistance protein At1g50180 [Sesamum indicum]
CL8221.Contig1_All 268 98%, 3E−51, 38%, XP_011078622.1, disease resistance protein At1g50180 [Sesamum indicum]
CL8782.Contig1_All 610 100%, 0, 59%, XP_012855535.1, late blight resistance protein homologue R1A-10 [Erythranthe guttata]
CL9919.Contig1_All 721 99%, 0, 65%, XP_012853175.1, late blight resistance protein homologue R1A-3 [Erythranthe guttata]
CL10007.Contig4_All 195 100%, 4E−68, 61%, XP_012856179.1, late blight resistance protein homologue R1B-16 [Erythranthe 

guttata]
Unigene283_All 327 100%, 0, 85%, XP_011070551.1, late blight resistance protein homologue R1B-14 [Sesamum indicum]
Unigene907_All 935 100%, 0, 73%, XP_011072600.1, disease resistance protein RGA2-like [Sesamum indicum]
Unigene2179_All 443 100%, 2E−172, 55%, XP_016547057.1, disease resistance protein TAO1-like isoform X2 [Capsicum 

annuum]
Unigene2278_All 539 100%, 9E−180, 51%, XP_012833863.1, disease resistance RPP13-like protein 3 [Erythranthe guttata]
Unigene4299_All 217 100%, 5E−102, 76%, XP_011078960.1, disease resistance protein RGA1 [Sesamum indicum]
Unigene4345_All 535 100%, 0, 81%, XP_011080807.1, disease resistance RPP13-like protein 2 [Sesamum indicum]
Unigene4363_All 901 99%, 0, 59%, XP_011091324.1, disease resistance protein At1g58602 [Sesamum indicum]
Unigene6172_All 247 98%, 2E−122, 73%, XP_011083960.1, late blight resistance protein homologue R1A-10 isoform X2 

[Sesamum indicum]
Unigene6303_All 226 100%, 3E−107, 72%, XP_011089745.1, late blight resistance protein homologue R1A-10 [Sesamum 

indicum]
Unigene7113_All 722 99%, 0, 56%, XP_012829191.1, late blight resistance protein homologue R1A-10 [Erythranthe guttata]
Unigene7646_All 626 99%, 0, 59%, XP_012857645.1, late blight resistance protein homologue R1A-3 [Erythranthe guttata]
Unigene7647_All 619 100%, 0, 61%, XP_012857645.1, late blight resistance protein homologue R1A-3 [Erythranthe guttata]
Unigene7657_All 794 100%, 0, 58%, XP_012829191.1, late blight resistance protein homologue R1A-10 [Erythranthe guttata]
Unigene9801_All 435 100%, 5E−124, 45%, XP_016178697.1, disease resistance protein RGA3 [Arachis ipaensis]
Unigene10109_All 334 100%, 5E−118, 56%, XP_012847840.1, late blight resistance protein homologue R1A-3 [Erythranthe 

guttata]
Unigene12365_All 1183 99%, 0, 63%, XP_011088145.1, disease resistance protein RGA3 [Sesamum indicum]
Unigene12477_All 820 100%, 0, 89%, XP_011083793.1, disease resistance protein At4g33300 [Sesamum indicum]
Unigene13465_All 873 100%, 0, 68%, XP_011079215.1, disease resistance RPP13-like protein 1 [Sesamum indicum]
Unigene13744_All 251 99%, 5E−98, 59%, XP_016512278.1, disease resistance protein TAO1-like [Nicotiana tabacum]
Unigene17274_All 424 100%, 0, 83%, XP_012850882.1, disease resistance protein At4g27220 [Erythranthe guttata]
Unigene21268_All 252 100%, 1E−86, 60%, XP_011072560.1, late blight resistance protein homologue R1A-3 [Sesamum indi-

cum]
Unigene23508_All 220 100%, 1E−49, 45%, KVH92583.1, disease resistance protein [Cynara cardunculus var. scolymus]
Unigene25475_All 889 99%, 0, 53%, XP_011071970.1, late blight resistance protein homologue R1A-10 [Sesamum indicum]
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NB-ARC domain sequence enclosed the core barrel struc-
ture of the subunit (Fig. 1b).

Phylogenetic analysis of the R. glutinosa NB‑ARC 
proteins

To identify the NB-ARC sequence domains of R. glutinosa 
and their homology with Arabidopsis thaliana, an unrooted 
phylogenetic tree was constructed using sequence alignment 
via the neighbour-joining method. In total, the 45 candi-
date sequences were divided into 6 groups. Of these, group 
VI included 25 NB-ARC proteins with relatively complete 
ARC motifs. Groups I, II, IV and V consisted of six, two, 
four and seven proteins, respectively. Group III had only one 
sequence (Fig. 2a). These data were consistent with stable 
binding of 12 LRR monomers, which require longer NB-
ARC domains (Ma et al. 2013).

Rehmannia glutinosa NB-ARC sequences were also 
aligned with Arabidopsis thaliana sequences. Eighteen 
homologous NB-ARC protein sequences were present 
in R. glutinosa. Highly conserved motif traits and similar 
protein functions were presented according to the node 
on the phylogenetic tree. Of these proteins, six NB-ARC 
proteins, Unigene17274_All, Unigene2179_All, CL7829.
Contig2_All, CL343.Contig1_All, Unigene13465_All, and 
Unigene9801_All, in R. glutinosa exhibited high similarity 
with six NB-ARC proteins, AT4G27220.1, AT4G27190.1, 
AT4G09360.1, AT3G14470.1, AT3G14460.1 and 
AT1G50180.1, in Arabidopsis thaliana (Fig. 2b).

Expression of NB‑ARC​ genes at different 
developmental stages in FP and SP R. glutinosa

The gene expression pattern can provide important clues 
regarding gene function. To clarify the response character-
istics of NB-ARC​ genes in consecutive monocultures of R. 
glutinosa, 45 NB-ARC​ genes were matched from the R. glu-
tinosa differential expression profiles using RNA-Seq. The 
expression profiles were evaluated using Euclidean distance 
hierarchical clustering (Fig. 3a, b, additional file 5).

According to the R. glutinosa NB-ARC​ gene expression 
profiles in response to two treatments of FP and SP, 36 
expressed genes could be divided into three groups (Fig. 3a, 
additional file 5). Groups I (Unigene12477_All and Unigene 

907_All) and II (Unigene 25475_All and CL4439.Contig1_
All) contained two genes respectively, all of which presented 
higher expression abundance in comparison to other group 
during entire growth period of FP and SP treatments. The 
other genes belonged to group III had the characteristics 
of lower sustained expression ability. Most of the NB-ARC​ 
genes were up-regulated in consecutive monocultures of R. 
glutinosa (Fig. 3b, additional file 5). The results indicated 
that consecutive monoculture stress mediates increased 
expression of NB-ARC​ genes in the ETI system.

Among the NB-ARC​ genes expressed at the SP1-SP5 
developmental stages in consecutive monocultures of R. 
glutinosa, the up-regulated genes accounted for 8.33, 91.67, 
38.89, 66.67 and 97.22%, respectively. NB-ARC​ genes were 
rarely expressed in the SP1 stage (1–30 days after planting) 
under consecutive monoculture stress, whereas NB-ARC​ 
genes were frequently expressed in the SP2 (31–60 days 
after planting) and SP5 (121–150 days after planting) stages. 
The changes were consistent with normal growth at the SP1 
stage and large-scale plant deaths during the SP2 stage in 
consecutive monocultures of R. glutinosa.

Therefore, the SP2 might represent a critical develop-
mental stage in which the immune resistance balance maybe 
altered in response to pathogen invasion, and the seedling 
stage may represent a key stage for the formation of the 
immune resistance system.

Expression profiles of NB‑ARC​ genes under different 
stress factors involved in the formation 
of consecutive monoculture problems

To identify NB-ARC​ genes involved in the formation of con-
secutive monoculture problems in response to different stress 
factors, an in vitro test experiment was conducted under SP, 
FA, and FO stresses. Expression profiles of different stress 
factors are presented in Fig. 4. Pearson’s correlation coef-
ficients are shown in Table 2.

Compared with the FP control, each treatment caused an 
abnormal growth phenomenon (Fig. 4a). For different stress 
factors, FO and FA treatments significantly increased the 
expression of nine NB-ARC​ genes, and five of the nine NB-
ARC​ genes exhibited increased expression upon SP treat-
ment compared with FA (Fig. 4b). Significant positive cor-
relation was only between FO and SP treatments (Table 2). 

Table 1   (continued)

Gene ID Amino acid 
length (aa)

Blast results (query cover, E value, identities, accession no., description, [species])

Unigene25774_All 722 99%, 0, 56%, XP_012829191.1, late blight resistance protein homologue R1A-10 [Erythranthe guttata]
Unigene26135_All 877 99%, 0, 51%, XP_011091064.1, late blight resistance protein homologue R1B-16 [Sesamum indicum]
Unigene26472_All 375 100%, 7E−163, 63%, XP_012856361.1, late blight resistance protein homologue R1B-17 [Erythranthe 

guttata]
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Fig. 1   Schematic diagram of the NB-ARC protein conserved domain 
in R. glutinosa. a Four putative domains are represented by a number 
on the coloured box. Names of all members and domain sizes are pre-

sented on the left and right side of the figure, respectively. b Tertiary 
structure of two representative NB-ARC proteins Unigene9801_All 
and Unigene25774_All
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The results showed that SP, FA and FO treatments could 
induce the up-regulated expression of NB-ARC​ genes, but 
the induction pattern of NB-ARC​ genes by SP treatment was 
similar to that by FO treatment. Therefore, NB-ARC​ genes in 
ETI system were involved in the formation of R. glutinosa 
consecutive monoculture problems.

Discussion

In R. glutinosa, consecutive monoculture problems occur in 
the second year after planting (Zhang et al. 2011). Previous 
studies have indicated that phenolic acids in root exudates 
are important allelopathic autotoxins (Li et al. 2012). How-
ever, phenolic acids are degraded by soil microorganisms 
within a week in the field (Zhang et al. 2010). The addition 
of phenolic acids caused significant increases in the popula-
tion of pathogenic microorganisms in plate cultures and field 
experiments (Wu et al. 2017; Zhang et al. 2016). Allelo-
chemicals of root exudates mediated adverse chemotaxis of 
rhizospheric microbes (Wu et al. 2015; Zhang et al. 2013). 
The immune systems of R. glutinosa are activated and finally 
compromised due to continuous attack by a large number of 
proliferating pathogens. (Li et al. 2017). qRT-PCR analy-
sis further demonstrated that NB-ARC​ genes in ETI system 
are employed in the formation of R. glutinosa consecutive 
monoculture problems.

In the ETI system, the effector is recognized by an NB-
ARC protein based on direct and indirect recognizing mod-
els (Sekhwal et al. 2015). In NB-ARC proteins, R1A (resist-
ance in linkage group 1A), R1B and RPP13 (resistance to 
Peronospora parasitica 13) can directly recognize effec-
tors (Birch et al. 2008; Du et al. 2015; Kuang et al. 2005; 
Sekhwal et al. 2015). RPM1 (resistance to pseudomonas 
syringae pv maculicola), RPS5 (resistance to pseudomonas 
syringae 5), Prf (for Pseudomonas resistance and fenthion 
sensitivity), RGA (Rx-like proteins), RPS2, TAO1 (target of 
AvrB operation), RPS4, RPS6, SNC1 (suppressor of npr1-
1, constitutive 1) and RPP13 indirectly recognize effectors 
through interactions with target proteins of RIN4 (RPM1-
interacting protein 4), PBS1 (AvrPphB susceptible1), Pto 
(for Pseudomonas syringae pv. tomato), RanGAP2 (Ran 
GTPase-activating protein) and EDS1 (Bittner-Eddy et al. 
2000, 2001; Chen et al. 2014; Eitas et al. 2008; Khan et al. 
2016; Sacco et al. 2007; Sekhwal et al. 2015; Song et al. 
2003; Sun et al. 2013; Zentella et al. 2007). The results of 
homologous cluster with R. glutinosa and Arabidopsis thali-
ana in phylogenetic tree showed that six NB-ARC proteins 
are closely related to disease resistance. Abnormal growth 
and death occur in consecutive monocultures of R. glutinosa. 
According to functional predictions, the 45 identified NB-
ARC protein sequences in R. glutinosa included R1A, R1B, 
RGA, RPP13, RPM1 and TAO1.

Previous studies have revealed that the expression of 
pathogenic effectors is closely related to the stage and 

Fig. 2   Phylogenetic tree of R. glutinosa NB-ARC protein sequences. 
Phylogenetic trees of NB-ARC sequences were constructed using 
the MEGA 6.06 tool. Unrooted neighbour-joining analysis was per-
formed with pairwise deletion and Poisson correction, and the boot-
strap values are presented at the corresponding nodes. The same 

colour represents the same type of homology. a Homology analyses 
for 45 NB-ARC proteins of R. glutinosa. b Homology analyses for 
45 NB-ARC proteins of R. glutinosa and alignment with Arabidopsis 
thaliana, in which R. glutinosa NB-ARCs remarked by red-coloured 
line have closely homology with that of A. Thaliana 
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Fig. 3   Expression profiles of 36 expressed NB-ARC​ genes at differ-
ent developmental stages in R. glutinosa. a Expression levels (RPKM, 
reads per kilobase per million mapped reads). b Ratios of expression 
levels. The colour bar presents the gene expression levels. Green indi-
cates low expression, whereas red indicates high expression. Black 

indicates minimal difference in expression. The five samples repre-
sented sampling times of 30, 60, 90, 120, and 150 days after planting. 
The heat maps were created using MeV 4.9.0 software. c Phenotypes 
of first-year (left) and second-year (right) R. glutinosa plants 90 days 
after planting
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location of infection (Toruño et al. 2016). For example, the 
specific effectors, C. higginsianum effectors, either inhibit 
or promote cell death after undergoing threefold increase 
of expression during infection of Colletotrichum higginsi-
anum in Arabidopsis (Kleemann et al. 2012). Furthermore, 
disorder expression of stage-specific effectors significantly 
reduced Phytophthora sojae virulence in N. benthamiana 
and soybean (Wang et al. 2011). In addition, successful 
expression of Ustilago maydis effectors only occurred in 
the colonized maize organ (Schilling et al. 2014). Therefore, 
a correct time and place is required when ETI system per-
forms immune function (Smith et al. 2014). Previous studies 
have demonstrated that immune resistance disorder resulted 
from inappropriate NB-ARC protein activation (Rodriguez 
et al. 2015). In this study, the NB-ARC​ genes expression was 
obviously up-regulated by 91.67% in SP2 stage, and serious 
death was correspondingly occurred (Fig. 3). The results 
suggested that consecutive monoculture stress inappropri-
ately triggered NB-ARC​ gene expression, leading to immune 
response disorders in R. glutinosa. qRT-PCR analysis indi-
cated that similar expression patterns of NB-ARC​ genes were 

observed in SP and FO stress. A possible depict for NB-ARC 
in ETI-mediated consecutive monoculture stress is presented 
in Fig. 5.

We have unravelled the protein structures, phylogenies, 
and gene expression patterns of NB-ARC family proteins in 
R. glutinosa. These findings provide insights into the mech-
anism of formation of consecutive monoculture problems. 
Moreover, NB-ARC​ genes exhibit molecular polymor-
phisms. In nature, long-lived plants can renew their com-
position and ratio of resistance genes (Deng et al. 2017; 
Kong et al. 2017; Quintin et al. 2014; Santhanam et al. 
2015; Tena 2016; Tobias and Guest 2014; Wei et al. 2015). 
With the development of biotechnological techniques and 
the modification of resistance genes, some researchers can 
improve the recognition of pathogen effectors using ran-
dom single amino acid mutations or protein modification 
of NB-ARC sequences (Segretin et al. 2014; Wang et al. 
2015). These new findings will provide a new method for 
resolving consecutive monoculture problems in the future.

Conclusions

The present study identified 45 NB-ARC protein sequences 
in R. glutinosa and described their corresponding func-
tions, structures and phylogenetic traits. At same time, NB-
ARC​ genes were found to be involved in the formation 
of R. glutinosa consecutive monoculture problems that 

Fig. 4   Nine randomly selected up-regulated NB-ARC​ genes respond-
ing to different stress factors involved in the formation of consecutive 
monoculture problems. a Phenotypes of the four different treatments 
FP, SP, FA and FO. b Gene expression levels of the different treat-
ments. FO treatment caused the most significant increases in NB-ARC​ 
gene expression levels followed by SP and FA treatments. Values are 

presented as the means ± SD. Lower-case letters indicate significant 
differences (P < 0.05; t test), and capital letters indicate significant 
differences (P < 0.01; t test). FP first-year plant, SP second-year plant, 
FA ferulic acid stress, FO stress of Fusarium invasion (Fusarium 
oxysporum f.sp. R. glutinosa)

Table 2   Pearson correlation 
matrix visualizing NB-ARC​ 
genes ranked by three different 
treatments

**P < 0.01

SP FA FO

SP 1 0.0801 0.7067**
FA 1 − 0.1690
FO 1
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are rarely expressed 30 days after planting and frequently 
expressed at approximately 60 days after planting. The 
findings of this study provide insights into the mechanism 
of formation of consecutive monoculture problems.

Author contribution statement  Conceived and designed the 
experiments: ML. Performed the experiments: AC, LG, NX, 
GL, FF, and BZ. Analysed the data and wrote the manu-
script: AC, LG, ML, DG, JZ, and HL. Supervisory support: 
ZZ. All the authors have read and approved the final content 
of the manuscript.

Acknowledgements  In this study, the protein information and the 
other support data were derived from correspondence author Prof. 
Zhang Zhongyi, my PhD supervisor in Fujian Agriculture and Forestry 

University. We gratefully acknowledge all members of Zhang Zhongyi 
research group.

Funding  This study was supported by the National Natural Science 
Foundation of China (Grant No. 81503193, 81573538, 81603243 and 
81403042) and the Key Scientific Research Project of the higher Edu-
cation Institutions of Fujian Province of China (No. JK2015013).

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

Fig. 5   Sketch map for effector-triggered immunity mediated by con-
secutive monoculture stress in R. glutinosa. A typical ETI system 
includes NB-ARC, NDR/EDS, and NPR core proteins, in which 
NB-ARC might recognize effectors from pathogens. NB-ARC pro-
tein is thus a critical protein that functions in the ETI system. Alle-
lochemicals released from consecutive monocultures of R. glutinosa 
significantly induce pathogen proliferation. Various effectors from 
these pathogens are thus continuously released into rhizosphere soils 

under consecutive monoculture stress. Some effectors might trick the 
PTI system and successfully enter the cytoplasm. To eliminate these 
attacks from pathogens as soon as possible, plants can effectively rec-
ognize these effectors based on the LRR domain of NB-ARC protein. 
For a large number of pathogens induced by allelochemicals in con-
secutive monocultures of R. glutinosa, numerous effectors are pro-
duced that continuously attack R. glutinosa and ultimately result in 
loss of the recognition ability of the ETI
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