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Abstract To meet societal needs, modern estuarine
science needs to be interdisciplinary and collaborative,
combine discovery with hypotheses testing, and be
responsive to issues facing both regional and global
stakeholders. Such an approach is best conducted with the
benefit of data-rich environments, where information from
sensors and models is openly accessible within convenient
timeframes. Here, we introduce the operational infrastruc-
ture of one such data-rich environment, a collaboratory
created to support (a) interdisciplinary research in the
Columbia River estuary by the multi-institutional team of
investigators of the Science and Technology Center for
Coastal Margin Observation & Prediction and (b) the
integration of scientific knowledge into regional decision
making. Core components of the operational infrastructure
are an observation network, a modeling system and a
cyber-infrastructure, each of which is described. The
observation network is anchored on an extensive array of
long-term stations, many of them interdisciplinary, and is
complemented by on-demand deployment of temporary
stations and mobile platforms, often in coordinated field
campaigns. The modeling system is based on finite-
element unstructured-grid codes and includes operational
and process-oriented simulations of circulation, sediments
and ecosystem processes. The flow of information is
managed through a dedicated cyber-infrastructure, con-
versant with regional and national observing systems.
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1 Introduction

Coastal communities have a strong demographic and
economic preponderance worldwide. In the United States
(U.S.) alone, they consist of 123 million people (40% of
the total population; NOAA, 2014a), generate 45% of the
Gross Domestic Product and support over 51 million jobs
(NOAA, 2014b). These communities rely heavily on a
diverse range of services provided by coastal margins,
which constitute a resource-rich but ecologically sensitive
interface between land and ocean.

Essential sub-systems of coastal margins are estuaries,
complex environments where transitions from fresh to
marine waters often occur across steep spatial and temporal
gradients. Estuaries provide economic resilience to coastal
communities and deliver important ecosystem services
(Barbier et al., 2011). Many estuaries are essential
waterways, which are critical to local and global
commerce. They are also essential migration routes or
nurseries for birds, fish and shellfish, while buffering the
coastal ocean from increased nutrient loads and other
terrestrial contaminants. Collectively, they form a global
resource of increasingly recognized significance for
society (MEA, 2005; OGE, 2014).

The susceptibility of estuaries to climate change and
economic development is a major ecological and socio-
economic concern (Lotze et al., 2006). Sea level rise alone
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poses a significant threat to the world’s estuaries (Statham,
2012; Robinson et al., 2013; IPCC, 2014), via potential
increases in flooding, salinity intrusion and disruption of
aquatic ecosystems. Also, anthropogenic practices have
imposed major stresses on estuaries in recent decades, such
as increased nutrient loads leading to hypoxic dead zones
(Diaz and Rosenberg, 2008; Howarth et al., 2011; Statham,
2012). In some estuaries, the effects of these stresses have
been mitigated and even reversed through management
approaches that employ best practices informed by
scientific understanding; for instance, nutrient loads and
dead zones have been successfully reversed in some
estuaries (Diaz and Rosenberg, 2008).

However, for many estuaries, potentially drastic reduc-
tions in ecological resilience lie ahead, as expressions of
climate change and local anthropogenic stresses increase.
As a striking example, the 10 most populated water basins
(4 in China, 3 in India, 2 in Africa, and 1 in Europe)
already account for 10% of the world’s Gross Domestic
Product, but in 40 years this figure is projected to increase
to 25% (more than Japan, Germany, and the U.S.
combined; HSBC, 2012). Without effective management,
this massive development poses an unprecedented threat to
estuaries, with major potential for disruption of global
biogeochemical cycles, of local and global ecosystem
services and ultimately of human well-being.

Developing or improving science-based anticipatory
capabilities that allow society to best manage estuaries is

critical to a sustainable Earth, but is also challenging
because estuaries are complex and highly varying
ecosystems. To meet these challenges for a specific
estuary, and provide a model for others, we created a
distinctive scientific infrastructure that we term a colla-
boratory. The SATURN (Science And Technology Uni-
versity Research Network) collaboratory is designed to
facilitate generation and open flow of information, towards
enhanced scientific understanding, prediction, operation,
and sustainability of the Columbia River estuary in the
U.S. (Fig. 1). Here, we document the operational
infrastructure of SATURN and provide brief insights into
lessons learned.

2 The study area
2.1 The broader context of the Columbia River basin

The Columbia River is the largest of the North American
rivers flowing into the Pacific Ocean, with daily average
discharges (at Bonneville Dam, Fig. 1) ranging from
~2,000m*-s™! in the early fall to ~15,000 m*-s™" during
spring freshets (Fig. 2, top panel). The river basin crosses
the U.S.-Canada border, and includes seven U.S. states:
Idaho, Oregon, Washington, Montana, Nevada, Wyoming,
and Utah. As a major economic resource for the region, the
Columbia River is managed for multiple purposes: power
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Fig. 1 The Columbia River estuary. The inset shows the full estuary, which is tidally influenced up to Bonneville Dam, and separates the
states of Oregon (OR) and Washington (WA). The region of the estuary subject to ocean influence is contained in the larger map
(maximum salinity intrusion is typically less than 45 km). Yellow squares represent interdisciplinary endurance stations of the SATURN
observation network; dark and light cyan triangles represent current and historical physical endurance stations of the same network.
Illustrative symbols represent areas of typical deployment of mobile platforms: kayak, gliders, and autonomous underwater vehicles
(AUVs). The blue lines in the inset are endurance observation lines of the independent but synergistic Ocean Observing Initiative (NSF,

2005).
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Fig. 2 Ocean and river forcing have strong seasonal and inter-annual variability. Top panel: River discharge at Bonneville Dam for a 3-
year period (red: 2010; green: 2011; blue: 2012), mapped against the 1996-2014 climatology (25th and 75 percentile in dark gray;
maxima and minima in lighter gray). Second panel: Cumulative Coastal Upwelling Index (CUIL; red: 2010; green: 2011; blue: 2012),
mapped against 1996-2014 (in gray). Third and fourth panels: Freshwater nitrate and sediment loads, respectively, at SATURN-05 for
2010-2012 (darker shades represent more recent years). Bottom panel: Oxygen saturation at the mouth of the estuary (SATURN-02, in
crimson shades); the South channel (SATURN-03, in blue shades); and the tidal freshwater (SATURN-05, in gray and black). Data for the
bottom panel are for 2010-2012 as available; within a same color, darker shades represent more recent years.

generation, flood risk mitigation, agricultural water supply, The Columbia-Snake River System is a vital waterway
fisheries and navigation. Essential to these activities is the  that supports the economies of multiple U.S. states,
operation of major navigation and hydropower systems. including Oregon and Washington (Simmons and Casa-
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vant, 2010). With deep-draft and inland components, this
waterway is a major gateway for wheat and barley exports
(#1 in the U.S.) and for mineral bulk exports, wood exports
and auto imports (#1 on the U.S. West Coast). Recently
deepened to 13.1 m, the deep-draft channel extends for
166.6 km along the estuary and supports more than 40
million tons of cargo per year, valued at $17 billion U.S.
dollars. The inland river system, mostly upstream of the
estuary, supports 10 million tons of cargo per year, valued
at $3 billion U.S. dollars annually.

The Federal Columbia River Power System is a network
of 31 federally owned U.S. dams managed for hydropower
production and flood protection. At ~22,500 MW of
maximum generating capacity (~ over a third of the total
U.S. hydroelectric capacity), these dams are the foundation
of the Pacific Northwest power supply and also provide
power to other U.S. states and Canada. In spite of the large
number of U.S. dams, the storage capacity of the river is
largely in Canada. The 1964 U.S.-Canada Columbia River
Treaty, which regulates the access to that storage capacity
by the U.S., is up for review in the 2014-2024 timeframe.
While in its original form it focused only on power
generation and flood protection, a revised Treaty will likely
also address ecosystem function (U.S. Entity, 2013).

Ecosystem function is already a major consideration in
the operation of both the Columbia-Snake River System
and the Federal Columbia River Power System. Of
particular significance, four Pacific salmon stocks are
listed as endangered and thirteen as threatened under the
Endangered Species Act (ESA). ESA-mandated Biological
Opinions set specific guidance for salmon protection and
recovery that affects all development activities in the
Columbia River basin. Also of direct relevance to salmon
protection and recovery is the 1855 Columbia Basin
Treaties between the U.S. and the Umatilla, Nez Perce,
Yakama and Warm Springs which granted those Native
American tribes permanent fishing rights in their reserva-
tions and accustomed lands; the latter collectively
represents approximately a quarter of the basin’s area.

2.2 The Columbia River estuary

The Columbia River estuary serves as a biogeochemical
buffer between river and ocean and offers important
transitional habitat for fish and birds. Seasonal upwelling
(Fig. 2, second panel) from the California Current
influences estuarine conditions through tidal exchange,
and results in the transport of deep-ocean waters to the
estuary during the summer months. These waters are
relatively rich in nutrients (Roegner et al., 2011a), low in
oxygen (Roegner et al., 2011b; also, bottom panel of Fig.
2) and pH, and high in carbon dioxide. The estuary is
limited upstream by the Bonneville Dam in the Columbia
River (~160km upstream of the mouth) and by the
Willamette Falls in the Willamette River, a major tributary.
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Freshwater loads of sediments and nutrients are largest
from late autumn through early spring (Fig. 2, third and
fourth panels).

The influence of the estuary extends along the
continental shelf through a plume that reaches north to
British Columbia or south to California, depending on the
prevailing winds (Barnes et al., 1972; Liu et al., 2009;
Burla et al., 2010a; Hickey et al., 2010). By contrast, the
chemical estuary, defined by the presence of salinity
upstream of the mouth, is limited to ~ 45 km (Chawla et al.,
2008), with actual extent dependent primarily on river flow
and tidal conditions.

It is common to refer to the Columbia River estuary as a
river-dominated mesotidal estuary. More specifically, the
chemical estuary operates across four physical estuarine
regimes: salt wedge, time-dependent salt-wedge, highly
stratified and partially mixed. Each regime corresponds to
a specific pairing of river flows and tide ranges, and has
distinctive stratification and mixing characteristics.

Generally shallow, the chemical estuary is cut deeply by
two major channels (Fig. 1): the South Channel, which is
maintained for deep-draft navigation and the North
Channel, which is unmanaged. Both channels are ecolo-
gically important, for instance as conduits of ocean
influences into the estuary (Roegner et al., 2011a, b), as
migration corridors for juvenile Pacific salmon (Bottom et
al., 2005) and as loci for seasonal Mesodinium spp. blooms
(Herfort et al., 2011a). However, each channel is
dynamically distinct: the South Channel has stronger
river outflow than the North Channel, less tidal transport
and a less well-developed salt wedge (Chawla et al., 2008).

Also of ecological significance are four lateral bays, two
of which are brackish (Baker Bay and Youngs Bay) and the
other two (Cathlamet Bay and Grays Bay) primarily
freshwater. Ecosystem services provided by these bays are
diverse, ranging from transitional habitat for out-migrant
juvenile salmon (e.g., Cathlamet Bay; Bottom et al., 2005)
to seeding seasonal Mesodinium spp. blooms (e.g., Baker
Bay; Herfort et al., 2011a).

As estuaries do, the Columbia River estuary provides an
ecosystem service by reducing fluxes of natural and
anthropogenic materials to the coastal ocean, thus
functioning as a natural bioreactor. We use the term
“bioreactor” (rather than the more commonly used terms
“filter” or “buffer”) to evoke the combination of active
microbial, biogeochemical and ecological processes that
result in the biogeochemical transformation of organic and
inorganic materials. The term bioreactor is also a useful
construct to encapsulate material and energy flows through
the ecosystem, ultimately leading to food web structure
and defining water quality and ecosystem health.

Because of the estuary’s short residence times, many of
the biogeochemical transformations in the bioreactor are
hypothesized to occur in association with biological
hotspots that extend water or particle residence time.
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These hotspots specifically include estuarine turbidity
maxima, seasonal Mesodinium spp. blooms and intertidal
zones in lateral bays. The dynamics and function of the
bioreactor and its hotspots are the focus of the research of
the Center for Coastal Margin Observation & Prediction
(CMOP), a multi-institutional Science and Technology
Center funded by the U.S. National Science Foundation.

3 Columbia River collaboratory
3.1 Concept

Many issues of societal importance, from fisheries to
shipping and power generation, require the study of
estuaries. The knowledge base needed to address these
issues is enabled or enhanced by high-resolution, long-
term time series of observations, especially when coupled
with computational models that extend the range of
observations. The term estuarine collaboratory captures
the open and collaborative infrastructure that allows the
knowledge base for an estuary to grow from study to study
and application to application.

We view an estuarine collaboratory as a networked
integration of sensors and platforms, models, and informa-
tion flows, designed to enable diverse communities of
practice to interact productively with reduced geographic,
disciplinary or institutional barriers. The term communities
of practice refers to groups of people who share a concern
or interest (such as the environmentally sound operation of
the Federal Columbia River Power System), and who
deepen their knowledge and expertise (e.g., ability to reach
consensus on controversial issues at the power-system—
salmon-conservation interface) by interacting and sharing
information on a sustained basis (Lave and Wenger, 1991;
Wenger, 1998).

SATURN is an implementation of the collaboratory
concept (Baptista et al., 2008; Baptista, 2015). It is
designed to support interdisciplinary research in the
Columbia River estuary, as well as to support regional
decisions on the appropriate balance for the use of the
estuary and river for hydropower generation, flood
protection, navigation, and nursery and migration habitat
for salmon. Of particular interest is the characterization of
physical and biogeochemical processes that underlay the
function of the estuary, and that illuminate the estuary’s
variability and susceptibility to changes in global climate
and in operation of the Federal Columbia River Power
System and the Columbia-Snake River System.

The successful implementation of SATURN is predi-
cated on the open flow of information, which requires a
supporting cyber-infrastructure. It is also predicated on the
availability and integration of observations and simula-
tions, which requires an observation network and a
modeling system. These three operational components of
SATURN are the focus of this paper.

3.2 SATURN observation network

Starting in 1996, the development of the observation
network was directed initially by the interest in calibrating
and validating a modeling system for estuarine circulation
(CORIE; Baptista et al., 1999, 2008; Baptista, 2006). The
network consisted of several real-time stations measuring
physical variables: salinity, temperature, water levels and,
at a few stations, velocity profiles. Driven by the CMOP
focus on the Columbia River estuary as a river-dominated
estuarine bioreactor, the SATURN network underwent
fundamental changes after 2008 (Fig. 3). It now encom-
passes both endurance stations and a pioneer array (both
defined and described below), and has an interdisciplinary
focus with a spectrum of physical and biogeochemical
sensors deployed.

3.2.1 Real-time endurance stations

Endurance stations provide long-term, real-time, high-
resolution time series at fixed locations. Most stations are
concentrated in the chemical estuary, but some are in the
tidal freshwater, the near-field plume or the continental
shelf (Fig. 1). In the estuary, stations are located primarily
along the main channels, to characterize large-scale
patterns of estuarine flow and transport. These locations
were chosen based on an empirical understanding of
estuarine dynamics, and re-affirmed through a formal
network optimization study (Frolov et al., 2008). Selected
estuarine stations are also located in ecologically important
lateral bays: Cathlamet Bay, Youngs Bay, and Baker Bay,
each exposed to distinct ocean influences.

Some of the SATURN stations (represented by dark
cyan triangles in Fig.1) remain strictly physical in terms of
their sensor suites, typically with single-depth measure-
ments of salinity and temperature. They constitute a useful
reference for calibration and validation of circulation
models (e.g., Baptista et al., 2005). However, nine stations
now also have interdisciplinary sensor packages, and form
the core of the network. These stations are named
SATURN-nn, with nn assigned sequentially in order of
the date of initiation of their interdisciplinary data streams.
Some SATURN-nn stations (e.g., SATURN-01, -03 and
-04) have replaced collocated (or nearly collocated)
physical stations, in which case relevant legacy physical
data is available prior to inception of the interdisciplinary
station.

Most interdisciplinary stations are distinctive in design
(Fig. 4) and purpose. From the perspective of design, three
stations are particularly noteworthy: SATURN-01 is a
vertical profiler and SATURN-03 and -04 are field
laboratories with a multi-depth in-water pumping system.
SATURN-01 (unique in its ability to capture the vertical
structure, Fig. 5) and SATURN-03 characterize the
transport and mixing in, respectively, the North and
South channels of the chemical estuary. SATURN-05,
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Fig. 3 Overview of the evolution of the endurance stations of the observation network, contextualized by ocean processes (via the El
Niflo-Southern Oscillation [ENSO] index) and river discharges at Bonneville Dam. For each station, periods of data collection are
represented in black (scalar physical variables), red (vertical profiles of velocity) and green (interdisciplinary scalar variables). Numbers

preceding physical stations correspond to numbering in Fig. 1.

-06, and -08 characterize river inputs (e.g., Fig. 2, third and
fourth panels). SATURN-04, -09, and -07 characterize
exchanges between the estuary and progressively more
ocean-influenced brackish lateral bays (Cathlamet Bay,
Youngs Bay, and Baker Bay, respectively). SATURN-02
helps characterize estuary-shelf exchanges (e.g., Fig. 2,
bottom panel).

Sensor composition varies per station, as shown in Fig.
6. However, all SATURN-#nn stations measure the same set
of baseline variables": temperature, salinity (derived from
conductivity), dissolved oxygen, turbidity or backscatter,
chlorophyll @ fluoresence, colored dissolved organic
matter (CDOM) and—at some sites—the fluorescence
of the algal pigment phycoerythrin. Other parameters
measured with regularity at some of these stations include
velocity profiles (at SATURN-01, -02, -03, and -04),
nitrate (at SATURN-01, -02, -03, -04, -05, and -08), pH
and pCO, (at SATURN-03 and -04), atmospheric variables
(air temperature, solar radiation and wind speed and
direction at SATURN-02 and a physical station, Desde-
mona Sands) and fluorescence quantum yield (at
SATURN-01 and -03). Episodically, specialty instrumen-
tation is also deployed at the SATURN-03 and -04 “field
laboratories,” and benefits from physical and biogeochem-
ical contextualization by the endurance sensors available at
those stations. Examples of such specialty instrumenta-

tions are the Environmental Sample Processor (ESP;
Scholin, 2013), a technology developed at the Monterrey
Bay Aquarium Research Institute that we use for adaptive,
autonomous sampling of microbial communities (Herfort
et al., in press); and the SeaFlow (Swalwell et al., 2011), a
flow cytometer developed at the University of Washington
that allows continuous real-time observations of small
phytoplankton populations.

The geographical extent of the river-to-ocean system
leads to significant logistic challenges in the implementa-
tion of the observatory. The endurance stations in the
chemical estuary and continental shelf (SATURN-01, -02,
-03, -04, -07, and -09) are maintained by an operational
field team, from a field station in Astoria, Oregon, near the
mouth of the estuary. A Portland-based research team
maintains SATURN-05 and -08. Since inception,
SATURN-06 was developed in collaboration with the
United States Geological Survey (USGS) and responsi-
bility for that station is now fully assumed by that federal
agency.

The number of physical stations has been reduced since
2008 (Fig. 3), in part because some were transformed into
interdisciplinary stations, but also because some (light
cyan triangles in Fig. 1) were discontinued. The design of
the network calls for Acoustic Doppler Profilers (ADPs) to
support physical oceanography and circulation modeling

1) If the baseline variable is relevant to that location (e.g., salinity may not be observed in purely freshwater locations).
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Fig. 4 Schematic representation of SATURN interdisciplinary endurance stations.

studies, and to help characterize material fluxes. ADPs
were first introduced in the network in late 1998, and have
been progressively restored after a 2008-2011 hiatus (Fig.
3). By post-2011 design, ADP locations help characterize
fluxes at the North (SATURN-01) and South (SATURN-
03) channels, at the estuary-plume interface (SATURN-02)
and between the main estuary and a freshwater lateral bay
(SATURN-04).

3.2.2 Pioneer array

Pioneer array is a term borrowed from the Ocean
Observing Initiative (NSF, 2005) and is used here to
refer to assets that can be deployed on-demand to add
spatial scope or spatial resolution to the endurance
network, for limited time periods. The SATURN pioneer
array consists of manned and unmanned mobile platforms
(some of which have real-time telemetry) and re-deploy-

able bottom nodes. Assets can be deployed in isolation, or
in coordination within a scientifically targeted field
campaign. Pioneer array assets are typically deployed
with the benefit of information from endurance stations
and operational models.

Unmanned mobile platforms include Slocum gliders and
Remus-100 autonomous underwater vehicles (AUVs).
Through the seasonal deployment of gliders (typically
May—September), broad sweeps of the Washington con-
tinental shelf are conducted to characterize waters that
(Hickey et al., 2010; Roegner et al., 2011a, b) serve as
ocean sources for the Columbia River estuary during
upwelling season. Gliders are equipped with temperature,
salinity/conductivity, dissolved oxygen, optical backscat-
ter, chlorophyll @ and CDOM sensors. Figure 7 illustrates a
typical deployment. The coverage area is north of the
Columbia River, roughly from Grays Harbor to Quinault,
and the deployment is typically in a radiator pattern or
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variant thereof. The assessment of hypoxic conditions in
the shelf, illustrated in the figure, is an example of the
larger-scale information that is needed to interpret
estuarine data such as the oxygen saturation shown in the
bottom panel of Fig. 2 (for SATURN-03) and in the top-
middle panel of Fig. 5 (for SATURN-01). Glider data is
also useful in support of modeling efforts, for instance by
helping define ocean boundary conditions to drive
estuarine biogeochemical simulations.

Two AUVs, often deployed in tandem, are used for
process studies —typically in the North Channel of the
estuary and occasionally across the mouth and in the near-
plume. On-board sensors measure temperature, salinity/
conductivity, depth, dissolved oxygen, optical backscatter
at two wavelengths (700 nm and 880 nm), fluorescence of
pigments (chlorophyll a, phycoerythrin, and phycocyanin),
CDOM, currents and bathymetry. AUV data have been
instrumental in providing insight into biological hotspots
such as the estuarine turbidity maxima and the Mesodinium
spp. blooms. AUV data have also contributed to a stringent
benchmark for the CMOP modeling system, which has
resulted in novel assessments (e.g., Fig. 8) and substantial
improvements of modeling skill (Kédrné et al., 2015). In
turn, AUV missions are planned and interpreted with the
benefit of the CMOP numerical models, by exploring in
silico (not shown) alternative paths of the AUVs through
forecasted fields of water velocity, density, and turbidity.

Salinity/psu
0 10 20 30

Oxygen saturation/%
80

Multiple manned platforms have been integral to the
SATURN pioneer array:

e The R/V CORIE, a 20 ft (6 m) rigid-hull inflatable boat
that is the workhorse for the maintenance of the in-estuary
endurance stations, has been used for specialized data
collection (Herfort et al., 2011b, 2012) and for AUV
deployments.

e The 50ft (15m) training vessel M/V Forerunner,
which is owned and operated by the Clatsop Community
College (CCC) for mariner training programs, has been
used for both serendipity data collection and targeted
campaigns. CMOP installed a flow-through system (with
salinity, temperature, chlorophyll @, and turbidity sensors)
and a downward looking ADP, which perform automated
data collection during CCC classes, station deployments,
and other periods of serendipity vessel operation. In
addition, the M/V Forerunner is used by CMOP and other
scientists for short-term field campaigns (Roegner et al.,
2011a, b; Brauer et al., 2011, 2013; Peterson et al., 2013;
Kahn et al., 2014) and calibration sampling near endurance
stations.

e Multiple UNOLS" research vessels— 65 ft (20 m)
R/V Clifford Barnes, 135 ft (41 m) R/V Point Sur, 143 ft
(44 m) R/V Horizon, and 177 ft (53 m) R/V Wecoma and
R/V Oceanus—have been used in CMOP campaigns
across the river-to-shelf continuum (Smith et al., 2010,
2012, 2013; Anderson et al., 2011; Brauer et al., 2011,
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Fig. 5 Equipped with a winched profiler, SATURN-01 offers a high-resolution characterization of the vertical structure of the water
column. The variability of that vertical structure over a tidal day (May 17, 2012) is illustrated here. Flow at Bonneville Dam for the period
is ~9,800 m*/s. From left to right and top to bottom: salinity, oxygen saturation, along-channel velocity, temperature, turbidity and cross-

channel velocity.

1) The University-National Oceanographic Laboratory System (UNOLS) is an organization of U.S. academic institutions and national laboratories that
provides access to research ships and other oceanographic research facilities.
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Dissolved oxygen Turbidity pCO,
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Temperature Velocity profile In situ seabed
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Salinity * Iron 11 Seabed frame
Intermittently deployed Temperature Nitrate Salinity *
Susp. sediment size Phosphate Temperature
35m Silicate Pressure
B Salinity * Susp. sediment size Velocity profile
Temperature
<2008 -
2008 Dissolved oxygen Seqbgd frame Planned
2009 Salinity * PAR
2010 Te?mperature Susp.sediment size
2011 . Dissolved oxygen
2012 * Derived from Pressure
2013 conductivity Velocity profile
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Light attenuation
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pCO,
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Fig. 6 Sensors deployed at the interdisciplinary SATURN endurance stations, colored by year of initial deployment.

2013; Fortunato and Crump, 2011; Herfort et al., 2011b, 2013), was deployed multiple times in Baker Bay in 2012
2012; DelL.orenzo et al., 2012; Fortunato et al., 2012,2013; and 2013, to capture spatial variability in that shallow
Maier et al., 2012; Durkin et al., 2013; Evans et al., 2013;  lateral bay. For data, see stccmop.org/datamart/observa-
Gilbert et al., 2013; Peterson et al., 2013; Kahn et al., tion_network/kiviug.
2014). For campaign details, see stccmop.org/research/ Bottom nodes, instrumented with at least an upward
cruise. looking ADP and a conductivity-temperature-depth (CTD)
o A kayak, instrumented with the same baseline sensors ~ sensor, have been deployed for weeks to months, when
as the SATURN-nn endurance stations (Rathmell et al., temporal detail is temporarily needed at locations not
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Fig. 7 Assessment of hypoxic conditions in the Washington continental shelf, based on a glider deployment for July 23-August 21,
2009. Left panel: 3D view of dissolved oxygen (DO). Middle panel: 3D view of hypoxia, where red is severe hypoxia (DO <0.5 mL/L);
yellow is mild hypoxia (0.5 <DO<1.4 mL/L); and green is oxygenated water (DO > 1.4 mL/L). Right Panel: Plan view of glider path,
showing the spatial extent of hypoxia at maximum dive depth. The Columbia River estuary is at the lower right (southeast) edge, with
Willapa Bay and Grays Harbor to the north. See stccmop.org/datamart/observation network/glider for additional glider data.
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Fig. 8 Salinity data (panels (b) and (e)) collected during an AUV mission in the North Channel of the estuary, in May 2012, compared
with model results (panels (c) and (f)). Panels (d) and (g) show the horizontal extent of the corresponding AUV tracks, superimposed on
modeled bottom salinity fields. As typical in our operations, AUV deployments were limited to periods of flood and high water slack (see
panel (a)) for logistical reasons. Also as typical, AUV missions were coordinated with other assets: a vessel, occupying either station OC1
or OC2, and a bottom node (denoted NCBN1). SATURN-01 is also shown for geographic context.
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occupied by endurance stations. Typically, bottom node
deployments have been coordinated with AUV deploy-
ments or with broader field campaigns, especially in the
North Channel and in Cathlamet Bay.

Vessel-based field campaigns have been conducted both
in exploratory mode (e.g., recurrent baseline sampling to
explore microbial population dynamics (Smith et al., 2010;
Fortunato and Crump, 2011; Fortunato et al., 2012, 2013))
and targeted at understanding specific processes or
balances, such as in the August 2007 Barnes cruise
focused on estuarine turbidity maxima (Bréuer et al., 2011,
2013; Herfort et al., 2011c). Vessel operations have been
coordinated, as appropriate and feasible, with other assets
of the observation network (e.g., Fig. 9). Importantly, the
design, implementation and interpretation of field cam-
paigns has benefited from the spatial and temporal context
provided by the endurance stations and by the products of
the modeling system (e.g., short-term forecasts, simulation
climatologies, or targeted simulation hindcasts). The
importance of this context cannot be overstated: climato-
logical information from simulation databases has trans-
formed design and post-campaign interpretation, and real-
time and predictive in-ship information has transformed
implementation. For instance, CMOP scientists addressing
hypotheses related to dynamic features such as estuarine
turbidity maxima or salinity intrusion are able to remove
(within model and observational uncertainty) much of the
guesswork involved in platform placement for data
collection.

We have also conducted land-based campaigns in which
SATURN-03 or SATURN-04 function as field laboratories.
In these campaigns, water samples are collected or specialty
instruments are deployed inside the stations, for short
periods of time; data acquired through the samples and
specialty instruments automatically benefit from contextua-
lization by synoptic high-resolution time series of baseline
variables, which are routinely generated by the station
sensors. Of particular note are adaptive sampling strategies
targeting transient estuarine events for microbial RNA and
DNA analysis, triggered by turbidity or other variables
measured at SATURN-03 (Herfort et al., in press). Land-
based and vessel campaigns have been cross-coordinated
when appropriate. As an example, the contribution of
Cathlamet Bay to estuarine nutrient balances was quantified
through a combination (Fig. 9, bottom panel) of vessel
transects, bottom nodes and SATURN-04 operated as a
field laboratory. Specifically, a high-resolution Fast
Methane Analyzer (from Los Gatos Research) was operated
from the station (Fig. 10) and water samples for
biogeochemical and microbiological analysis were
extracted, all contextualized by endurance sensors.

3.3 SATURN modeling system

The SATURN modeling system (henceforth Virtual
Columbia River, Fig. 11) is designed to create a

progressively more comprehensive and skilled multi-
scale description of the estuary and associated tidal
freshwater and continental shelf plume. The Virtual
Columbia River has helped integrate and expand
understanding of how the contemporary chemical estuary
functions as a dynamic ecosystem. Furthermore, it has
contributed a historical perspective on past evolution of the
estuary and provided assessments of future conditions
under alternative scenarios of change in global climate and
in regional management. Besides being a research tool, the
Virtual Columbia River is also an important science-
translation tool, having been used over the years to support
multiple management decisions by diverse stakeholders
(U.S. Entity, 2013; Seaton et al., 2014).

The Virtual Columbia River is anchored on high-
resolution circulation simulations (Baptista et al., 2005;
Burla et al.,, 2010a; Kéarnd et al., 2015), upon which
operational products are created and complementary
(sediment dynamics and biogeochemical) models are
built. The infrastructure for the circulation simulations
integrates models, bathymetry, grids, forcing, and skill
assessment strategies. Circulation simulations are con-
ducted with 3D baroclinic circulation codes, currently
SELFE (Zhang and Baptista, 2008) and in the past
ELCIRC (Zhang et al., 2004) and others. SELFE solves
the 3D baroclinic shallow-water equations, typically with
the hydrostatic approximation (a non-hydrostatic option is
also available). The primary variables are free-surface
elevation, velocities, salinity and temperature. Triangle-
based unstructured grids are used in the horizontal
direction and hybrid vertical coordinates (a combination
of terrain-following S coordinates and Z coordinates) are
used in the vertical direction.

Multiple modeling domains have been used. Typical
computational grids for circulation simulations now extend
from the Bonneville Dam and Willamette Falls through a
lengthy tidal freshwater and a compressed estuary into the
continental shelves of Oregon and Washington (Fig. 12).
The grids have higher resolution in the estuary than in the
continental shelf, and more recent generations of grids tend
to have overall higher resolution than older generations.
Higher resolution is possible because advances in code
efficiency and parallelization of SELFE (Lopez and
Brown, 2014) and of access to supercomputer centers.

Key operational products are daily forecasts (e.g.,
Fig. 13) and multi-year simulation databases of circulation
(Baptista et al., 2005; Burla et al., 2010a; Kérna et al.,
2015), the latter forming the basis for a Climatological
Atlas for the estuary and plume (Fig. 14). Multiple
generations of forecasts and databases are numbered
sequentially, and preceded by the distinguishing letters F
(for forecasts) and DB (for databases). Thus in Figs. 12—
14, DB33 is a simulation database of a more recent
generation than DB22, and F33 is a forecast of the same
generation of simulation database DB33. The skill of all
forecasts and simulation databases is routinely assessed
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Fig. 9 Illustrative CMOP campaigns, showing water sample locations (colored circles). For context, temporary stations (red and yellow
triangles) and selected endurance stations (red diamonds: interdisciplinary stations; red squares: active physical stations; hollow red
squares: historical physical stations) are also shown. Bathymetry is shown in the background for all panels. Top panel: sampling pattern for
monthly surveys to characterize Mesodinium spp. blooms, conducted in the M/V Forerunner or a NOAA vessel, the R/V Magister.
Different colors refer to water collection lines along the South channel (cyan), across the entrance of the estuary (orange), in notable
channels in Baker Bay (green and purple), at the mouth of Youngs Bay and at four endurance stations (red dots labeled SATURN-#nn).
Middle panel: a May 2012 campaign in the North Channel for characterization of the estuarine turbidity maxima. Green circles are
sampling locations for the R/V Oceanus, and yellow circles represent acoustic nodes used for the navigation of AUVs. A bottom node was
also deployed at NCBN1. Bottom panel: sampling patterns and stations for campaigns in Cathlamet Bay. The green line refers to M/V
Forerunner transects, with three water-collection stations shown as green dots. Two temporary stations (yellow triangles) with bottom and
surface expressions were also deployed. SATURN-04 (diamond) functioned as a field laboratory during this campaign. The acronym
RM17 is at the approximate location of historical collection of water samples, which we re-visited as time allowed.

against observations (Baptista et al., 2005; Burla et al., SATURN observation network and CMOP campaigns,
2010a; Kérnd et al.,, 2015). Observations of salinity, with tidal observations coming primarily from the National
temperature, and velocity come primarily from the Oceanic and Atmospheric Administration (NOAA).
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Fig. 10 CMOP investigator Fredrick G. Prahl, from Oregon
State University, operates a Fast Methane Analyzer at SATURN-
04 during a land-based Cathlamet Bay campaign (Fig. 9, bottom
panel).

Of relevance to regional applications, a “salmon filter”
can be applied to circulation results to create physical
metrics (ranging from salinity intrusion length and plume
volume to physical habitat opportunity) identified by
fisheries researchers as useful to characterize contemporary
variability (Bottom et al., 2005; Burla et al., 2010b; Miller
et al., 2013, 2014; Burke et al., 2014) and predict future
changes in the role of the estuary, plume and shelf on the
salmon lifecycle.

Critically important for CMOP research activities are
emerging modeling capabilities for sediment dynamics
(Lopez et al., 2012) and biogeochemistry (Spitz, 2011), all

of which rely on SELFE for circulation and scalar
transport. Model domains are typically reduced (estuary-
centric) versions of the river-to-shelf domains used for
circulation simulations. The sediment model, an adaptation
of a previous implementation (Pinto et al., 2012) through
enhanced computational efficiency, solves for the transport
of suspended sediment and bedload, and tracks morpho-
logical changes due to erosion and deposition. The model
was tested against laboratory benchmarks and is being
applied to study the Columbia River estuarine turbidity
maxima. Calibration and validation for the field application
has relied on high-resolution turbidity data from the
SATURN endurance stations and CMOP AUVs, comple-
mented by turbidity and sediment concentration data from
CMOP field campaigns.

The biogeochemical models are designed to characterize
nutrient cycles and to provide insights into the estuary as a
river-dominated bioreactor. At the core of the models is a
flexible formulation of nutrient, bacteria, phytoplankton,
zooplankton, dissolved organic matter and detritus that
permits the calculation of dissolved oxygen and will
ultimately address carbonate chemistry parameters. We
started from an existing open-ocean conceptual model
(Spitz et al., 2001), to which we introduced several
adaptations customized to the nutrient cycles in the estuary,
and designed to account for the influences of strong
estuarine salinity gradients on marine and freshwater
phytoplankton populations. The nutrient pool includes
nitrogen and carbon. The water column and the exchanges
at the water-air and water-benthos interfaces are included.

Bathymetry
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Fig. 11 Schematic of the Virtual Columbia River, which brings together consistent external forcing, coordinated codes (circulation,
water age, sediment dynamics and biogeochemistry), data repositories and processing protocols, to support scientific understanding,
management decisions and training activities. In the modeling box, arrows identify inter-model connectivity (with dashed arrows referring
to activities in progress). Models are iteratively enhanced, a process informed by frequent assessment of simulation skill against field

observations and scientific understanding.
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Fig. 12 Top view of illustrative computational grids of the Virtual Columbia River. The left panel shows the extent of the computational
domain. The right panels are zooms on the chemical estuary of grids used in two specific simulation databases of circulation (named DB33
and DB22, respectively, with the former a newer generation simulation). The horizontal grid for the full domain consists of 109,000
triangles and 56,000 nodes for DB33, and of 39,000 triangles and 21,000 nodes for DB22. The corresponding three-dimensional grids

have roughly 2.9 and 1.0 million prisms, respectively.

Light attenuation is accounted for via pre-defined water
types. Blooms of Mesodinium spp. are accounted for in a
special module.

After an extended period of development and assess-
ment against interdisciplinary data from the SATURN
endurance stations and CMOP cruises, the biogeochemical
models are being applied to characterize Net Ecosystem
Metabolism (production minus respiration) in the Colum-
bia River. The objective is to elucidate biogeochemical
processes, transformations and fluxes occurring in and
across the biological hotspots targeted by CMOP science:
Mesodinium spp. blooms, estuarine turbidity maxima, and
lateral bays.

3.4 Cyber-infrastructure

The primary role of the SATURN cyber-infrastructure is to
enable the free and timely flow of information among
diverse producers and consumers, while also adding value
to the information when appropriate (Baptista et al., 2008).
There are three major information producers in the
SATURN collaboratory, all of which are also (to varying
degrees) information consumers: (a) sensors and platforms
of the endurance stations and pioneer array; (b) model
simulations; and (¢) communities of practice ranging from

scientists to educators, industry, emergency responders,
regional managers and decision makers.

Examples of products and tools that add value to
information include the Climatological Atlas, the Data
Explorer and the Data Near Here (see also stccmop.org/
datamart/data_tools). The Climatological Atlas, based
primarily on the Virtual Columbia River, offers insights
into multiple scales of variability of the contemporary
system, via statistics of various estuarine metrics and river
and ocean forcing (e.g., Fig. 14). Data Near Here (Megler
and Maier, 2013; also, Fig. 15) is a ranked-search engine
designed to locate relevant CMOP datasets based on
position, depth, time, variables and variable values.
Increasingly sophisticated versions of this tool have been
tested and deployed. The Data Explorer is a web-based tool
for access, exploratory analysis and contextualization of
SATURN observations (e.g., Fig. 16), which gives users
the ability to annotate data and share analyses.

Underlying all products and tools are managed informa-
tion flows (Fig. 17). Once the data is standardized and
accessible, we apply several levels of quality assurance,
creating multiple versions of the data. All quality levels are
stored and made available. This approach allows research-
ers to see the effects of quality assurance procedures and
apply alternative filters if desired; also, data can be



46.35

46.30

46.25

46.20

46.15

46.10

46.05

Antonio M. BAPTISTA et al. Collaborative estuarine science 673
Bottom salinity/psu
T T x
( SATURN-01
© SATURN-02
SATURN-03

@® SATURN-04
@® Woody Island
@® AMI69
@® Beaver Army

Forecast: F33

2015-04-06 01:00 PST

10 m contour

1 1 1
-124.0 -123.9 -123.8 -123.7 -123.6 -1235 -123.4 -1233 -123.2

-124.1

N-S winds/(m-s™")

SATURN-01, -02, -03, -04, AM169, bottom salinity

|
30 o

20

10

1.0 1.5
Days

2.0 2:5 3.0

SATURN-04, Wood Island, Beaver Army elevations/m

Discharge at Beaver Army/(1 X 10° m*s™")

10 / \A/’\/\/\/
0 05 1.0 15 2.0 25 3

Days

[N ]

.0

Fig. 13 The Virtual Columbia River operational products include forecasts of circulation, posted daily at stccmop.org/datamart/
virtualcolumbiariver/forecasts. Displayed here, for illustration, is a mid-ebb view of the predicted bottom salinity field in the estuary (top
panel) for April 6, 2015, at 1:00AM Pacific Standard Time, complemented (bottom panels) by 3-day time series of salinity (left bottom),
water levels (top right) and North-South winds (top left) at estuarine and plume stations, and of flow at Beaver Army dock (where
SATURN-05 is located). Forecasts are typically done for the day of creation and for the two ensuing days.

reprocessed if better quality protocols are developed. The
approach is implemented through a combination of file
transfer and archiving, storage of data, creation of metadata
and quality assurance metadata in a relational database,
and generation of multiple iterations of a NetCDF"
archive.

As an example, consider the real-time flow of data from
a sensor at SATURN-03. A computer at the station allows

data to be received from the instrumentation in real time,
by a serial port (SP) reader. The serial port reader writes
each raw data line from the sensor to file with a preceding
time stamp line. The data from each data line is initially
processed (a) to assign a depth, instrument ID and time
information; (b) for some instruments, to convert engineer-
ing units into scientific units and (c) to write the data to a
file. The raw (RV0) and initially processed (RV1) files are

1) NetCDF (Network Common Data Form) is a set of software libraries and self-describing machine-independent data formats, which support the creation,
access and sharing of array-oriented scientific data (see unidata.ucar.edu/software/netcdf).
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Fig. 14 A Climatological Atlas is one of the operational products
of the Virtual Columbia River. Displayed here, for illustration, is
the climatology of the salinity intrusion length (SIL) in the South
channel of the estuary, based on a multi-year (1999-2014)
simulation database. Shown are daily SIL statistics: average (in
black), 25 and 75 percentiles (dark gray) and maxima and minima
(lighter gray). Overlaid (in red) is SIL for 2011, a year
characterized by exceptionally high discharges from mid-May
through July (see Fig. 2). Because of its inverse relationship with
river discharge, SIL in 2011 is extremely low for that period. See
stccmop.org/datamart/virtualcolumbiariver/simulationdatabases/
climatologicalatlas for more capabilities of the Climatological
Atlas. Image is a screen capture of a Climatological Atlas session.

Frequency: Daily -

transferred from the station computer to a central CMOP
computer network in Portland, using the rsync" utility
(with the first link being over a 802.11 wireless network,
using the UNOLS Shipboard Wireless Access Protocol —
SWAP, see siomail.ucsd.edu/mailman/listinfo/swap).

As the RVO file is updated in Portland, a second
processing program reads the new records and regenerates
the RV1 data lines, which are then entered into a
PostgreSQL? database in a station-specific table. A third
processing program reads new lines from the database and
further processes them to store in instrument-specific tables
in the database. For some data sets, where data from
multiple instruments is required to generate scientifically
meaningful results (e.g., dissolved oxygen, where salinity
and temperature from a conductivity and temperature
sensor are required to convert dissolved oxygen voltage
into concentration), other programs are run to pull data

from the instrument-specific tables and load the results into
additional instrument-specific tables.

A series of metadata tables describe which instruments
are collecting data at SATURN-03 at any given time, and
the metadata are used by an additional script to generate
NetCDF files containing all received data that were
successfully parsed, which are publicly served via
THREDDS? (labeled raw data or PD0). Real-time quality
control is used for some variables to generate quality flags,
stored in the database, and NetCDF files are generated
containing data from which bad or suspect data are
excluded. These files are served via THREDDS, labeled
preliminary data or PDI.

The PDO and near real-time PD1 data are ultimately
further quality controlled. The quality-control process
includes a visual inspection of the PDO or PD1 data and a
review of the data within a historical context as well as in
relation to data from other SATURN stations. Results from
pre- and post-deployment checks and sensor-specific
quality assurance protocols are used to evaluate sensor
calibration stability and drift. At some stations, sensor
performance and stability are monitored using on-station
weekly measurements of aerated DI (deionized water) and
near-station CTD casts made with the M/V Forerunner.
Additional quality control processes may include correc-
tions for sensor artifacts, identification of periods of
fouling and corrections for sensor drift. A final quality
level (on a scale of 1 [excellent] to 5 [bad]) is assigned to
the data, and metadata are generated to detail the data
quality determination and any corrections applied to the
data.

After full quality control of the data is completed, a third
set of NetCDF files is generated and served via THREDDS
labeled as verified data or PD2 (e.g., Fig. 18). The PD2
data files contain the raw data values, final data values that
may have been adjusted during quality control, and data
quality flags. For the THREDDS service, SATURN-03
data are divided up into monthly files.

Once sensor data from SATURN-03 are in the database
and NetCDF files, they are viewable on the station page for
SATURN-03, findable in Data Near Here, searched and
manipulated in Data Explorer, or downloaded in several
different formats.

4 Lessons learned

It is challenging to implement and maintain an infra-
structure such as SATURN. While a comprehensive
discussion is beyond the scope of this paper, Figure 3
illustrates some basic challenges for the observation

1) rsync is an open-source utility that provides fast incremental file transfer and is freely available under the GNU General Public License (see rsync.samba.

org).

2) PostgreSQL is an open source object-relational database system (see postgresql.org).
3) THREDDS is a web server that provides metadata and data access for scientific datasets (see unidata.ucar.edu/software/thredds/current/tds/TDS.html).
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Fig. 15 Data Near Here offers a convenient means to locate SATURN data sources within or near a region (here, the adjustable box in
the map) and time period (here, 2011-09-25 to 2011-09-30), for a target variable or category (here, nutrients). This particular search
located 50 sources that meet or are similar to the search criteria (including the endurance stations and cruises, shown in the map), ranked
(and colored, from green to yellow and red) by how close they are to the criteria. The web interface displays information about those
sources. The data identified can (in whole or part) be downloaded through files, or exported to Data Explorer. For access to Data Near
Here, see stccmop.org/datamart/data_near_here. Image is a screen capture of a Data Near Here session.

network. First, we note that there are extensive data gaps in
the endurance stations and that, post-2008, some the
original physical stations were discontinued. The gaps
reflect in part the often-harsh environmental conditions in
the Columbia River coastal margin. But data gaps and
discontinuations also reflect the precarious balance among
available resources, long-term goals and short-term
priorities.

Figure 3 also shows that the inter-annual variability of
the ocean (illustrated by El Niflo-Southern Oscillation) and
river forcing (illustrated by discharge at Bonneville Dam)
occur at scales that require longer time series than currently
available, both for physical and especially for biogeo-
chemical variables. For instance, no large El Nifio has yet
been observed with the interdisciplinary endurance
stations. The time series are not yet long enough to capture
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Fig. 16 Example of the exploratory use of the Data Explorer. The top panel shows, from a Im-deep sensor, multiple CDOM fronts
crossing SATURN-02 on April 16 and (more markedly) April 17, 2011. The middle panel shows salinities at 1 m (blue) and 35 m (red).
The coupling of salinity and CDOM data suggest that the fronts are tied to the freshwater plume, and thus have a riverine source. The
bottom panel shows that, while most fronts occur during ebb, the largest of the fronts occurs during flood—suggesting by its intensity the
effective re-entrainment of water released from the river in the prior ebb or ebbs. Visualized but not shown: wind direction is
approximately constant during the onset of the fronts, while wind speed has a temporary decrease. All panels are extracted directly from
the Data Explorer web interface. See stccmop.org/datamart/observation network/dataexplorer, for access to the Data Explorer. Image is a
screen capture of a Data Explorer session.
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Fig. 18 The importance of quality assessment is illustrated through a time series of phycoerythrin fluorescence at SATURN-03 (from the
2.4 m deep pumping port) for the summer of 2010. Colors represent data quality: PDO (blue) and PD2 (red). Quality control corrected in
this case a significant artifact due to turbidity, zeroed the data and removed data from an identified period of sensor fouling. Prior to
correction, the data were difficult to interpret, with the artifact masking the phycoerythrin signal. Following quality control the
phycoerythrin data clearly capture the dynamics of the bloom of Mesodinium spp. and when placed in the context of dissolved oxygen data
(not shown) suggest that the bloom is responsible for local super-saturation of dissolved oxygen in the estuary. Image is taken from a Data

Explorer session.

climate scales of importance for estuaries, because
endurance observation networks are a relatively recent
concept for these ecosystems. Moreover, funding mechan-
isms to maintain endurance time series on a permanent
basis are insufficiently established, even if the U.S.
Integrated Ocean Observing System represents a step in
the right direction.

In spite of these and other challenges, collaboratories
such as SATURN can transform the ability to conduct
hypothesis-driven science in estuaries, because the testing
of hypotheses can be conducted faster, at a reduced cost
and more thoroughly by leveraging the (sensed and
modeled) data-rich environments that these infrastructures
create. The power of collaboratories is exemplified by
modern field campaigns. For instance, it is now possible
with the benefit of skill-assessed modeling products to plan
campaigns in silico prior to the deployment of any mobile
platforms (e.g., vessels or AUVs) in the field. This
capability increases the likelihood of being able to place
sensors where and when needed to capture features as
complex and transient as plume fronts and estuarine
turbidity maxima. This capability also improves the safety
of high-risk deployments, such as AUV missions in the
highly energetic North Channel or across the mouth of the
Columbia River. In another example, it is also possible to
conduct land-based campaigns where specialized adaptive
sampling (e.g., ESP sampling for RNA and DNA analyses)
is triggered by features (e.g., estuarine turbidity maxima)
or thresholds (e.g., oxygen-saturation levels) detected by
co-located sensors or predicted by coordinated models.

The extensive data sets produced by collaboratories also

open the doors for exploratory or discovery science (Hey
et al., 2009) as a legitimate and effective manner to
advance understanding of estuaries. For instance, multi-
year simulations of circulation are fertile grounds for
exploring seasonal and inter-annual patterns and trends of
change, not only for circulation (e.g., characterization of
estuarine regimes), but also for circulation-dependent
ecosystem features, such as estuarine habitat and ocean-
entry conditions of juvenile salmon (Burla, 2009; Burla et
al., 2010b; Miller et al., 2013, 2014). It is also possible to
conduct low-cost remote research or education. As an
example, it is possible for someone in, say, China, to
conduct exploratory research on the Columbia River
estuary —or to introduce students to estuaries using the
Columbia River as reference (Green et al., 2013)—by
assessing and contextualizing SATURN sensor data via
tools such as the Data Explorer (e.g., Fig. 16).
Regardless of whether hypothesis-testing or exploratory
analyses are preferred (or combined), the open information
flows of collaboratories are particularly effective in
supporting interdisciplinary team science —as illustrated
by the ~150 multi-author peer-reviewed articles published
since CMOP’s inception in July 2006 through March
2015, with our major scientific synthesis still ahead. See
stccmop.org/publications for a list of CMOP articles.
Collaboratories such as SATURN also offer exciting
opportunities for technology assessment and development.
For instance, rigorous modeling benchmarks based on
SATURN observations (Kérni et al., 2015) have not only
improved the skill of current circulation simulation
databases, but have also offered guidance on priority
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requirements for next-generation estuarine models. In
another example, the development of sophisticated
estuarine biogeochemical models for the Columbia River
estuary has been transformed by the availability of time
series from interdisciplinary sensor packages. In addition,
the SATURN infrastructure has supported the development
or testing of multiple sensor technologies under challen-
ging environmental conditions (high turbidity, fluctuating
salinity, etc.).

Collaboratories are also extremely effective in helping
translate science into regional decision-making and
management because scientists can respond quickly to
requests for applied studies, and also because regional
stakeholders have knowledge and even “ownership” of the
development, priorities and maintenance of collabora-
tories. Examples of science translation to stakeholders
include the CMOP contributions to the Columbia River
Channel Improvement Project (Seaton et al., 2014) and to
the Columbia River Treaty Review (U.S. Entity, 2013). In
both cases, circulation models, skill-assessed against
sensor data and linked to fisheries and other ecosystem
metrics, helped build regional consensus on specific issues.
In the case of the Columbia River Channel Improvement
Project, the relevant issue was whether to continue post-
construction field observations of the potential impact of a
recent deepening of the channel. In the case of the
Columbia River Treaty Review, the relevant issue was to
what extent the estuary was influenced by a set of scenarios
of change in hydropower operations.
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