Skip to main content
Log in

X-ray diffraction and relativistic DFT studies on the molecular biomarker fac-Re(CO)3(4,4′-dimethyl-2,2′-bpy)(E-2-((3-amino-pyridin-4-ylimino)-methyl)-4,6-di-tert-butylphenol)(PF6)

  • S.I. : Coordination and Bioinorganic Conference
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The fac-[Re(CO)3(4,4′-dimethyl-2,2′-bpy)L]PF6 (C2) complex have been recently reported as a useful fluorophore for walled cells (yeasts and bacteria) without the need of antibodies. In the present work, we report the structural parameters of the C2 complex, where L is an ancillary ligand E-2-((3-amino-pyridin-4-ylimino)-methyl)-4,6-di-tert-butylphenol, which presents an intramolecular hydrogen bond (IHB). The C2 crystals were obtained by slow evaporation of a dichloromethane solution, yielding yellow blocks. The crystal structure solution of the complex C2 showed a monoclinic crystal system and discrete organometallic cations and PF6 as the counter ion, with partially occupation of solvent molecules (CH2Cl2). The complex C2 having a fac-geometry of the three carbonyl ligands, possesses the following bond distances Re–C(CO): Re1–C24, 1.87(8) Å; Re1–C25, 1.58(12) Å and Re1–C26, 1.90(8) Å. The distorted octahedral geometry observed in the C2 structure is due to the C(CO)–Re1–N1(imine) angle for the three carbonyls that are significantly different. The Re–N1 bond distance of 2.16(4) Å corresponds to the nitrogen coordination of the pyridine fragment of the ancillary ligand L, completing the octahedral geometry. Here we complement the C2 descriptions due to the considerable biological interest of its use as d6 metal fluorophore in walled cells (i.e., yeast and bacteria). DFT calculations were performed including scalar and spin–orbit (SO) relativistic effects with agree often reasonably well with experimental X-ray data. Through frequency calculations we estimated the strength of the intramolecular hydrogen bond (with a OH···N distance of 2.621 Å) accounting for near 40 kcal/mol, indicating that is a strong hydrogen bond which contributes to the molecular stability. In addition, we observed the L electron-withdrawing effect on the rhenium core. The agreement between the observed and computed bond distances and angles brings confidence on the choice of the computed models and level of theory. These kind of Rhenium (I) complexes designed to develop novel fluorophores suitable for biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal J, Fujita E, Schaefer HF, Muckerman JT (2012) Mechanisms for CO production from CO2 using reduced rhenium tricarbonyl catalysts. J Am Chem Soc 134:5180–5186. doi:10.1021/ja2105834

    Article  CAS  Google Scholar 

  • Alvarado-Soto L, Ramírez-Tagle R, Arratia-Pérez R (2008) Spin–orbit effects on the aromaticity of the Re3Cl9 and Re3Br 9 clusters. Chem Phys Lett 467:94–96. doi:10.1016/j.cplett.2008.11.020

    Article  CAS  Google Scholar 

  • Amoroso AJ, Arthur RJ, Coogan MP, Court JB, Fernandez-Moreira V, Hayes AJ, Lloyd D, Millet C, Pope SJA (2008) 3-Chloromethylpyridyl bipyridine fac-tricarbonyl rhenium: a thiol-reactive luminophore for fluorescence microscopy accumulates in mitochondria. New J Chem 32:1097–1102. doi:10.1039/B802215A

    Article  CAS  Google Scholar 

  • (2007) Amsterdam Density Functional (ADF) Code. Vrije Universiteit, Amsterdam

  • Argazzi R, Bignozzi CA, Heimer TA, Meyer GJ (1997) Remote interfacial electron transfer from supramolecular sensitizers. Inorg Chem 36:2–3. doi:10.1021/ic960717g

    Article  CAS  Google Scholar 

  • Balakrishnan G, Rajendran T, Murugan KS, Kumar MS, Sivasubramanian VK, Ganesan M, Mahesh A, Thirunalasundari T, Rajagopal S (2015) Interaction of rhenium(I) complex carrying long alkyl chain with Calf Thymus DNA: cytotoxic and cell imaging studies. Inorg Chim Acta 434:51–59. doi:10.1016/j.ica.2015.04.036

    Article  CAS  Google Scholar 

  • Barrot M, Fabrias G, Camps F, Molins E, Roig A, Maniukiewlcz W (1998) 1,5,8,12-Tetrathiaspiro[6.6]tridecane. Act Cryst C54:533–534. doi:10.1107/S0108270197015138

    CAS  Google Scholar 

  • Bera MK, Chakraborty C, Malik S (2016) Salen-based enantiomeric polymers for enantioselective recognition. New J Chem 40:8074–8080. doi:10.1039/C6NJ00844E

    Article  CAS  Google Scholar 

  • Bertrand HC, Clede S, Guillot R, Lambert F, Policar C (2014) Luminescence modulations of rhenium tricarbonyl complexes induced by structural variations. Inorg Chem 53:6204–6223. doi:10.1021/ic5007007

    Article  CAS  Google Scholar 

  • Bhuvaneswari J, Mareeswaran PM, Shanmugasundaram S, Rajagopal S (2011) Protein binding studies of luminescent rhenium(I) diimine complexes. Inorg Chim Acta 375:205–212. doi:10.1016/j.ica.2011.05.009

    Article  CAS  Google Scholar 

  • Bingol B, Durrell AC, Keller GE, Palmer JH, Grubbs RH, Gray HB (2013) Electron transfer triggered by optical excitation of phenothiazine-tris(meta-phenylene-ethynylene)-(tricarbonyl)(bpy)(py)rhenium(I). J Phys Chem B 117:4177–4182. doi:10.1021/jp3010053

    Article  CAS  Google Scholar 

  • Black DR, Hightower SE (2012) Preparation and characterization of rhenium(I) dicarbonyl complexes based on the meridionally coordinated terpyridine ligand. Inorg Chem Commun 24:16–19. doi:10.1016/j.inoche.2012.07.034

    Article  CAS  Google Scholar 

  • Carreño A, Preite M, Manriquez JM, Vega A, Chavez I (2010) Phenyl 3,5-di-tert-butyl-2-hydroxybenzoate. Act Cryst E66:o3290. doi:10.1107/S1600536810044028

    Google Scholar 

  • Carreño A, Ladeira S, Castel A, Vega A, Chavez I (2012) (E)-2-{[(2-Aminopyridin-3-yl)imino]methyl}-4,6-di-tert-butylphenol. Act Cryst E66:o2507–o2508. doi:10.1107/S1600536812032060

    Google Scholar 

  • Carreño A, Vega A, Zarate X, Schott E, Gacitua M, Valenzuela N, Preite M, Manriquez JM, Chavez I (2014) Synthesis, characterization and computational studies of (E)-2-{[(2-aminopyridin-3-yl)imino]-methyl}-4,6-di-tert-butylphenol, Quim. Nova 37:584–588. doi:10.5935/0100-4042.20140098

    Google Scholar 

  • Carreño A, Gacitúa M, Páez-Hernández D, Polanco R, Preite M, Fuentes JA, Mora GC, Chávez I, Arratia-Pérez R (2015a) Spectral, theoretical characterization and antifungal properties of two phenol derivative Schiff bases with an intramolecular hydrogen bond. New J Chem 39:7822–7831. doi:10.1039/C5NJ01469G

    Article  Google Scholar 

  • Carreño A, Gacitua M, Schott E, Zarate X, Manriquez JM, Preite M, Ladeira S, Castel A, Pizarro N, Vega A, Chavez I, Arratia-Perez R (2015b) Experimental and theoretical studies of the ancillary ligand (E)-2-((3-amino-pyridin-4-ylimino)-methyl)-4,6-di-tert-butylphenol in the rhenium(I) core. New J Chem 39:5725–5734. doi:10.1039/C5NJ00772K

    Article  Google Scholar 

  • Carreño A, Gacitúa M, Fuentes JA, Páez-Hernández D, Peñaloza JP, Otero C, Preite M, Molins E, Swords WB, Meyer GJ, Manríquez JM, Polanco R, Chávez I, Arratia-Pérez R (2016a) Fluorescence probes for prokaryotic and eukaryotic cells using Re(CO) +3 complexes with an electron withdrawing ancillary ligand. New J Chem 40:7687–7700. doi:10.1039/C6NJ00905K

    Article  Google Scholar 

  • Carreño A, Gacitúa M, Fuentes JA, Páez-Hernández D, Araneda C, Chávez I, Soto-Arriaza M, Manriquez JM, Polanco R, Mora GC, Otero C, Swords WB, Arratia-Pérez R (2016b) Theoretical and experimental characterization of a novel pyridine benzimidazole: suitability for fluorescence staining in cells and antimicrobial properties. New J Chem 40:2362–2375. doi:10.1039/c5nj02772a

    Article  Google Scholar 

  • Carreño A, Schott E, Zarate X, Manriquez JM, Vega JC, Mardones M, Cowley AH, Chavez I, Hinestroza JP, Arratia-Perez R (2016c) DFT studies on coordination models for adsorption essays of Cu(II) and Ni(II) solutions in modified silica gel with iminodiacetic groups. Chem Pap. doi:10.1007/s11696-016-0022-6

    Google Scholar 

  • Carreño A, Aros A, Otero C, Polanco R, Gacitua M, Arratia-perez R, Fuentes J (2017) Substituted bidentate and ancillary ligands modulate the bioimaging properties of the classical Re(I) tricarbonyl core with yeasts and bacteria. New J Chem 41:2140–2147. doi:10.1039/c6nj03792e

    Article  Google Scholar 

  • Carrington SJ, Chakraborty I, Bernard JML, Mascharak PK (2016) A theranostic two-tone luminescent photoCORM derived from Re(I) and (2-pyridyl)-benzothiazole: trackable CO delivery to Malignant cells. Inorg Chem 55:7852–7858. doi:10.1021/acs.inorgchem.6b00511

    Article  CAS  Google Scholar 

  • Cattaneo M, Vergara MM, García Posse ME, Fagalde F, Parella T, Katz NE (2014) Spectroscopic, electrochemical and computational studies of rhenium(I) and ruthenium(II) complexes incorporating the novel tetradentate ligand 1,4-bis(4-(4′-methyl)-2,2′-bipyridyl)-2,3-diaza-1,3-butadiene (BBDB) and its derivatives. Polyhedron 70:20–28. doi:10.1016/j.poly.2013.12.018

    Article  CAS  Google Scholar 

  • Chan CY, Pellegrini PA, Greguric I, Barnard PJ (2014) Rhenium and technetium tricarbonyl complexes of N-heterocyclic carbene ligands. Inorg Chem 53:10862–10873. doi:10.1021/ic500917s

    Article  CAS  Google Scholar 

  • Coogan MP, Platts JA (2016) Blue rhenium tricarbonyl DPPZ complexes—low energy charge-transfer absorption at tissue-penetrating wavelengths. Chem Commun 52:12498–12501. doi:10.1039/C6CC07125B

    Article  CAS  Google Scholar 

  • Cote C, Kirss RU (2010) Rhenium tricarbonyl complexes of 1-benzyl-4-(5-bipyridyl)-1H-1,2,3-triazoles. Inorg Chim Acta 363:2520–2525. doi:10.1016/j.ica.2010.04.019

    Article  CAS  Google Scholar 

  • Czerwieniec R, Kapturkiewicz A, Lipkowski J, Nowacki J (2005) Re(I)(tricarbonyl)+ complexes with the 2-(2-pyridyl)-N-methyl-benzimidazole, 2-(2-pyridyl)benzoxazole and 2-(2-pyridyl)benzothiazole ligands—syntheses, structures, electrochemical and spectroscopic studies. Inorg Chim Acta 358:2701–2710. doi:10.1016/j.ica.2005.03.013

    Article  CAS  Google Scholar 

  • Dashnau JL, Sharp KA, Vanderkooi JM (2005) Carbohydrate intramolecular hydrogen bonding cooperativity and its effect on water structure. J Phys Chem B 109:24152–24152. doi:10.1021/jp0543072

    Article  CAS  Google Scholar 

  • Emamian S, Tayyari SF (2013) Theoretical study of intramolecular hydrogen bonding in the halo derivatives of 1-amino-3-imino-prop-1-ene. J Chem Sci 125:939–948. doi:10.1007/s12039-013-0466-y

    Article  CAS  Google Scholar 

  • Fonseca TAO, Freitas MP, Cormanich RA, Ramalho TC, Tormena CF, Rittner R (2012) Computational evidence for intramolecular hydrogen bonding and nonbonding X···O interactions in 2′-haloflavonols, Beilstein. J Org Chem 8:112–117. doi:10.3762/bjoc.8.12

    CAS  Google Scholar 

  • Garcia R, Perez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47:197–301. doi:10.1016/S0167-5729(02)00077-8

    Article  CAS  Google Scholar 

  • Grabowski SJ (2001) An estimation of strength of intramolecular hydrogen bonds—ab initio and AIM studies. J Mol Struct 562:137–143. doi:10.1016/S0022-2860(00)00863-2

    Article  CAS  Google Scholar 

  • Hallett AJ, Pope SJA (2011) Towards near-IR emissive rhenium tricarbonyl complexes: synthesis and characterisation of unusual 2,2-biquinoline complexes. Inorg Chem Commun 14:1606–1608. doi:10.1016/j.inoche.2011.06.021

    Article  CAS  Google Scholar 

  • Hasselmann GM, Meyer GJ (1999) Diffusion-limited interfacial electron transfer with large apparent driving forces. J Phys Chem B 103:7671–7675. doi:10.1021/jp992086s

    Article  CAS  Google Scholar 

  • Hernandez-Acevedo L, Arratia-Perez R (2004) SPIN-ORBIT effects metal-metal multiple bonded M2X2 halide complexes. J Chil Chem Soc 49:361–365. doi:10.4067/S0717-97072004000400017

    CAS  Google Scholar 

  • Herzog W, Bronner C, Loffler S, He B, Kratzert D, Stalke D, Hauser A, Wenger OS (2013) Electron transfer between hydrogen-bonded pyridylphenols and a photoexcited Rhenium(I) complex. Chem Phys Chem 14:1168–1176. doi:10.1002/cphc.201201069

    Article  CAS  Google Scholar 

  • Interrante LV, Nelson GV (1968) Olefin-phosphine complexes of Manganese(I) and Rhenium(I). Inorg Chem 7:2059–2063. doi:10.1021/ic50068a021

    Article  CAS  Google Scholar 

  • Kaplanis M, Stamatakis G, Papakonstantinou VD, Paravatou-Petsotas M, Demopoulos CA, Mitsopoulou CA (2014) Re(I) tricarbonyl complex of 1,10-phenanthroline-5,6-dione: DNA binding, cytotoxicity, anti-inflammatory and anti-coagulant effects towards platelet activating factor. J Inorg Biochem 135:1–9. doi:10.1016/j.jinorgbio.2014.02.003

    Article  CAS  Google Scholar 

  • Kia R, Safari F (2016) Synthesis, spectral and structural characterization and computational studies of rhenium(I)-tricarbonyl nitrito complexes of 2,2-bipyridine and 2,9-dimethylphenanthroline ligands: π-accepting character of the diimine ligands. Inorg Chim Acta 453:357–368. doi:10.1016/j.ica.2016.08.041

    Article  CAS  Google Scholar 

  • Kim TY, Elliott ABS, Shaffer KJ, McAdam CJ, Gordon KC, Crowley JD (2013) Rhenium(I) complexes of readily functionalized bidentate pyridyl-1,2,3-triazole ‘‘click’’ ligands: A systematic synthetic, spectroscopic and computational study. Polyhedron 52:1391–1398. doi:10.1016/j.poly.2012.05.003

    Article  CAS  Google Scholar 

  • Kim Y, Vanhelmont FWM, Stern CL, Hupp JT (2001) Synthesis and photophysical properties of luminescent rhenium(I) and manganese(I) polypyridine complexes containing pendant1,3,4oxadiazole/ triarylamine assemblies. Inorg Chim Acta 318:53–60. doi:10.1016/S0020-1693(01)00400-5

  • Kirgan R, Simpson M, Moore C, Day J, Bui L, Tanner C, Rillema DP (2007) Synthesis, characterization, photophysical, and computational studies of Rhenium(I) tricarbonyl complexes containing the derivatives of bipyrazine. Inorg Chem 46:6464–6472. doi:10.1021/ic700512j

    Article  CAS  Google Scholar 

  • Kleij AW, Kuil M, Tooke DM, Lutz M, Spek AL, Reek JNH (2005a) ZnII–salphen complexes as versatile building blocks for the construction of supramolecular box assemblies. Chem Eur J 11:4743–4750. doi:10.1002/chem.200500227

    Article  CAS  Google Scholar 

  • Kleij AW, Tooke DM, Spek AL, Reek JNH (2005b) A convenient synthetic route for the preparation of nonsymmetric metallo-salphen complexes. Eur J Inorg Chem 2005:4626–4634. doi:10.1002/ejic.200500628

    Article  Google Scholar 

  • Kowalski K, Szczupak L, Berna T, Czerwieniec R (2015) Luminescent rhenium(I)echromone bioconjugate: Synthesis, photophysical properties, and confocal luminescence microscopy investigation. J Organomet Chem 782:124–130. doi:10.1016/j.jorganchem.2015.01.017

    Article  CAS  Google Scholar 

  • Lam ST, Zhu N, Ka-Man Au V, Wing-Wah Yam V (2015) Synthesis, characterization, electrochemistry and photophysical studies of rhenium(I) tricarbonyl diimine complexes with carboxaldehyde alkynyl ligands. Polyhedron 86:10–16. doi:10.1016/j.poly.2014.03.051

  • Leonidova A, Gasser G (2014) Underestimated potential of organometallic rhenium complexes as anticancer agents. ACS Chem Biol. 9:2180–2193. doi:10.1021/cb500528c

    Article  CAS  Google Scholar 

  • Lo KKW, Zhang KY, Li SPY (2011) Recent exploitation of luminescent Rhenium(I) tricarbonyl polypyridine complexes as biomolecular and cellular probes. Eur J Inorg Chem 24:3551–3568. doi:10.1002/ejic.201100469

    Article  Google Scholar 

  • Lopez R, Loeb B, Striplin D, Devenney M, Omberg K, Meyer TJ (2004) Tuning the excited states in fac-[Re(X2d ppz)(CO)3(L)]: intraligand, charge transfer or both? J Chil Chem Soc 49:149–155. doi:10.4067/S0717-97072004000200009

    CAS  Google Scholar 

  • Losey DJ, Frenzel BA, Smith WM, Hightower SE, Hamaker CG (2013) Tricarbonyl rhenium complex of 2,6-bis(8′-quinolinyl)pyridine: synthesis, spectroscopic characterization, X-ray structure and DFT calculations. Inorg Chem Commun 30:46–48. doi:10.1016/j.inoche.2013.01.013

    Article  CAS  Google Scholar 

  • Machura B, Kruszynski R (2007) X-ray structure, spectroscopic characterisation and DFT calculations of the [Re(CO)3(2,2-biquinoline)Cl] complex. Polyhedron 26:3336–3342. doi:10.1016/j.poly.2007.03.014

    Article  CAS  Google Scholar 

  • Machura B, Świtlicka A, Nawrot I, Michalik K (2010a) Tricarbonyl rhenium complex of 2,2′-bis(4,5-dimethylimidazole), synthesis, spectroscopic characterization, X-ray structure and DFT calculations. Inorg Chem Commun 13:1317–1320. doi:10.1016/j.inoche.2010.07.025

    Article  CAS  Google Scholar 

  • Machura B, Wolff M, Gryca I (2010b) Novel rhenium(II) complex of 2,3,5,6-tetra(2-pyridyl)pyrazine: synthesis, X-ray studies, spectroscopic characterization and DFT calculations. Inorg Chem Commun 13:904–908. doi:10.1016/j.inoche.2010.04.022

    Article  CAS  Google Scholar 

  • Machura B, Switlicka A, Penkala M (2012) N- and S-bonded thiocyanate copper(II) complexes of 2,6-bis-(benzimidazolyl)pyridine—synthesis, spectroscopic characterization, X-ray structure and DFT calculations. Polyhedron 45:221–228. doi:10.1016/j.poly.2012.07.008

    Article  CAS  Google Scholar 

  • Machura B, Wolff M, Benoist E (2013a) Synthesis and spectroscopic characterization of novel oxido-bridged dinuclear rhenium(V) complex of 2-(aminomethyl)benzimidazole. X-ray crystal structures of [Re2O3Cl4(ambi)2]•CH3COCH3 and [Re2O3Cl4(ambi)2]•CH3CN. Inorg Chem Commun 29:101–105. doi:10.1016/j.inoche.2012.12.018

    Article  CAS  Google Scholar 

  • Machura B, Wolff M, Benoist E, Coulais Y (2013b) Tricarbonyl rhenium(I) complex of benzothiazole e Synthesis, spectroscopic characterization, X-ray crystal structure and DFT calculations. J Organomet Chem 724:82–87. doi:10.1016/j.jorganchem.2012.10.020

    Article  CAS  Google Scholar 

  • Mahmood A, Akgun Z, Peng Y, Müller P, Jiang Y, Berke H, Jones AG, Nicholson T (2013) The synthesis and characterization of rhenium nitrosyl complexes. The X-ray crystal structures of [ReBr2(NO)(NCMe)3], [Re(NO)(N5)](BPh4)2] and [ReBr2(NO)(NCMe) {py-CH2-NHCH2CH2 N(CH2-py)2}]. Inorg Chim Acta 405:455–460. doi:10.1016/j.ica.2013.01.017

    Article  CAS  Google Scholar 

  • Manbeck GF, Muckerman JT, Szalda DJ, Himeda Y, Fujita E (2015) Push or pull?Proton responsive ligand effects in rhenium tricarbonyl CO2 reduction catalysts. J Phys Chem B 24:7457–7466. doi:10.1021/jp511131x

    Article  Google Scholar 

  • Manicum AL, Visser HG, Engelbrecht I, Roodt A (2015) Crystal structure of fac-(acetylacetonato-k2 O,O')tricarbonyl(cyclohexyl-diphenylphosphinekP)rhenium(I),C26H28O5 PRe. Z Kristallogr NCS. 230:150–152. doi:10.1515/ncrs-2014-9013

  • Marake DT, Mokolokolo PP, Visser HG, Brinks A (2015) Structural comparison of group 7 tricarbonyl complexes of 2-{[2-(1H-imidazol-4-yl)ethyl]iminomethyl}-5-methylphenolate. Acta Cryst C71:423–429. doi:10.1107/S2053229615008360

    Google Scholar 

  • Meyer GJ (2005) Molecular approaches to solar energy conversion with coordination compounds anchored to semiconductor surfaces. Inorg Chem 44:6852–6864. doi:10.1021/ic0505908

    Article  CAS  Google Scholar 

  • Meyer TJ, Caspar JV (1985) Photochemistry of metal–metal bonds. Chem Rev 85:187–218. doi:10.1021/cr00067a002

    Article  CAS  Google Scholar 

  • Muñoz-Castro A, Arratia-Perez R (2012) Spin–orbit effects on a gold-based superatom: a relativistic Jellium model. Phys Chem Chem Phys 14:1408–1411. doi:10.1039/C1CP22420D

    Article  Google Scholar 

  • Nagy PI (2014) Competing intramolecular vs. intermolecular hydrogen bonds in solution. Int J Mol Sci 15:19562–19633. doi:10.3390/ijms151119562

    Article  CAS  Google Scholar 

  • Partyka DV, Deligonul N, Washington MP, Gray TG (2009) fac-tricarbonyl Rhenium(I) azadipyrromethene complexes. Organometallics 28:5837–5840. doi:10.1021/om900552e

    Article  CAS  Google Scholar 

  • Pazik A, Kamińska B, Skwierawska A, Ponikiewski L (2016) Synthesis, structural and spectroscopic properties of asymmetric Schiff bases derived from 2,3-diaminopyridine. Chem Pap 70:1204. doi:10.1515/chempap-2016-0058

    CAS  Google Scholar 

  • Pyykko P (1988) Relativistic effects in structural chemistry. Chem Rev 88:563–594. doi:10.1021/cr00085a006

    Article  CAS  Google Scholar 

  • Rabanal-Leon WA, Murillo-Lopez JA, Paez-Hernandez D, Arratia-perez R (2014) Understanding the influence of terminal ligands on the electronic structure and bonding nature in [Re63-Q8)]2+ clusters. J Phys Chem A 118:11083–11089. doi:10.1021/jp508892r

    Article  CAS  Google Scholar 

  • Rabanal-Leon WA, Murillo-Lopez JA, Paez-Hernadez D, Arratia-Perez R (2015) Exploring the nature of the excitation energies in [Re63-Q8)X6]4− clusters: a relativistic approach. Phys Chem Chem Phys 17:17611–17617. doi:10.1039/C5CP02003D

    Article  CAS  Google Scholar 

  • Ramírez-Tagle R, Alvarado-Soto L, Hernández-Acevedo L, Arratia-Pérez R (2010) Spin-Orbit and solvent effects in the luminescent [Re6Q8(NCS)6] 4 , Q=S, Se, Te clusters: molecular sensors and molecular devices. J Chil Chem Soc 55:39–43. doi:10.4067/S0717-97072010000100010

    Article  Google Scholar 

  • Robinson EA, Lister MW (1963) A linear relationship between bond orfers and stretching force contants. Can J Chem 41:2988–2995. doi:10.1139/v63-439

    Article  CAS  Google Scholar 

  • Sacksteder LA, Zipp AP, Brown EA, Streich J, Demas JN, DeGraf BA (1990) Luminescence studies of pyridine α-diimine Rhenium(I) tricarbonyl complexes. Inorg Chem 29:4335–4340. doi:10.1021/ic00346a033

    Article  CAS  Google Scholar 

  • SHELXL-PC Package (1988) Bruker analytical X-ray systems, Madison

  • Sreejith SS, Mohan N, Aiswarya N, Prathapachandra Kurup MR (2016) Inclusion, pseudo-inclusion compounds and coordination polymer of Pd(II), Zn(II) and Cd(II) from salen-type Schiff base ligand with a 1,3-diimino spacer group: crystal structures, spectroscopic and thermal studies. Polyhedron 115:180–192. doi:10.1016/j.poly.2016.05.007

    Article  CAS  Google Scholar 

  • Thorp-Greenwood FL (2012) An introduction to organometallic complexes in fluorescence cell imaging: current applications and future prospects. Organometallics 31:5686–5692. doi:10.1021/om3004477

    Article  CAS  Google Scholar 

  • Thorp-Greenwood FL, Balasingham RG, Coogan MP (2012) Organometallic complexes of transition metals in luminescent cell imaging applications. J Organomet Chem 714:12–21. doi:10.1016/j.jorganchem.2012.01.020

    Article  CAS  Google Scholar 

  • Toganoh M, Ikeda S, Furuta H (2007) Synthesis, reactivity, and properties of N-fused porphyrin Rhenium(I) tricarbonyl complexes. Inorg Chem 46:10003–10015. doi:10.1021/ic701208g

    Article  CAS  Google Scholar 

  • Wallace L, Rillema DP (1993) Photophysical properties of Rhenium(I) tricarbonyl complexes containing alkyl- and aryl-substituted phenanthrolines as ligands. Inorg Chem 32:3836–3843. doi:10.1021/ic00070a012

    Article  CAS  Google Scholar 

  • Wang W, Andy Hor TS, Yan YK (2006) Synthesis and X-ray structures of rhenium(I) carbonyl aminoalkoxide and aminocarboxylate complexes. Inorg Chim Acta 359:3754–3762. doi:10.1016/j.ica.2006.03.027

    Article  CAS  Google Scholar 

  • Wei L, Babich JW, Ouellette W, Zubieta J (2006) Developing the {M(CO)3}+ core for fluorescence applications: rhenium tricarbonyl core complexes with benzimidazole, quinoline, and tryptophan derivatives. Inorg Chem 45:3057–3066. doi:10.1021/ic0517319

    Article  CAS  Google Scholar 

  • Wenger OS (2015) Proton-coupled electron transfer with photoexcited ruthenium(II), rhenium(I), and iridium(III) complexes. Coord Chem Rev 282:150–158. doi:10.1016/j.ccr.2014.03.025

    Article  Google Scholar 

  • Wenger OS, Henling LM, Day MW, Winkler JR, Gray HB (2004) Photoswitchable luminescence of Rhenium(I) tricarbonyl diimines. Inorg Chem 43:2043–2048. doi:10.1021/ic030324z

    Article  CAS  Google Scholar 

  • Winslow LN, Rillema DP, Welch JH, Singh P (1989) A Rhenium (I) bipyrimidine tricarbonyl complex containing methyl viologen as the sixth ligand: NMR and structural results. Inorg Chem 28:1596–1599. doi:10.1021/ic00307a034

    Article  CAS  Google Scholar 

  • Wrighton M, Morse DL (1974) The nature of the lowest excited state in tricarbonylchloro- 1, 10-phenanthrolinerhenium(I) and related complexes. J Am Chem Soc 4:998–1003. doi:10.1021/ja00811a008

    Article  Google Scholar 

  • Yue Y, Grusenmeyer T, Ma Z, Zhang P, Pham TT, Mague JT, Donahue JP, Schmehl RH, Beratan DN, Rubtsov IV (2013) Evaluating the extent of intramolecular charge transfer in the excited states of Rhenium(I) donor–acceptor complexes with time-resolved vibrational spectroscopy. J Phys Chem B 117:15903–15916. doi:10.1021/jp409628e

    Article  CAS  Google Scholar 

  • Zhang MT, Irebo T, Johansson O, Hammarstrom L (2011) Proton-coupled electron transfer from tyrosine: a strong rate dependence on intramolecular proton transfer distance. J Am Chem Soc 133:13224–13227. doi:10.1021/ja203483j

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funded partially by project RC120001 of the Iniciativa Científica Milenio del Ministerio de Economía, Fomento y Turismo del Gobierno de Chile and Nucleo UNAB DI-1419-16/N; E. Molins acknowledges funding by the Spanish Ministerio de Economía y Competividad (ENE2015-63969 and SEV2015-0496). We thank Dr. Dayan Paez-Hernandez (UNAB) for relativistic DFT calculations; Dr. Ivonne Chavez (Departamento de Química Inorgánica, Pontificia Universidad Católica de Chile) for instrumentals facilities, Dr. Juan A. Fuentes (Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias Biológicas, UNAB) for biological contributions and B.A. Alfonso Inzunza G. for his help with the English translation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Carreño.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11696_2017_196_MOESM1_ESM.docx

Supporting Information: CCDC 1448327 contains the supplementary crystallographic data for C2. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif. (DOCX 522 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carreño, A., Gacitúa, M., Molins, E. et al. X-ray diffraction and relativistic DFT studies on the molecular biomarker fac-Re(CO)3(4,4′-dimethyl-2,2′-bpy)(E-2-((3-amino-pyridin-4-ylimino)-methyl)-4,6-di-tert-butylphenol)(PF6). Chem. Pap. 71, 2011–2022 (2017). https://doi.org/10.1007/s11696-017-0196-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0196-6

Keywords

Navigation