Skip to main content
Log in

Automated tree detection and crown delineation using airborne laser scanner data in heterogeneous East-Central Europe forest with different species mix

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Identifying tree locations is a basic step in the derivation of other tree parameters using remote sensing techniques, particularly when using airborne laser scanning. There are several techniques for identifying tree positions. In this paper, we present a raster-based method for determining tree position and delineating crown coverage. We collected data from nine research plots that supported different mixes of species. We applied a raster-based method to raster layers with six different spatial resolutions and used terrestrial measurement data as reference data. Tree identification at a spatial resolution of 1.5 m was demonstrated to be the most accurate, with an average identification ratio (IR) of 95% and average detection ratio of 68% being observed. At a higher spatial resolution of 0.5 m, IR was overestimated by more than 600%. At a lower spatial resolution of 3 m, IR was underestimated at less than 44% of terrestrial measurements. The inventory process was timed to enable evaluation of the time efficiency of automatic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • ArcGIS help. Accessed Jun 2015. http://resources.arcgis.com/en/help/main/10.2/

  • Andersen HE, Reutebuch SE, McGaughey RJ (2006) A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods. Can J Remote Sens 32(5):355–366

    Article  Google Scholar 

  • Balenović I, Alberti G, Marjanović H (2013) Airborne laser scanning—the status and perspectives for the application in the south-east European forestry. South-East Eur For 4(2):59–79

    Article  Google Scholar 

  • Heurich M (2008) Automatic recognition and measurement of single trees based on data from airborne laser scanning over the richly structured natural forests of the Bavarian Forest National Park. For Ecol Manag 255(7):2416–2433

    Article  Google Scholar 

  • Höfle B, Mücke W, Dutter M, Rutzinger M, Dorninger P (2009) Detection of building regions using airborne LiDAR—a new combination of raster and point cloud based GIS methods. In: Proceedings of GI_Forum 2009—international conference on applied geoinformatics, July 2009, Austria, pp 66–75

  • Hollaus M, Wagner W, Molnar G, Mandlburger G, Nothegger C, Otepka J (2010) Delineation of vegetation and building polygons from full-waveform airborne lidar data using OPALS software. In Geospatial data and geovisualization: environment, security, and society, special joint symposium of ISPRS technical commission IV and AutoCarto 2010 in conjunction with ASPRS/GaGIS speciality conference, November 2010, Florida

  • Hyyppä J, Kelle O, Lehikoinen M, Inkinen M (2001a) A segmentation-based method to retrieve stem volume estimates from 3-dimensional tree height models produced by laser scanner. IEEE Trans Geosci Remote Sens 39:969–975

    Article  Google Scholar 

  • Hyyppä J, Schardt M, Haggrén H, Koch B, Lohr U, Scherrer HU, Paananen R, Luukkonen H, Ziegler M, Hyyppä H, Pyysalo U, Friedländer H, Uuttera J, Wagner S, Inkinen M, Wimmer A, Kukko A, Ahokas A, Karjalainen M (2001b) HIGH-SCAN: the first European-wide attempt to derive single-tree information from laserscanner data. Photogramm J Finl 18:43–53

    Google Scholar 

  • Hyyppä J, Yu X, Hyyppä H, Maltamo M (2006) Methods of airborne laser scanning for forest information extraction. In: Workshop on 3D remote sensing in forestry, 14–15 Feb 2006, Vienna

  • Hyyppä J, Hyyppä H, Xiaowei Y, Kaartinen H, Kukko A, Holopainen M (2009) Forest inventory using small-footprint airborne LiDAR. In: Topographic laser ranging and scanning: principles and processing. CRC Press, Boca Raton, pp 335–370

  • Jing L, Hu B, Li J, Noland T (2014) Automated individual tree crown delineation from LiDAR data using morphological techniques. IOP Conf Ser Earth Environ Sci. doi:10.1088/1755-1315/17/1/012152

    Google Scholar 

  • Kaartinen H, Hyyppä J (2008) EuroSDR/ISPRS commission II project: tree extraction—final report. Official publication no. 53. EuroSDR, Frankfurt am Main, Germany. Accessed July 2015. http://bono.hostireland.com/~eurosdr/publications/53.pdf

  • Kaartinen H, Hyyppä J, Yu X, Vastaranta M, Hyyppä H, Kukko A, Holopainen M, Heipke Ch, Hirschmugl M, Mosdorf F, Næsset E, Pitkänen J, Popescu S, Solberg S, Wolf BM, Wu JCh (2012) An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sens 4:950–974

    Article  Google Scholar 

  • Khosravipour A, Skidmore AK, Wang T, Isenburg M, Khoshelham K (2015) Effect of slope on treetop detection using a LiDAR canopy height model. ISPRS J Photogramm Remote Sens 104:44–52

    Article  Google Scholar 

  • Korpela I, Dahlin B, Schäfer H, Bruun E, Haapaniemi F, Honkasalo J, Ilvesniemi S, Kuutti V, Linkosalmi M, Mustonen J, Salo M, Suomi O, Virtanen H (2007) Single-tree forest inwentory using LIDAR and aerial images for 3D treetop positioning, species recognition, height and crown width estimation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 36(3/W52):227–233

  • Maas HG (2013) Forestry applications. In: Airborne and terrestrial laser scanning. Whittles Publishing, Dunbeath, pp 213–235

  • Majlingová A (2006) Forestry applications of digital image analysis of RS data with high spatial resolution. Technical University in Zvolen, Zvolen (in Slovak)

  • Majlingová A, Smreček R, Mozoľová Z (2009) Automatized tree crown extraction in relationship to spatial resolution of the image. In: GIS Ostrava 2009

  • Maltamo M, Mustonen K, Hyyppä J, Pitkanen J, Yu X (2004) The accuracy of estimating individual tree variables with airborne laser scanning in boreal nature reserve. Can J For Res 34:1791–1801

    Article  Google Scholar 

  • Mandlburger G, Otepka J, Karel W, Wagner W, Pfeifer N (2009) Orientation and processing of airborne laser scanning data (OPALS)—concept and first results of a comprehensive ALS software. In: ISPRS Workshop Laserscanning 2009. September 2009, France

  • Mikita T, Klimánek M, Cibulka M (2013) Evaluation of Airborne laser scanning data for tree parameters and terrain modelling in forest environment. Acta Univ Agric Silvic Mendel Brun LXI 5:1339–1347

    Article  Google Scholar 

  • OPALS Manual. Accessed Jun 2015. http://geo.tuwien.ac.at/opals/html/index.html

  • Otepka J, Briese C, Nothegger C (2006) First steps to a topographic information system of the next generation. In: Symposium of ISPRS commission IV—geo spatial databases for sustainable development, September 2006, India

  • Pitkänen J, Maltamo M, Hyyppä J, Yu X. 2004. Adaptive methods for individual tree detection on airborne laser based canopy height model. In: Proceedings of ISPRS workshop laser-scanners for forest and landscape assessment, 3–6 October 2004, Freiburg, Germany. Accessed Jun 2015. http://www.isprs.org/proceedings/XXXVI/8-W2/PITKAENEN.pdf

  • Pouliot DA, King DJ, Bell FW, Pitt DG (2002) Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration. Remote Sens Environ 82:322–334

    Article  Google Scholar 

  • Pouliot DA, King DJ, Pitt DG (2005) Development and evaluation of an automated tree detection–delineation algorithm for monitoring regenerating coniferous forests. Can J For Res 35:2332–2345

    Article  Google Scholar 

  • Reitberger J, Heurich M, Krzystek P, Stilla U. 2007. Single tree detection in forest areas with high-density LiDAR data. In: International archives of photogrammetry, remote sensing and spatial information science, 36(3/W49B):139–145

  • Šmelko Š (2000) Forest mensuration. Technical University in Zvolen, Zvolen (in Slovak)

  • Smreček R (2013) Inventory of city green using airborne laser scanning. In: GIS Ostrava 2013, January 2013, Czech Republic (in Slovak)

  • Smreček R, Sačkov I (2013) Utilization of airborne laser scanning for forest border delineation and forest stand vertical structure. In: GIS Ostrava 2013, January 2013, Czech Republic (in Slovak)

  • Solberg S, Naesset E, Bollandsas OM (2006) Single tree segmentation using airborne laser scanner data in a structurally heterogeneous spruce forest. Photogramm Eng Remote Sens 72(12):1369–1378

    Article  Google Scholar 

  • Stereńczak K (2013) Factors influencing individual tree crowns detection based on airborne laser scanning data. For Res Pap 74(4):323–333

    Google Scholar 

  • Stereńczak K, Miścicki S (2012) Crown delineation influence on standing volume calculations in protected area. In: International archives of the photogrammetry, remote sensing and spatial information sciences, Vol XXXiX-B8. XXII ISPRS congress, 25 August–01 September 2012, Melbourne, Australia

  • Strîmbu VF, Strîmbu BM (2015) A graph-based segmentation algorithm for tree crown extraction using airborne LiDAR data. ISPRS J Photogramm Remote Sens 104:30–43

    Article  Google Scholar 

  • Vastaranta M, Kankare V, Holopainen M, Yu X, Hyyppä J, Hyyppä H (2012) Combination of individual tree detection and area-based approach in imputation of forest variables using airborne laser data. ISPRS J Photogramm 67:73–79

    Article  Google Scholar 

  • Vauhkonen J, Ene L, Gupta S, Heinzel J, Holmgren J, Pitkänen J, Solberg S, Wang Y, Weinacker H, Hauglin KM, Lien V, Packalén P, Gobakken T, Koch B, Næsset E, Tokola T, Maltamo M (2012) Comparative testing of single-tree detection algorithms under different types of forest. Forestry 85(1):27–40

    Article  Google Scholar 

  • Yu X, Hyyppä J, Vastaranta M, Holopainen M, Viitala R (2011) Predicting individual tree attributes from airborne laser point clouds based on random forests technique. ISPRS J Photogramm 66:28–37

    Article  Google Scholar 

  • Žíhlavník Š, Scheer Ľ. 2000. Remote sensing of the Earth in forestry. Technical University in Zvolen, Zvolen (in Slovak)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Róbert Smreček.

Additional information

Project funding: This work was supported by the Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and by the Slovak Academy of Sciences under Project No. 1/0953/13: “Geographic information on forest and forest landscape: creation and utilization of particularity”.

The online version is available at http://www.springerlink.com.

Corresponding editor: Hu Yanbo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smreček, R., Sačkov, I., Michňová, Z. et al. Automated tree detection and crown delineation using airborne laser scanner data in heterogeneous East-Central Europe forest with different species mix. J. For. Res. 28, 1049–1059 (2017). https://doi.org/10.1007/s11676-017-0378-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-017-0378-7

Keywords

Navigation