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Abstract

Considerable attention is today devoted to the engineering of films widely used in photocatalytic, solar energy
converters, photochemical and photoelectrochemical cells, dye-sensitized solar cells (DSSCs), to optimize electronic
time response following photogeneration. However, the precise nature of transport processes in these systems has
remained unresolved. To investigate such aspects of carrier dynamics, we have suggested a model for the calcula-
tion of correlation functions, expressed as the Fourier transform of the frequency-dependent complex conductivity
s(ω). Results are presented for the velocity correlation functions, the mean square deviation of position and the
diffusion coefficient in systems, like TiO2 and doped Si, of large interest in present devices. Fast diffusion occurs in
short time intervals of the order of few collision times. Consequences for efficiency of this fast response are dis-
cussed in relation to nanostructured devices.

One of the most important aspects of nanostructures
concerns charge transport, which can be influenced by
particle dimensions and assume different characteristics
with respect to those of bulk. In particular, if the mean
free path of charges due to scattering phenomena is lar-
ger than the particle dimensions, one has a mesoscopic
system, in which the transport depends on dimensions
and one might correct the transport bulk theories by
considering this phenomenon. These problems occur
also in a thin film, in which the smallest dimension can
be less than the free displacement and therefore require
variations to existing theoretical transport bulk models.
This situation occurs particularly in connection with
metal oxide, like transparency, hardness, etc. Therefore
a rigorous knowledge of transport properties is to be
acquired. To establish the applicability limit of a bulk
model and to investigate the time response of systems
at nanoscale we have performed a new approach based
on correlation functions obtained by a Fourier transform
of the frequency-dependent complex conductivity of the
system [1]. With this method it is possible to calculate
these functions using experimental data obtained by var-
ious films, like TiO2 and ZnO also in the form of nano-
wires, which have increasing interest for their
technological, chemical and biomedical applications and

which are engineered to reach the desired technical fea-
tures. Also, the mesoporous films play a very important
role, for their applications in devices for energy genera-
tion, photocatalytic processes in environment remedia-
tions and for the useful electronic propertiestechniques,
in particular the Time-resolved THz spectroscopy
(TRTS) [2,3]. Starting from the Drude–Lorentz model
[4,5] we have obtained directly the correlation function
of velocities, the quadratic average distance crossed by
the charges as a function of time and the diffusion coef-
ficient D.
From a mathematical viewpoint, the Kubo relation of

the linear response must be inverted. But, due to the
presence of a half Fourier-transform, it is necessary to
modify this relation in such a way that the whole time
axis (-∞, +∞) occurs. This procedure is not trivial and
not previously found in the literature.
This new formula can be obtained by relying on linear

response theory; we have started considering a system
with an hamiltonian of the form:

H H H= +0 1 (1)

with H1 having small effects respect to H0, and negli-
gible in the remote past (adiabatic representation). In
the case of an electric field of frequency ω we have:

H eE r1 =
 
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For an electric field constant in space and depending
on time as:

 
E E i t= 0e

 (3)

the time dependent corresponding current is:

 
J t E t( ) = ( ) ( )  (4)

Following the standard time-dependent approach [4],
we derived a general formula for the linear response of
a dipole moment density

 
B er V= / in the b direction

with the electric field

E directed in the a direction,

where V is the volume of the system. This permits to
deduce the susceptibility c(ω), which is correlated to
s(ω) via the relation:

1 4 1 4+ ( ) = + ( )
  

 


i (5)

From Eq. 5 we have deduced the real part of s(ω),
denoted in the form s′(ω) as:

′ ( ) = ( ) −( )− 


 
e

V
S KT

2

1


e / (6)

where Sba(ω)is the quantity:

S t r r t
T

i t


  ( ) = ( ) ( )
−∞

+∞
−∫ d e

 
0 (7)

The quantity 〈···〉T is the thermal average, and the
exponential factor arises from equilibrium thermal
weights for Fermi particles. By considering the identity
v d

t
r i H r= = [ ]d  , , Eq. 6 can be written in a form con-

taining the velocity correlation function instead of the
position correlation function. Assuming the high tem-
perature limit ħω < < KT as usual in systems to be con-
sidered in this paper, we obtain:

′ ( ) = ( ) ( )
−∞

+∞
−∫ 

  e
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t v v t
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2
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The integral in Eq. 8 spans the entire t axis, so we can
perform the complete inverse Fourier transform of this
equation. It gives:

< ( ) ( ) > = ( )′

−∞

+∞

∫ 
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KTV

e
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


 0 2 e (9)

with V the volume of the system, K the Boltzmann’s
constant, T the temperature and s′(ω) the real part of
s(ω), given by:

 
  

   

′ ( ) =
−( ) +

ne

m
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0
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(10)

where n is the carrier density, ω0 the proper oscillator
frequency, 1/τ the collision frequency [4,5].
The mean squared displacement in relation with the

correlation function of velocities is given by:

   
R t R t t t v t v

t

( ) − ( )⎡⎣ ⎤⎦ = −( ) ( ) ( )′ ′ ′∫0 2 0
2

0

d · (11)

By integration of Eq. 9 with Eq. 10, we deduced all
the results for

 
v v t0( ) ⋅ ( ) , R2(t) and d

x
R t

d
2 ( ) with

x = t/τ [6].
The main advantage of this new formulation is the

disposal of exact results for describing the dynamic
behaviour, as extracted by time-resolved techniques. In
our analytical procedure we have distinguished the case
ωo = 0 from the case ωo ≠ 0. For this latter, three cases
occur in connection with the sign of the quantity
Δ = −4 12

0
2  . After obtaining the respective s′(ω), we

have found the poles of these functions and then the
residues for integration in the complex ω-plane via Cau-
chy theorem.
We have used our results for discussing transport in a

conventional semiconductor such as doped Si, non con-
ventional TiO2 and other systems where anomalous
transport has been found.
The most important characteristics of the results are

illustrated by concrete examples in Figures 1, 2, 3, 4, and 5.
In Figure 1, we show R2 for doped Si. For this semi-

conductor, the conductivity is the contribution of two
terms, a Drude–Lorentz term and a Drude term [7]. At
large times the Drude–Lorentz term leads to an R2

approaching a constant value (see Figure 2), while the
Drude term alone (Figure 1) is the dominant term at
large times. Therefore for sufficiently large times, only
the Drude term survives.
We observe that the linear relation at large times

becomes quadratic at smaller times. The cross-over
between the two regimes occurs at times comparable to
the scattering time. This means that diffusion occurs
after sufficient time has elapsed so that scattering events
become significant, while at smaller times the motion is
essentially ballistic.
In Figures 2 and 3 R2 saturates at high t. The plateau

value may assume high values so that R may be larger
than the size of the nanoparticles composing the films.
In general, these features indicate quite enhanced mobi-
lity of carriers in the nanoporous films at small times, in
contrast with a commonly expected low mobility in a
disordered network.

Di Sia and Dallacasa Nanoscale Res Lett 2011, 6:39
http://www.nanoscalereslett.com/content/6/1/39

Page 2 of 5



From these figures we can evaluate the diffusion coef-

ficient D R
t

= 1
2

2d
d

. It is remarkable that high D are

obtained at t/τ of order unity. As an example, from
Figure 3 the deduced that diffusion coefficient is D
~ 1 cm2/s for τ = 10-13s, i.e. comparable to the value
~1 cm2/s of the single crystal rutile [2].
From the other hand, much smaller D can develop at

long times, with values D = 10-4–10-6 cm2/s typical of a
disordered strong scattering system. So, our results indi-
cate quite different behaviour in Si where normal diffu-
sion occurs, and in TiO2 where the Drude–Lorentz
model indicates anomalous diffusion.
The physical reason and mechanism of such increase

can be traced back to ballistic-like motion of the carriers
at early time when scattering is moderate yielding nor-
mal diffusion satisfying Eintein’s rule and to strong

localization due to the scattering at long times with
anomalous diffusion with depression of D.
Figures 4 and 5 report the behaviour of the velocity

correlation function.
We observe that, according to the equations of our

model [8,9], the correlation function of velocities is
never a single decreasing exponential of time, but it is
in general a more complicated combination of exponen-
tials, or an oscillating function of time.
When 1 4 02

0
2− >  , there is a change of sign of

velocity with respect to initial velocity, a backscattering
mechanism as indicated by Smith [10]: there are two
regimes in the temporal response characterized by two
different characteristic times, the inverted region being
dominated by the longer decay time, and the positive
velocity region being due to the shorter time; this region
becomes the normal state diffusion region when ω0 = 0.

Figure 2 R2 vs. x = t/τ for 2 values of τ (ω0 = 1.12 × 1011Hz
dot-dashed; ω0 = 2.24 × 1011Hz dashed) for TiO2 (m = 6me, T =
300 K). Saturation values occur at sufficiently large t.

Figure 3 R2 vs. x = t/τ at constant ω0τ, for 3 values of τ (ω0 =
0.5 × 1013Hz solid; ω0 = 1013Hz dot-dashed; ω0 = 0.5 × 1014Hz
dashed) for TiO2 (m = 6me, T = 300 K).

Figure 4 Velocity correlation function vs. x = t/τ for two values
of aR (  R

2 2
0
24 1= − ) (m = 6me, T = 300 K). Clear

exponentially damped oscillations are displayed in this case.

Figure 1 R2 vs. x = t/τ for some representative values of τ,
typical of doped Si [7] (ω0 = 0, T = 300 K) (Drude model). A
complete description of R2 for Si requires the evaluation of the
contribution of the Drude–Lorentz part (see text).
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These two regimes will give rise to small and large diffu-
sion constants respectively, which will be discussed in
connection with time-resolved techniques.
When 4 1 02

0
2  − > , we observe the presence of

damped oscillations of the velocity in time with strong
coupling leading to oscillating currents which average to
zero in a sufficiently long interval along with the diffu-
sion constant. This regime appearing at large frequen-
cies for a given time constant does not seem to have
been observed in real systems.
The results above give a precise indication on

response times of a system subjected to charge motion.
In the case of doped Si [7] we have verified the Einstein
rule, giving rise to normal diffusion. In the case of TiO2

[2,3], anomalous diffusion is found with time-dependent
diffusion coefficient vanishing at long times and oscillat-
ing behaviour in time of the transport parameters. We
have compared our effective diffusion coefficients
directly with experimental results [11-13] and with
Monte Carlo simulations [14,15], which take into
account the overall mechanisms of scattering, including
phonons, imperfections and doping centres, and traps,
finding that the diffusion coefficient reproduces the
values of experimental or simulated coefficients.
We suggest the possibility that our results can give an

explanation of the ultra-short times and of high mobili-
ties with which the charges spread in mesoporous nano-
particle TiO2 systems, of deep interest in photocatalitic
and photovoltaic systems [16,17]. In particular, the rela-
tive short times (few τ) with which charges can reach
much larger distances than typical dimensions of nano-
particles indicate easy diffusion for charges photopro-
duced inside the nanoparticles towards the surface. The
unexplained fact found experimentally of ultrashort
injection of charge carriers (particularly in Graetzel’s
cells) can be related to this phenomenon [16,17].

Similar high diffusivity is found in a number of other
devices, i.e. GaAs nanowires and ZnO nanoparticles on
which terahertz time-resolved spectroscopy has revealed
different time transport regimes with high diffusion pro-
cesses at short times of the order of the scattering time
and longer time localized motion due to the effects of
scattering [18,19]. Interpretations of these results in
terms of the model suggested here can be given.
Recently, an approach for converting nanoscale

mechanical energy into electrical energy has been sug-
gested by using piezoelectric zinc oxide (ZnO) nano-
wires and TiO2 [20]. Such devices have been shown to
convert mechanical energy into electric energy with
typical ∼1 nW output power per cm2 area. These unex-
pected efficiencies can be explained by anomalous high
diffusion in the oxides of the type presented here.
In summary, we have evaluated the correlation func-

tions for systems for which the Drude–Lorentz model is
valid through the formulation of a new Drude–Lorentz-
like model [8,9], in which such functions can be
obtained as complete Fourier transform of the real part
of the frequency-dependent complex conductivity s(ω).
From our results we deduce some important conse-
quences connected with the nanometric film systems, in
particular the possibility of a fast response of the trans-
port of charge carriers with a direct consequence for the
efficiencies of present devices based on such systems. Of
particular interest for nanostructures is the fact that the

limiting value of
 
R t R( ) − ( )⎡⎣ ⎤⎦0

2
reaches several

nanometers in only few τ times, which means that R
becomes comparable to dimensions of nanoparticles in
few scattering events. This implies the possibility of hav-
ing high mobility of carriers from and towards the sur-
face of nanostructures. This result has possible and
interesting implications in photocatalysis and in energy
generators, i.e. in photochemical, photoelectrochemical
cells and dye-sensitized solar cells (DSSCs) [3]. The
principal consequence is the possibility to have high
charge conversion efficiencies in particular time inter-
vals. We can thus explain the rather unwaited experi-
mental result that some film oxides as TiO2, in which
the percolative layer structure would be expected to
provide a low mobility, are in reality endowed with high
response times of charge injection and with high
mobility.
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Figure 5 Velocity correlation function vs. x = t/τ for some
values of aI (  I

2 2
0
21 4= − ) (m = 6me, T = 300 K).
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