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Alloys with composition Ti25(Fe502 xNix)Al25 (0 £ x £ 50) were investigated employing electron
probe microanalysis (EPMA) and X-ray powder diffraction (XPD). For TiFe2Al, in situ neutron
powder diffraction (ND) was used for the inspection of phase constitution covering the temper-
ature range from 27 �C (300 K) to 1277 �C (1550 K). Combined Rietveld refinement of ND and
XPD data for TiFe2Al revealed that Fe atoms occupy the 8c site in space group Fm�3m; Ti with a
small amount of Al sharing the 4a site, and the remaining Ti and Al atoms adopting the 4b site.
This structural model was successfully applied in the refinement of all alloys Ti25(Fe502 xNix)Al25
(0 £ x £ 50). Partial atom order exists on the Fe-rich side while complete order is observed for the
Ni-rich side. Profiles recorded by in situ neutron powder diffraction for TiFe2Al in the range of
investigated temperatures show two phases, namely Heusler phase and MgZn2-type Laves phase.
Diffraction peaks from the Heusler phase dominate the profiles at lower temperatures but at
higher temperatures the MgZn2-type Laves phase is the main phase. No CsCl-type phase was
found in the alloy in the investigated temperature range. The thermal expansion coefficient of
TiFe2Al is 1.455231025 K21.

Keywords crystal chemistry, diffraction (X-ray/neutron powder),
intermetallics, site occupancy, ternary and quaternary
titanium aluminides, titanium-iron-nickel-aluminum
alloy

1. Introduction

Since the first Heusler alloy was identified by Heusler[1]

in 1903, intermetallic compounds with Heusler-type struc-
ture are attracting considerable interest due to their unique
magnetic, mechanical, thermoelectric and other physical
properties. FeAl-base and NiAl-base alloys with Heusler
type are considered as potential high temperature structural
materials with high strength in combination with excellent
oxidation resistance.[2-8] It is well known that intermetallic
alloys with CsCl-type structure, for example NiAl alumi-
nides,[5-10] are important candidates for high temperature
structural application. However, shortages exist such as poor
ductility at room temperature and the loss of strength at high
temperature because of the open structure of the ordered bcc
lattice. Alloying with elements that form Heusler phase
precipitates has been demonstrated as a useful way to solve
this problem.[2,6,7,11-14] Particularly the control of the two-
phase microstructure of the CsCl and the Heusler phases
turned out to be very important.[5] Isopleths were established

for the sections NiAl-TiNi2Al,
[5] FeAl-TiFe2Al,

[15]

Fe3Al-TiFe2Al-FeAl,
[16,17] NiAl-TiNi2Al-TiNi,

[15,18,19] TiNi2Al-
TiNi,[20] and (Fe, Ni)Al-Ti (Fe, Ni).[15] The influences
of the replacement of X or Z in X2YZ by a fourth
element[15,21-23] on (i) the critical boundaries of the CsCl/
Heusler phase, (ii) the transition temperature from Heusler
to CsCl phase, and (iii) the stability of Heusler phase were
well investigated and discussed.[24] The lattice misfit
between the two coherent phases, CsCl and Heusler phase,
was also thought to be an important factor to affect
the mechanical properties by influencing the shape of the
precipitates, the spatial distribution in the alloy and the
coarsening behavior.[6,12,19,25,26] On the other hand, atom
substitution in binary alloys can drastically increase the
transition temperature to enlarge the range of the Heusler
phase, specifically, in binary Fe3Al with BiF3-type structure
and/or in ternary MnCu2Al-type by substitution of Al by
Si[27] or of Fe by M (M = Ti,[4,16] V, Cr, Mn, and Mo[26,28]),
respectively. For the ternary alloys, TiFe2Al and TiNi2Al,
past efforts focused on physical properties,[3,8,11,12,29-31]

lattice parameters,[6,19,32-40] and structure evaluations.[36]

However, no investigation is known dealing with detailed
atomic site preference in the Heusler phase of the quaternary
system Ti-Fe-Ni-Al. Since the atom’s environment in the
unit cell (the atom species and position of the nearest
neighbors) is of significance to the stability of the ordered
phase[24] and to the material properties,[41] the present work
provides detailed structural information for the Heusler
phase in the quaternary system Ti-Fe-Ni-Al along the
section TiFe2Al-TiNi2Al.

It is worthwhile to note the structural differences among
the related structure types of W, CsCl, BiF3, and MnCu2Al.
Figure 1 shows the crystal structures and corresponding
simulated X-ray diffraction patterns with Miller indices for
Ti-Fe-Al phases. For the structure type of W and CsCl, 8
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conventional unit cells are used in Fig. 1(a) and (b) for
convenient comparison with the larger cell of the BiF3, and
MnCu2Al types. Replacing the central atom in the W-type
structure by an atom of a different species we arrive at the

CsCl-type (Fig. 1b). As a consequence, the substitution
changes the Bravais lattice from body-centered to primitive
and thus triggers the appearance of ‘‘primitive’’ peaks in
the diffraction patterns (e.g., (100) in the CsCl-cell
corresponds to (200) in the unit cell with double lattice
dimension; see Fig. 1b). The BiF3 structure (formula X3Y)
consists of 8 W-type cells where 4 of the central atoms in
tetrahedral position are replaced by a different element
species all together revealing a face-centered symmetry
(see Fig. 1c). The MnCu2Al-type structure can be con-
structed by substitution of the second tetrahedral set of
central atoms by a third atom species without reduction
of the fcc symmetry (see Fig. 1d). Nonzero intensities of
(111), (311) and (331) differentiate the Heusler type (BiF3
and MnCu2Al) from the CsCl-type (see Fig. 1b) but note
that the Miller indices for the CsCl-type refer to a block of
8 conventional unit cells (a = 2a0) in order to compare
with the Heusler type).

2. Experimental Details

A series of alloys with nominal composition Ti25(Fe50-x

Nix)Al25 (x = 0, 10, 20, 25, 30, 40, and 50) were prepared by
argon arc-melting, from high-purity materials (more than
99.9 mass%), on a water-cooled copper hearth. To insure
homogenization, all alloys (1 g for each alloy) were
re-melted three times. Part of each sample was vacuum
sealed in quartz tubes and annealed at 900 �C for 10 days
before being quenched in cold water. X-ray powder diffrac-
tion data from as-cast and annealed alloys were collected
employing a Guinier-Huber image plate system with Cu-Ka1

or Fe-Ka1 (8� < 2h < 100�). Precise lattice parameters were
calculated by least-squares fits to indexed 4h-values employ-
ing Ge as internal standard (aGe = 0.5657906 nm). X-ray
powder intensity data for the determination of structural
parameters were collected on a Siemens D5000 instrument
with Cu-Ka1,2 (10� < 2h < 110�, step (2h) = 0.02�) equipped
with an energy dispersive SOLX detector.

Neutron diffraction was performed at room temperature
for the alloy TiFe2Al annealed at 900 �C in high intensity
mode (Dd/d ‡ 2910-3) and on heating in the temperature
range 27 £ T £ 1277 �C (300 £T £ 1550 K; heating rate:
5 �C/min and dwell time for diffraction run at isothermal
temperature: 180 min) on the high-resolution HRPT dif-
fractometer[42] at the SINQ spallation source of Paul
Scherrer Institute, Switzerland. To reduce preferential
orientation effects, the alloy was powdered to a grain size
below 60 lm. The powder was contained in a Nb-can sealed
under argon, the neutron wavelength is kneutron = 0.1494 nm
and the h range was 5� £ 2h £ 165�. After neutron diffraction
the powder appeared to be densely sintered into a rod-
shaped body that easily separated from the Nb-container.
With respect to a possibly slow kinetic in reaching phase
equilibrium during the relative short dwell time in neutron
diffraction, discs were cut from the rod and were sealed
individually and annealed at 800 �C for 10 days, 900 �C for
7 days, 1000 �C for 4 days, 1100 �C for 24 h and 1200 �C

Fig. 1 Structure types of W (a), CsCl (b), BiF3 (c), MnCu2Al
and corresponding X-ray diffraction patterns simulated for Ti-Fe-
Al alloys. For more convenient comparison, the origins of BiF3
and MnCu2Al-type unit cells have been shifted to (1/4, 1/4, 1/4)
with respect to the conventional settings
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for 12 h. After this long term annealing the phase consti-
tutions in the discs were measured by XPD and EPMA and
should insure equilibrium conditions.

Quantitative Rietveld refinement of the X-ray and
neutron powder diffraction data was performed with the
FULLPROF program,[43] employing internal tables for
neutron scattering lengths and X-ray atomic form factors.

All as-cast and annealed samples were polished via
standard procedures and have been examined by optical
metallography and scanning electron microscopy (SEM).
Specimen compositions were determined by Electron Probe
Microanalysis (EPMA). Compositions of quaternary Ti-Fe-
Ni-Al alloys were established on a Carl Zeiss DSM 962
instrument equipped with a link EDS system operated at
20 kV and 60 lA. Compositions of phases in the TiFe2Al
alloy after ND and after annealing at various temperatures
between 800 and 1200 �C have been measured on a Cameca
SX 50 and a Jeol JXA-8100 at 15 kV and 20 nA using the
pure elements as standards.

3. Results and Discussion

3.1 The Alloy Series Ti25(Fe50-xNix)Al25 (0 £ x £ 50)

X-ray diffraction patterns in Fig. 2(a) were collected
from samples annealed at 900 �C with nominal composi-
tions Ti25(Fe50-xNix)Al25 (0 £ x £ 50). In all cases a single
Heusler-type structure was recorded except for TiFe2Al,
which besides the Heusler phase revealed a tiny amount of
Laves phase, showing consistency with the phase diagram
reported by Palm et al.[44,45] For 1000 �C a similar phase
constitution was found by Fu et al.[41] in this alloy series.
Lattice parameters a as a function of Ni content (x) are
plotted in Fig. 3 in comparison with all literature data
available for the Heusler-type phase. The small differences
of lattice parameters for Ti25(Fe50-xNix)Al25 (0 £ x £ 50) are
attributed to the comparable radii of Fe and Ni atoms.

As indicated in Fig. 1, the nonzero intensity of the (111)
reflection is a strong evidence for the Heusler-type structure
with respect to a CsCl or W-type structure (a detailed
description of the characteristics of each structure type and
corresponding X-ray powder diffractograms are presented in
the Introduction). For TiFe2Al, the weakness of the (111)
XPD reflection prompted us to compare refinements for a
CsCl-type with respect to a Heusler type. From the
difference curves of the refinements (which yield close
residual values for both structure types) in Fig. 2(b) it is not
easy to recognize the proper structural type. However, the
clearly exposed ND intensity of (111) compared to XPD and
the significant difference for the (111) reflection in the
Yobs.–Ycal. curves (see Fig. 2c) unambiguously indicated
the Heusler type as the proper structure. The location of the
heavy Fe atoms in the unit cell (8c-site) were easily defined
by X-ray diffraction, while those of Ti can be found
unambiguously by neutron diffraction due to the negative
neutron scattering length of natural titanium. Therefore the
combined Rietveld refinement of neutron and X-ray data for
TiFe2Al clearly revealed: (i) Fe in the 8c positions, (ii) Ti

atoms share with a small amount of Al the 4a sites and
(iii) the remaining Ti and Al occupy the 4b sites. Due to
centro-symmetry the intensity calculations with the 4a and 4b
sites interchanged are equivalent, i.e., exchange of atom

Fig. 2 Experimental X-ray diffraction patterns for the alloys
Ti25(Fe50-xNix)Al25 (0 £ x £ 50) annealed at 900 �C (a) and Riet-
veld refinements for TiFe2Al from XPD (b) and ND (c) with
respect to different structure types (for refinements with CsCl-
type model, only the Yobs.–Ycal. curves and Bragg positions are
presented in both cases)

Fig. 3 Lattice parameters vs. Ni content in Ti25(Fe50-xNix)Al25
(0£ x£ 50) (annealed at 900 �C) and comparison with literature
data
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occupation in these two positions does not influence the
R-values in the Rietveld refinements. Although the devia-
tion from a fully ordered Heusler-type atom arrangement is
small, the random distribution significantly reduces I(111).
This structure model was successfully employed on the
other compounds of the alloy series Ti25(Fe50- xNix)Al25.
All results from Rietveld refinements are summarized in
Table 1. However, due to only slight differences for the X-ray
scattering factors of Ni and Fe atoms, the occupation of Ni
and Fe in the 8c site could not be defined, and therefore the
Fe/Ni ratio was fixed from EPMA. The obvious increase of

the intensity I(111) throughout the alloy series (as seen in
Fig. 2a) corresponds to a monotonous decrease of the partial
atom disorder in the 4a and 4b sites. Particularly for the
alloys with 0 £ x £ 30 (see Table 1 and Fig. 2), any attempts
to attain more ordered arrangements failed yielding higher
residual values or negative temperature factors (see Fig. 4).
For x = 40 and 50, the 4a and 4b sites show full atom order
in consistency with literature data.[36] It shall be noted that
compositions derived from Rietveld refinements are in good
agreement with nominal compositions as well as with the
compositions obtained from EPMA (see Table 1).

Table 1 Structural data (Rietveld refinements, BiF3, Fm�3m) for Ti25(Fe502xNix)Al25 (0 £ x £ 50) compounds

Parameter/Compound Ti25Fe50Al25(a) Ti25Fe40Ni10Al25 Ti25Fe30Ni20Al25 Ti25Fe25Ni25Al25

Composition from EMPA, at.% Ti23.8Fe50.9Al25.9 Ti24.0Fe38.4Ni12.3Al25.4 Ti25.5Fe32.4Ni17.4Al24.7 ÆÆÆ
Composition from refinement, at.% Ti24.3Fe50Al25.7 Ti24.5(Fe,Ni)50Al25.5 Ti26.0(Fe,Ni)50Al24.0 Ti26.4(Fe,Ni)50Al23.6
a, nm, Guinier 0.58813(1) 0.58716(4) 0.58719(7) 0.58747(4)

Reflections used in refinement 18/25 18 16 17

Number of variables 35 20 21 21

RF = RŒFo - FcŒ/RFo 0.038/0.0090 0.049 0.028 0.041

RI = RŒIo - IcŒ/RIo 0.053/0.0165 0.043 0.027 0.021

RwP = [RwiŒyoi - yciŒ2/RwiŒyoiŒ2]1/2 0.113/0.042 0.072 0.064 0.053

RP = RŒyoi - yciŒ/RŒyoiŒ 0.079/0.031 0.055 0.048 0.041

Re =[(N–P + C)/(Rwiy
2
oi)]

1/2 0.062/0.0048 0.042 0.047 0.045

v2 = (RwP/Re)
2 3.29/75.9 2.97 1.86 1.36

M1, in 8c (1/4, 1/4, 1/4), Occ. 8.00Fe 8.00(Fe,Ni) 8.00(Fe,Ni) 8.00(Fe,Ni)

Beq (Biso) 10
2, nm2 0.173(8) 0.65(3) 0.60(3) 0.71(4)

M2 in 4b (1/2, 1/2, 1/2), Occ. 0.30(1)Ti + 3.70Al 0.48(2)Ti + 3.52Al 0.43(2)Ti + 3.57Al 0.49(3)Ti + 3.51Al

Beq (Biso) 10
2, nm2 0.34(2) 0.58(5) 0.44(6) 0.19(9)

M3 in 4a (0, 0, 0), Occ. 3.59(1)Ti + 0.41Al 3.44(2)Ti + 0.56Al 3.73(2)Ti + 0.27Al 3.74(3)Ti + 0.26Al

Beq (Biso) 10
2, nm2 0.27(2) 0.48(4) 0.28(4) 0.69(7)

Secondary phase (MgZn2-type

Laves phase)

a = 0.4902 nm,

c = 0.7954 nm

ÆÆÆ ÆÆÆ ÆÆÆ

Parameter/Compound Ti25Fe20Ni30Al25 Ti25Fe10Ni40Al25 Ti25Ni50Al25

Composition from EMPA, at.% Ti23.9Fe15.5Ni34.9Al25.7 Ti24.1Fe7.9Ni42.2Al25.8 Ti24.5Ni50.0Al25.5
Composition from refinement, at.% Ti26.3(Fe,Ni)50Al23.7 Ti25.0(Fe,Ni)49.6Al25.4 Ti25.0Ni50.4Al24.6
a, nm, Guinier 0.58802(5) 0.58892(5) 0.58950(6)

Reflections used in refinement 16 17 18

Number of variables 21 21 21

RF = RŒFo - FcŒ/RFo 0.044 0.032 0.030

RI = RŒIo - IcŒ/RIo 0.030 0.016 0.016

RwP = [RwiŒyoi - yciŒ2/RwiŒyoiŒ2]1/2 0.061 0.054 0.054

RP = RŒyoi - yciŒ/RŒyoiŒ 0.046 0.041 0.039

Re =[(N–P + C)/(Rwiy
2
oi)]

1/2 0.038 0.032 0.026

v2 = (RwP/Re)
2 2.53 2.92 4.31

M1, in 8c (1/4, 1/4, 1/4), Occ. 8.00(Fe,Ni) 8.00(Fe,Ni) 8.00Ni

Beq (Biso) 10
2, nm2 0.61(2) 0.69(2) 0.59(3)

M2 in 4b (1/2, 1/2, 1/2), Occ. 0.42(2)Ti + 3.58Al 4.00Al 4.00Al

Beq (Biso) 10
2, nm2 0.37(5) 0.20(5) 0.15(5)

M3 in 4a (0, 0, 0), Occ. 3.79(2)Ti + 0.21Al 4.00Ti 4.00Ti

Beq (Biso) 10
2, nm2 0.28(4) 0.54(4) 0.54(4)

Secondary phase (MgZn2-type Laves phase) ÆÆÆ ÆÆÆ ÆÆÆ

Data collection: D5000 (Cu-Ka1,2) and ND. Crystal structure data are standardized using the program Structure Tidy[46]

(a) Combined refinement of XPD/ND (kn = 0.1494 nm) data
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3.2 In Situ Neutron Diffraction for TiFe2Al
(RT < T < 1277 �C)

A sequence of plots of neutron diffraction patterns
recorded for various temperatures for TiFe2Al are shown in
Fig. 5. The corresponding reflections from the Laves phase
and the Heusler phase as well as temperature axes were
indicated and also those peaks that stem from the Nb-sample
holder. Apparently, diffraction patterns from the Heusler
phase dominated the profiles covering the temperature range
from 27 �C (300 K) to 1027 �C (1300 K) (the profiles
recorded at 1027 �C (1300 K) and 1077 �C (1350 K) were
emphasized in Fig. 5 by a dashed line and a dotted line,
respectively), while the MgZn2-type Laves phase dominates

above 1077 �C (1350 K). This indicates that at higher
temperature the Laves phase is the main phase. Both cubic
phases (Heusler or CsCl phase) and Laves phase coexist in
the alloy at all the investigated temperatures. The presented
profiles can not prove or reject visually the fact that the
cubic phase is Heusler type or CsCl type at temperatures
above 1077 �C. Although the characteristic peak (111) of
the Heusler phase disappeared completely at about 1177 �C
(1450 K), this cannot be taken as evidence that the CsCl-
type phase appears, since the strongest peak (220) of the
Heusler phase already was very weak. The characteristic
peaks probably turned undetectable. Figure 6 shows the

Fig. 4 Occupancy of Ti-atoms in 4a and 4b sites in Ti25(Fe50-x

Nix)Al25 (0£ x £ 50) (annealed at 900 �C) vs. Ni content

Fig. 5 Sequence of plots of neutron diffraction patterns recorded at various temperatures for TiFe2Al. Profiles for 1027 �C (1300 K)
and 1077 �C (1350 K) are emphasized using a dashed line and a dotted line, respectively

Fig. 6 Alloy TiFe2Al. Neutron intensity ratio for the reflections
(111)/(200) and (311)/(222) vs. temperature
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ratio of integrated intensities for the reflections (111)/(200)
and (311)/(222) as a function of temperature. Both ratios
seem to be constant below 527 �C (800 K) but increase with
temperature in the range 527-727 �C (800-1000 K) and turn
to be constant again up to 1027 �C (1300 K). Integration
above 1027 �C (1300 K) was not considered because the
precision of the intensity ratio is questionable. Since the
CsCl phase generally forms preferentially at high temper-
ature, the mixture of two phases will lead to a decrease of
the intensity ratios (111)/(200) and (311)/(222) because both

intensities (200) and (222) not only benefit from the Heusler
phase but also from the CsCl phase. The increase of the
intensity ratios shown in Fig. 6 suggests that the CsCl phase
does not exist in this temperature range.

The atom arrangement in TiFe2Al as derived from
Rietveld refinement of in situ neutron diffraction data shows
consistency with that obtained at room temperature. The
temperature dependence of the occupancies for Ti in 4a and
Ti in 4b is shown in Fig. 7. As no structural voids were
found during the refinements, the temperature dependence
of the occupancy for Al in both sites (not shown in Fig. 7)
can be easily obtained by subtracting the Ti occupancy from
4. The occupancy of Ti in the 4a site is almost constant
below 527 �C (800 K) and increases slightly from 527 �C
(800 K) to 727 �C (1000 K) but decreases drastically above
1027 �C (1300 K). This trend seems to correspond to that of
the intensity ratio (111)/(200) and (311/222) which indicates
that the intensities of (111) and (311) reflect the Ti
occupancy in 4a. Accordingly, at high temperature, the
refined compositions of the Heusler phase significantly
deviate from the stoichiometric composition TiFe2Al.

The temperature dependence of the site preference for
TiFe2Al (Fig. 7) was analyzed in terms of two boundary
models for a possible transformation of the Heusler-type
into the CsCl-type structure. As already discussed in Fig. 1,
such a transition occurs in case the scattering power of 4a
and 4b sites becomes equivalent. Therefore model A would
comply with a CsCl-type structure for composition TiFe2Al
at around 1200 �C (point a, Fig. 7, Fe8c(0.5Ti0.5Al)4a(0.5-
Ti0.5Al)4b), while the site preference according to model B
would reveal the CsCl type lattice at �1300 �C with a
composition for binary FeAl (point b, Fe8cAl4aAl4b, Fig. 7).
Attempts to force refinements in model A fixing appropriate
amounts of Ti in the 4b site were ruled out due to high
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Fig. 7 Occupancy of Ti in 4a and 4b sites in the alloy TiFe2Al
vs. temperature (details on models A and B are given in the
text); inset: temperature dependence of isotropic displacement
factors B (Debye-Waller factor) in each site (B given in
[100 nm2])

Fig. 8 XPD patterns of TiFe2Al annealed at various temperatures
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residual values. Model B disqualifies by an unacceptable
composition (CsCl-type structure only possible at point b).

The isotropic displacement factors, B, for all sites in the
Heusler unit cell were plotted in Fig. 7(inset) as a function
of temperature. A significant rise of B at around 1100 �C
indicates the occurrence of a transition. As indicated in
Fig. 5, at around this temperature, the amount of Heusler
phase in the alloy starts to be reduced greatly on heating.

Analyzing in situ neutron diffraction data we have to
consider a slow equilibration rate in the sample at low
temperature. One can see from Fig. 5 and 7 that data
obtained in the range RT (Room temperature)< T< 900 �C
represent almost the same state of the sample, while at higher
temperatures significant changes are observed due to an
enhanced diffusion rate. In order to elucidate equilibrium
conditions for TiFe2Al, the sample was cut into several discs
after the neutron diffraction experiment and annealed at
various temperatures in the range from 800 to 1200 �C.

The samples after ND diffraction and after annealing at
1200 �C show almost a single Laves phase with a tiny

amount of Heusler phase. The volume fraction of the
Heusler phase increases with decreasing annealing temper-
ature. Accordingly the sample heat treated at 800 �C reveals
major amounts of Heusler phase close to the nominal
composition (Fig. 8, 9). The microstructures of the sample
after neutron diffraction and after annealing at 800 �C are
shown in Fig. 9, indicating an almost single Laves phase at
1277 �C and grain growth and precipitation of Heusler
phase after annealing at 800 �C. The ratio of Heusler phase
to Laves phase versus annealing temperature is plotted in
Fig. 10. A polynomial equation was used to fit the data and
an extrapolation derives the threshold temperature as
T = 1217 �C. It is interesting to note, that this value is
close to the temperature, which was interpreted by Ohnuma
et al.[16] (from thermal effects) as a structural transformation
of TiFe2Al with Heusler type into CsCl-type. In this context
it is important to stress that the TiFe2Al sample at high
temperatures mainly consists of Laves phase in equilibrium
with a Ti-depleted Heusler phase Ti�0.5Fe2Al�1.5.

Fig. 9 Microstructures of the alloy TiFe2Al, (a) after neutron diffraction, Laves phase: Ti27.5Fe49.1Al23.4, Heusler phase: Ti19.8Fe52.8Al27.4;
and (b) annealed at 800 �C, Laves phase: Ti28.7Fe48.7Al22.6, Heusler phase: Ti23.3Fe51.2Al25.5 (data from EPMA in at.%)

Fig. 10 Fraction of Heusler phase in the alloy TiFe2Al vs. tem-
perature (data obtained from Rietveld refinement) Fig. 11 Thermal expansion coefficient aa vs. temperature for

TiFe2Al
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Finally, the thermal expansion coefficient aa of the
Heusler phase TiFe2Al was calculated through a polynomial
fitting of lattice parameters from Rietveld refinements using
the relation:

aa ¼
1

a298K

@aT
@T

� �
p

where aa is the linear thermal expansion coefficient, a298 K

is the lattice parameter value at room temperature, and aT
is the lattice parameter value at the measured temperature.
Discarding low precision data extracted from the dwin-
dling amount of the Heusler phase at high temperatures,
only the lattice parameters below 827 �C (1100 K) were
employed for the analysis. The relation of lattice parameter
with temperature can be described by a linear equation
(see Fig. 11) as: a, nm = 0.5852 + 0.8498910-6 T.
Then aa = 1.4552910-5 K-1, which is very close to the
expansion coefficients of aFe[47,48] and Fe-40 at.% Al
(CsCl-type).[49,50]

4. Conclusions

Combined Rietveld refinement of X-ray and neutron
diffraction data for TiFe2Al revealed the structural details of
the ternary Heusler phase as a function of temperature and
Fe/Ni substitution, i.e., Fe atoms occupy the 8c site, Ti with
a small amount of Al shares the 4a site and the rests of Ti
and Al atoms are situated in the 4a site. This structural
model holds for all alloys Ti25(Fe50-xNix)Al25 (0 £ x £ 50)
revealing partial order in the Fe-rich side but complete
order in the Ni-rich side. Profiles recorded by in situ
neutron powder diffraction for TiFe2Al in the range of
investigated temperatures show two phases, namely Heusler
phase and MgZn2-type Laves phase. The fraction of
Heusler phase in the alloy decreases with temperature. No
CsCl-type phase was found in the alloy in the investigated
temperature range.

The thermal expansion coefficient of the TiFe2Al Heusler
phase was calculated for the temperature range 300-1100 K
(27-827 �C) to be 1.4552910-5 K-1.
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and Structural Studies of FeAl1-xTix, Solid State Commun.,
1995, 95(4), p 263-266

31. P.O. Suzuki and T. Kyono, Thermoelectric Properties of
Fe2TiAl Heusler Alloys, J Alloys Compd., 2004, 377, p 38-42

32. W.B. Pearson, Chapter II: Tabulated Lattice Parameters and
Data on Elemental Metals and Metalloids, Handbook of
Lattice Spacings and Structures of Metals, 2nd ed., W.B.
Pearson, Ed. (New York), Pergamon Press, 1967, p 127

33. A.E. Dwight, Body-Centered Cubic Derivative Structures,
Intermetallic Compounds, J.H. Westbrook Ed. (New York),
Wiley Press, 1967, p 174

34. P.D. Parsons and J. Nutting, Electron Metallography of an
Austentic Steel Containing Aluminal and Titanium, J. Iron
Steel Inst., 1969, 207, p 230

35. K.H.J. Buschow and P.G. Van Engen, Magnetic and Magneto-
Optical Properties of Heusler Alloys Based on Aluminum and
Gallium, J. Magn. Magn. Mater., 1981, 25, p 90-96

36. S. Sridharan, H. Nowotny, and S.F. Wayne, Investigations
within the Quaternary System Titanium-Nickel-Aluminium-
Carbon, Monatsh. Chem., 1983, 114, p 127-135

37. K.H.J. Buschow, P.G. Van Engen, and R. Jongebreur,
Magneto-Optical Properties of Metallic Ferromagnetic Mate-
rials, J. Magn. Magn. Mater., 1983, 38, p 1-22

38. D.E. Okpalugo, J.G. Booth, and C.A. Faunce, Onset of
Ferromagnetism in 3d-Substituted FeAl Alloys. I: Ti, V
and Cr Substitution, J. Phys. F: Metal Phys., 1985, 15,
p 681-692

39. B. Huneau, P. Rogl, K. Zeng, R. Schmid-Fetzer, M. Bohn,
and J. Bauer, The Ternary System Al-Ni-Ti Part I:
Isothermal Section at 900�C: Experimental Investigation
and Thermodynamic Calculation, Intermetallics, 1999, 7,
p 1337-1345

40. F.S. da Rocha, G.L.F. Fraga, D.E. Brandão, C.M. da Silva, and
A.A. Gomes, Specific Heat and Electronic Structure of Heusler
Compounds Ni2TAl (T=Ti, Zr, Hf, V, Nb, Ta), Physica B,
1999, 269, p 154-162

41. H. Fu, D. Chen, X. Cheng, T. Gao, and X. Yang, The Influence
of the X Atoms and Al 3p Occupied States in AlTiX2 (X = Fe,
Cu, Co, Ni), Physica B, 2007, 388, p 303-311

42. P. Fischer, G. Frey, M. Koch, M. Koennecke, V. Pomjakushin,
J. Schefer, R. Thut, N. Schlumpf, R. Buerge, U. Greuter, S.
Bondt, and E. Berruyer, High-Resolution Powder Diffracti-
ometer HRPT for Thermal Neutrons at SINQ, Physica B,
2000, 276-278, p 146-147

43. T. Roisnel and J. Rodrı́quez-Carvajal, WinPLOTR: A Win-
dows Tool for Powder Diffraction Pattern Analysis,Mater. Sci.
Forum, 2001, 378-381, p 118

44. M. Palm, G. Inden, and N. Thomas, The Fe-Al-Ti System,
J. Phase Equilb., 1995, 16, p 209-222

45. M. Palm and J. Lacaze, Assessment of the Al-Fe-Ti System,
Intermetallics, 2006, 14, p 1291-1303
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