Skip to main content
Log in

In Situ Tensile Deformation and Residual Stress Measurement by Neutron Diffraction in Modified 9Cr-1Mo Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The deformation behavior of monolithic modified 9Cr-1Mo (Grade 91) steel during uniaxial tensile loading was studied using the in situ neutron diffraction technique. The residual stress distribution across gas tungsten arc welds in the Grade 91 steel was measured by the time-of-flight neutron diffraction method using the SMARTS diffractometer at Lujan Neutron Scattering Center, Los Alamos National Laboratory. Grade 91 plates were welded using the gas tungsten arc welding (GTAW) technique. The load sharing by different grain orientations was observed during the tensile loading. The residual stresses along three orthogonal directions were determined at the mid-thickness, 4.35 and 2.35 mm below the surface of both the as-welded and post-weld heat-treated plates. The residual stresses of the as-welded plates were compared with those of the post-weld heat-treated plates. The post-weld heat treatment significantly reduced the residual stress level in the base metal, the heat-affected zone, and the weld zone. Vickers microhardness across the weld zone of the as-welded and post-weld heat-treated specimens was evaluated and correlated with the observed residual stress profile and microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. I. Charit and K.L. Murty, Structural Materials Issues for the Next Generation Fission Reactors, JOM, 2010, 62, p 67–74

    Article  Google Scholar 

  2. E. Barker, Creep Fracture of 9Cr-1Mo Steel, Mater. Sci. Eng., 1986, 84, p 49–64

    Article  Google Scholar 

  3. R.L. Klueh, Elevated Temperature Ferritic and Martensitic Steels and Their Application to Future Nuclear Reactors, Int. Mater. Rev., 2005, 50, p 287–310

    Article  Google Scholar 

  4. S. Sathyanarayanan, A. Moitra, K.G. Samuel, G. Sasikala, S.K. Ray, and V. Singh, Evaluation of Dynamic Fracture Toughness Based Reference Temperature (\(T_{0}^{\text{dy}}\) of Modified 9Cr-1Mo Steel in Phosphorus Embrittled and Cold-worked Condition, Mater. Sci. Eng. A, 2008, 488, p. 519–528

  5. K.L. Murty and I. Charit, Structural Materials for Gen-IV Nuclear Reactors: Challenges and Opportunities, J. Nucl. Mater., 2008, 383, p 189–195

    Article  Google Scholar 

  6. K. Laha, K.S. Chandravathi, P. Parameswaran, and K. Bhanu, Sankara Rao, and S.L. Mannan, Characterization of Microstructures Across the Heat-Affected Zone of the Modified 9Cr-1Mo Weld Joint to Understand Its Role in Promoting Type IV Cracking, Metall. Mater. Trans. A, 2007, 38, p 58–68

    Article  Google Scholar 

  7. S.-H. Kim, J.-B. Kim, and W.-J. Lee, Numerical Prediction and Neutron Diffraction Measurement of the Residual Stresses for a Modified 9Cr-1Mo Steel Weld, J. Mater. Process. Technol., 2009, 209, p 3905–3913

    Article  Google Scholar 

  8. G.E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, New York, 1961

    Book  Google Scholar 

  9. P.J. Withers, Residual Stress and Its Role in Failure, Rep. Prog. Phys., 2007, 70, p 2211–2264

    Article  Google Scholar 

  10. A.D. Krawitz, Introduction to Diffraction in Materials Science and Engineering, 1st ed., Wiley, New York, 2001

    Google Scholar 

  11. B. Clausen, D.W. Brown, and I.C. Noyan, Engineering Applications of Time-of-Flight Neutron Diffraction, JOM, 2012, 64(1), p 117–126

    Article  Google Scholar 

  12. L. Pintschovius, Macrostresses, microstresses and stress tensors, Measurement of Residual and Applied Stress Using Neutron Diffraction, M.T. Hutchings and A.D. Krawitz, Ed., Kluwer Academics Publishers, Boston, 1992, p 115–130

    Chapter  Google Scholar 

  13. H.M. Rietveld, A Profile Refinement Method for Nuclear and Magnetic Structures, J. Appl. Cryst., 1969, 2, p 65–71

    Article  Google Scholar 

  14. E.L. Pavlina and C.J. Van Tune, Correlation of Yield Strength and Tensile Strength with Hardness for Steels, J. Mater. Eng. Perform., 2008, 17(6), p 888–893

    Article  Google Scholar 

  15. T. Shrestha, M. Basirat, I. Charit, G.P. Potirniche, K.K. Rink, and U. Sahaym, Creep Deformation Mechanisms in Modified 9Cr-1Mo Steel, J. Nucl. Mater., 2012, 423, p 110–119

    Article  Google Scholar 

  16. S. Alsagabi, T. Shrestha, and I. Charit, High Temperature Tensile Deformation Behavior of Grade 92 Steel, J. Nucl. Mater., 2014, 453, p 151–157

    Article  Google Scholar 

  17. B. Clausen, D.W. Brown, M.A.M. Bourke, T.A. Saleh, and S.A. Maloy, In Situ Neutron Diffraction and Elastic-Plastic Self-Consistent Polycrystal Modeling of HT-9, J. Nucl. Mater., 2012, 425, p 228–232

    Article  Google Scholar 

  18. M.R. Daymond and P.J. Bouchard, Elastoplastic Deformation of 316 Stainless Steel Under Tensile Loading at Elevated Temperature, Metall. Mater. Trans. A, 2006, 37, p 1863–1873

    Article  Google Scholar 

  19. P.A. Turner and C.N. Tome, Study of Residual Stresses in Zircaloy-2 with Rod Texture, Acta Mater., 1994, 42, p 4143–4153

    Article  Google Scholar 

  20. A.R. Pyzalla, Internal stresses in engineering materials, Neutrons and Synchrotron Radiation in Engineering Materials Science, W. Reimers, A.R. Pyazalla, A. Schreyer, and H. Clemens, Ed., Wiley, Weinheim, 2008, p 21–56

    Chapter  Google Scholar 

  21. H. Dai, J.A. Francis, H.J. Stone, H.K.D.H. Bhadeshia, and P.J. Withers, Characterizing Phase Transformation and Their Effects on Ferritic Weld Residual Stresses with X-Rays and Neutrons, Metall. Mater. Trans. A, 2008, 39, p 3070–3078

    Article  Google Scholar 

  22. N.S. Rossini, M. Dassisti, K.Y. Benyounis, and A.G. Olabi, Methods of Measuring Residual Stresses in Components, Mater. Des., 2012, 35, p 572–588

    Article  Google Scholar 

  23. S. Paddea, J.A. Francis, A.M. Paradowska, P.J. Bouchard, and I.A. Shibi, Residual Stress Distributions in a P91 Steel-Pipe Girth Weld Before and After Post Weld Heat Treatment, Mater. Sci. Eng. A, 2012, 534, p 663–672

    Article  Google Scholar 

  24. A.H. Yaghi, T.H. Hyde, A.A. Becker, and W. Sun, Finite Element Simulation of Welded P91 Steel Pipe Undergoing Post-Weld Heat Treatment, Sci. Technol. Weld. Join., 2011, 16(3), p 232–238

    Article  Google Scholar 

  25. J.W.H. Price, A. Paradowska, S. Joshi, and T. Finlayson, Residual Stresses Measurement by Neutron Diffraction and Theoretical Estimation in a Single Weld Bead, Int. J. Press. Vessel. Pip., 2006, 83, p 381–387

    Article  Google Scholar 

  26. R.J. Moat, D.J. Hughes, A. Steuwer, N. Iqbal, M. Preuss, S.E. Bray, and M. Rawson, Residual Stresses in Inertial-Friction-Welded Dissimilar High-Strength Steels, Metall. Mater. Trans. A, 2009, 40, p 2098–2108

    Article  Google Scholar 

  27. D.J. Smith and S.J. Garwood, Influence of Post-Welded Heat Treatment on the Variation of Residual Stressed in 50 mm Thick Welded Ferritic Steel Plates, Int. J. Press. Vessel. Pip., 1992, 51, p 241–256

    Article  Google Scholar 

  28. E.J. McDonald, L.F. Exworthy, P.E.J. Flewitt, K. Hallam, and W. Bell, Measurement of Residual Stresses in a Multi-Pass Low Alloy Ferritic Steel Weld Using x-ray Diffraction, Mater. Sci. Forum, 2000, 347–349, p 664–669

    Article  Google Scholar 

  29. X. Ficquet, C.E. Truman, and D.J. Smith, Measurement of Residual Stress in an A533B Ferritic Steel Plate Containing a Repair Weld, Mater. Sci. Forum, 2006, 524–525, p 653–658

    Article  Google Scholar 

  30. M. Turski, A.H. Sherry, P.J. Bouchard, and P.J. Withers, Residual Stress Driven Creep Cracking in Type 316 Stainless Steel, J. Neutron Res., 2004, 12(1–3), p 45–49

    Article  Google Scholar 

  31. P.J. Bouchard, P.J. Withers, S.A. McDonald, and R.K. Heenan, Quantification of Creep Cavitation Damage Around a Crack in a Stainless Steel Pressure Vessel, Acta Mater., 2004, 52(1), p 23–34

    Article  Google Scholar 

  32. S.K. Albert, M. Matsui, H. Hongo, T. Watanabe, K. Kubo, and M. Tabuchi, Creep Rupture Properties of HAZs of a High Cr Ferritic Steel Simulated by a Weld Simulator, Int. J. Press. Vessel. Pip., 2004, 81, p 221–234

    Article  Google Scholar 

  33. D. Li and K. Shinozaki, Simulation of Role of Precipitation in Creep Void Occurrence in Heat Affected Zone of High Cr Ferritic Heat Resistant Steels, Sci. Technol. Weld. Join., 2005, 10(5), p 544–549

    Article  Google Scholar 

  34. T. Watanabe, M. Yamazaki, H. Hongo, M. Tabuchi, and T. Tanabe, Effect of Stress on Microstructural Change Due to Aging at 823 K in Multi-layer Welded Joint of 2.25Cr-1Mo Steel, Int. J. Press. Vessel. Pip., 2004, p. 279–284.

  35. Y. Tomota, H. Tokuda, Y. Adachi, M. Wakita, N. Minakawa, A. Moriai, and Y. Morii, Tensile Behavior of TRIP-Aided Multi-phase Steels Studied by In Situ Neutron Diffraction, Acta Mater., 2004, 52, p 5737–5745

    Article  Google Scholar 

  36. S.A. David and T. Debroy, Current Issues and Problems in Welding Science, Science, 1992, 257, p 497–502

    Article  Google Scholar 

  37. M. Regev, S. Berger, and B.Z. Weiss, Investigation of Microstructure Mechanical and Creep Properties of Weldments Between T91 and T22 Steels, Weld. J., 1996, 75, p 261s–268s

    Google Scholar 

  38. T. Sato, K. Tamura, Advances in Materials Technology for Fossil Power Plants, Proceedings of the 5th International Conference, Oct. 3-5, 2007, (Marco Island, FL, USA) ASM Int., 2008, p. 874–883.

  39. D. Dean and M. Hidekazu, Prediction of Welding Residual Stress in Multi-pass Butt-Welded Modified 9Cr-1Mo Steel Pipe Considering Phase Transformation Effects, Comput. Mater. Sci., 2006, 37, p 209–219

    Article  Google Scholar 

  40. M. Sireesha, S.K. Albert, and S. Sundaresan, Microstructure and Mechanical Properties of Weld Fusion Zones in Modified 9Cr-1Mo Steel, J. Mater. Eng. Perform., 2001, 10(3), p 320–330

    Article  Google Scholar 

Download references

Acknowledgments

This work has benefited from the use of the SMARTS facility at the Lujan Neutron Scattering Center at Los Alamos Neutron Science Center, funded by the DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. This research was performed using funding received from the DOE Office of Nuclear Energy’s Nuclear Energy University Programs (NEUP) through the US Department of Energy Grant no. 42246 release 59. The first author (TS) would like to acknowledge the assistance provided by Bjorn Clausen, Donald W. Brown, and Thomas A. Sisneros of the Lujan Scattering Center during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrajit Charit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrestha, T., Charit, I. & Potirniche, G. In Situ Tensile Deformation and Residual Stress Measurement by Neutron Diffraction in Modified 9Cr-1Mo Steel. J. of Materi Eng and Perform 24, 4710–4720 (2015). https://doi.org/10.1007/s11665-015-1752-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1752-2

Keywords

Navigation