Skip to main content
Log in

Near-Net-Shape Fabrication of Thermoelectric Legs by Flash Sintering

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study examines the near-net-shape fabrication, by flash sintering, of a sintered body for use in a thermoelectric module. Gas-atomized Fe2VAl powder was sintered with a current feed, for a duration on the order of seconds, using an apparatus specially devised for flash sintering. This produced sintered bodies in columnar form, with a diameter and height on the order of millimeters, which can be used for constructing thermoelectric modules without the need for a machining process, such as cutting or dicing. Although a slight reduction in density is observed, the crystal structure is unaffected by rapid heating and cooling. The magnitude of electrical and thermal conductivity is reduced, while the value of Seebeck coefficient is identical to that of a sample sintered by using conventional current sintering at 1373 K for 10 min. The significantly shorter sintering time can reduce energy consumption to less than 1 Wh, compared with the several hundred Wh required for conventional current sintering. Although it is still necessary to optimize the sintering conditions to overcome the reduction in density, the significant energy-conservation benefits of flash sintering have great practical appeal, especially for fabricating sintered bodies constituting thermoelectric power generation devices used for energy recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Rowe, CRC Handbook of Thermoelectrics (Boca Raton: CRC Press, 1995).

    Book  Google Scholar 

  2. H. Kato, M. Kato, Y. Nishino, U. Mizutani, and S. Asano, J. Jpn. Inst. Metals 65, 652 (2001).

    Article  CAS  Google Scholar 

  3. D. Singh and I. Mazin, Phys. Rev. B - Condens. Matter Mater. Phys. 57, 14352 (1998).

    Article  CAS  Google Scholar 

  4. R. Weht and W. Pickett, Phys. Rev. B - Condens. Matter Mater. Phys. 58, 6855 (1998).

    Article  CAS  Google Scholar 

  5. H. Matsuura, Y. Nishino, U. Mizutani, and S. Asano, J. Jpn. Inst. Metals 66, 767 (2002).

    Article  CAS  Google Scholar 

  6. M. Mikami, M. Mizoshiri, K. Ozaki, H. Takazawa, A. Yamamoto, Y. Terazawa, and T. Takeuchi, J. Electron. Mater. 43, 1922 (2014).

    Article  CAS  Google Scholar 

  7. S. Masuda, K. Tsuchiya, J. Qiang, H. Miyazaki, and Y. Nishino, J. Appl. Phys. 124, 035106 (2018).

    Article  Google Scholar 

  8. Y. Nishino, S. Deguchi, and U. Mizutani, Phys. Rev. B 74, 115115 (2006).

    Article  Google Scholar 

  9. Y. Lan, A.J. Minnich, G. Chen, and Z. Ren, Adv. Funct. Mater. 20, 357 (2010).

    Article  CAS  Google Scholar 

  10. K. Nielsch, J. Bachmann, J. Kimling, and H. Böttner, Adv. Energy Mater. 1, 713 (2011).

    Article  CAS  Google Scholar 

  11. K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  CAS  Google Scholar 

  12. S. Grasso, Y. Sakka, and G. Maizza, Sci. Technol. Adv. Mater. 10, 053001 (2009).

    Article  Google Scholar 

  13. R. Orru, R. Licheri, A.M. Locci, A. Cincotti, and G. Cao, Mater. Sci. Eng., R 63, 127 (2009).

    Article  Google Scholar 

  14. O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Rathel, and M. Herrmann, Adv. Eng. Mater. 16, 830 (2014).

    Article  CAS  Google Scholar 

  15. W.S. Liu, B.P. Zhang, J.F. Li, H.L. Zhang, and L.D. Zhao, J. Appl. Phys. 102, 103717 (2007).

    Article  Google Scholar 

  16. M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke, and H. Weller, Adv. Funct. Mater. 19, 3476 (2009).

    Article  CAS  Google Scholar 

  17. B. Du, F. Gucci, H. Porwal, S. Grasso, A. Mahajan, and M.J. Reece, J. Mater. Chem. C 5, 1514 (2017).

    Article  CAS  Google Scholar 

  18. M. Mikami, Y. Kinemuchi, K. Ozaki, Y. Terazawa, and T. Takeuchi, J. Appl. Phys. 111, 093710 (2012).

    Article  Google Scholar 

  19. M. Yu, S. Grasso, R. Mckinnon, T. Saunders, and M.J. Reece, Adv. Appl. Ceram. 116, 24 (2017).

    Article  CAS  Google Scholar 

  20. M. Mikami, Y. Kinemuchi, K. Kubo, N. Uchiyama, H. Miyazaki, and Y. Nishino, J. Appl. Phys. 124, 105104 (2018).

    Article  Google Scholar 

  21. D. Zhao, X. Qian, X. Gu, S.A. Jajja, and R. Yang, J. Electron. Packag. 138, 040802 (2016).

    Article  Google Scholar 

  22. T. Mori, N. Ide, and Y. Nishino, J. Jpn. Inst. Metals 72, 593 (2008).

    Article  CAS  Google Scholar 

  23. J.C. Maxwell, A Treatiseon Electricity and Magnetism, Vol. 365 (Oxford: Clarendon Press, 1873).

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Adaptable and Seamless Technology Transfer Program through Target-driven R&D, A-STEP (No. AS2415009L), Japan Science and Technology Agency, JST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Mikami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikami, M., Kinemuchi, Y., Kubo, K. et al. Near-Net-Shape Fabrication of Thermoelectric Legs by Flash Sintering. J. Electron. Mater. 49, 593–600 (2020). https://doi.org/10.1007/s11664-019-07743-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07743-0

Keywords

Navigation