Skip to main content

Advertisement

Log in

Investigation on the Performance of CIGS/TiO2 Heterojunction Using SCAPS Software for Highly Efficient Solar Cells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, Cu (In, Ga) Se2 (CIGS) material with the non-toxic titanium dioxide TiO2 as an n-type buffer layer and indium tin oxide as the window layer are numerically simulated using a solar cell capacitance simulation software package. This numerical analysis has been carried out with the aim of boosting the performances of CIGS/TiO2 solar cells by tuning the defect density and band gap energy of the ordered vacancy compound (OVC) layer and by using a Back-electron reflector (EBR) layer, namely Al2O3. Solar cell performance is investigated as a function of absorber thickness. It is found that there exists an optimal thickness. The effect of OVC compounds on the performance of the device structure are discussed leading to an optimal band gap energy and defect density of about 1.17 eV and 4.97 × 1013 cm−3, respectively. The matching solar cell conversion efficiency reached a maximum value of 12.38% by introducing the OVC layer. It is also shown that, in spite of a decrease in thickness, the external quantum efficiency (EQE) of ultrathin CIGS solar cells can be enhanced owing to the employment of EBR. The significant improvement of EQE, mainly in the near-infrared part of the solar spectrum, can be ascribed to the low parasitic absorption loss in the ultrathin CIGS layer (∼570 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Burgelman, J. Verschraegen, S. Degrave, and P. Nollet, Prog. Photovolt. Res. Appl. 12, 143 (2004).

    Article  Google Scholar 

  2. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier, and M. Powalla, Phys. Status Solidi (RRL) 9, 28 (2015).

    Article  Google Scholar 

  3. N. Naghavi, D. Abou-Ras, N. Allsop, N. Barreau, S. Bü cheler, A. Ennaoui, C.H. Fischer, C. Guillen, D. Hariskos, J. Herrero, R. Klenk, K. Kushiya, D. Lincot, R. Menner, T. Nakada, C. Platzer-Björkman, S. Spiering, A.N. Tiwari, and T. Töndah, Prog. Photovolt. Res. Appl. 18, 411 (2010).

    Article  Google Scholar 

  4. C. Adel, B.M. Fethi, and B. Brahim, Int. J. Phys. Sci. 9, 250 (2014).

    Article  Google Scholar 

  5. T.M. Friedlmeier, P. Jackson, A. Bauer, D.I. Hariskos, O. Kiowski, R. Menner, R. Wuerz, and M. Powalla, Thin Solid Films (2016). doi:10.1016/j.tsf.2016.08.021.

    Google Scholar 

  6. D.H. Shin, S.T. Kim, J.H. Kim, H.J. Kang, B.T. Ahn, H.S. Kwon, and A.C.S. Appl, Mater. Interfaces 5, 12921 (2013).

    Article  Google Scholar 

  7. H.J. Yu, W.J. Lee, J.H. Wi, D.H. Cho, W.S. Han, Y.D. Chung, T.S. Kim, and J.H. Song, Phys. Chem. Chem. Phys. 18, 33211 (2016).

    Article  Google Scholar 

  8. W. Hsu, C.M. Sutter-Fella, M. Hettick, L. Cheng, S. Chan, Y. Chen, Y. Zeng, M. Zheng, H.P. Wang, C.C. Chiang, and A. Javey, Sci. Rep. 5, 16028 (2015).

    Article  Google Scholar 

  9. S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, Prog. Photovolt. Res. Appl. 18, 453 (2010).

    Article  Google Scholar 

  10. R. Sharma, R.S. Mane, G.C.A. Ghule, D.H. Ham, S.K. Min, S.E. Lee, and S.H. Han, J. Phys. D Appl. Phys. 42, 055313 (2009).

    Article  Google Scholar 

  11. M.J. Romero, K.M. Jones, J. AbuShama, Y. Yan, M.M. Al-Jassim, and R. Noufi, Appl. Phys. Lett. 83, 4731 (2003).

    Article  Google Scholar 

  12. J. Song, S.S. Li, C.H. Huang, O.D. Crisalle, and T.J. Anderson, Solid State Electron. 48, 73 (2004).

    Article  Google Scholar 

  13. Y. Yan, K.M. Jones, J. Abushama, M. Young, S. Asher, M.M. Al-Jassim, and R. Noufi, Appl. Phys. Lett. 81, 1008 (2002).

    Article  Google Scholar 

  14. M. Bär, M. Rusu, S. Lehmann, T. Schedel-Niedrig, I. Lauermann, and M.C. Lux-Steiner, Appl. Phys. Lett. 93, 232104 (2008).

    Article  Google Scholar 

  15. Y. Cho, D.W. Kim, S. Ahn, D. Nam, H. Cheong, G.Y. Jeong, J. Gwak, and J.H. Yun, Thin Solid Films 546, 358 (2013).

    Article  Google Scholar 

  16. M. Bär, I. Repins, M.A. Contreras, L. Weinhardt, R. Noufi, and C. Heske, Appl. Phys. Lett. 95, 052106 (2009).

    Article  Google Scholar 

  17. S. Siebentritt, L. Gütay, D. Regesch, Y. Aida, and V. Deprédurand, Sol. Energy Mater. Sol. Cells 119, 18 (2013).

    Article  Google Scholar 

  18. C. Insignares-Cuello, C. Broussillou, V. Bermúdez, E. Saucedo, A. Pérez-Rodríguez, and V. Izquierdo-Roca, Appl. Phys. Lett. 103, 263903 (2013).

    Article  Google Scholar 

  19. D. Schmid, M. Ruckh, F. Grunwald, and H.W. Schock, J. Appl. Phys. 73, 2902 (1993).

    Article  Google Scholar 

  20. K. Decock, S. Khelifi, and M. Burgelman, Sol. Energy Mater. Sol. Cells 95, 1550 (2011).

    Article  Google Scholar 

  21. H.Z. Xiao, L.C Yang, and A. Rockett. J. Appl. Phys. 76, 1503 (1994).

  22. C. Insignares-Cuello, C. Broussillou, V. Bermúdez, E. Saucedo, A. Pérez-Rodríguez, and V. Izquierdo-Roca, Appl. Phys. Lett. 105, 021905 (2014).

    Article  Google Scholar 

  23. M. Burgelman, P. Nollet, and S. Degrave, Thin Solid Films 361–362, 527 (2000).

    Article  Google Scholar 

  24. M. Gloeckler and J.R. Sites, J. Appl. Phys. 98, 103703 (2005).

    Article  Google Scholar 

  25. V.G. Karpov, M.L.C. Cooray, and D. Shvydka, Appl. Phys. Lett. 89, 163518 (2006).

    Article  Google Scholar 

  26. P. Chelvanathan, M.I. Hossain, and N. Amina, Curr. Appl. Phys. 10, S387 (2010).

    Article  Google Scholar 

  27. S. Ouédraogo, F. Zougmoré, and J.M.B. Ndjaka, J. Phys. Chem. Solids 75, 688 (2014).

    Article  Google Scholar 

  28. S.H. Kwon, S.C. Park, B.T. Ahn, K.H. Yoon, and J. Song, Sol. Energy 64, 55 (1998).

    Article  Google Scholar 

  29. T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hamakawa, T. Negami, Y. Hashimoto, T. Uenoyama, and M. Kitagawa, Sol. Energy Mater. Sol. Cells 67, 83 (2001).

    Article  Google Scholar 

  30. X. Zheng, W. Li, A.G. Aberle, and S. Venkataraj, Curr. Appl. Phys. 16, 1334 (2016).

    Article  Google Scholar 

  31. B. Vermang, J.T. Watjen, C. Frisk, V. Fjallström, F. Rostvall, M. Edoff, P. Salome, J. Borme, N. Nicoara, and S. Sadewasser, IEEE J. Photovolt. 4, 1644 (2014).

    Article  Google Scholar 

  32. M.D. Groner, J.W. Elam, F.H. Fabreguette, and S.M. George, Thin Solid Films 413, 186 (2002).

    Article  Google Scholar 

  33. A. Kanevce and W.K. Metzger, J. Appl. Phys. 105, 094507 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chihi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chihi, A., Boujmil, M.F. & Bessais, B. Investigation on the Performance of CIGS/TiO2 Heterojunction Using SCAPS Software for Highly Efficient Solar Cells. J. Electron. Mater. 46, 5270–5277 (2017). https://doi.org/10.1007/s11664-017-5547-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5547-0

Keywords

Navigation