Skip to main content
Log in

The Influence of a Dispersion Cone on the Temperature Distribution in the Heat Exchanger of a Thermoelectric Generator

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper presents the results of a numerical simulation of heat distribution in the heat exchanger of a prototype thermoelectric generator constructed and examined in the Thermoelectric Research Laboratory in AGH University, Cracow, Poland. The area of interest was to prepare a numerical model and determine the influence of a dispersion cone on the temperature distribution along the heat exchanger. The role of a dispersion element is to mix the air stream to improve the flow between the internal heat exchanger’s fins in order to enhance heat exchange. The estimation of power output parameters and exchanger efficiency has been performed in order to assess the cone impact for three selected air inlet temperatures. The results show that the presence of the cone increases the efficiency of the thermoelectric generator by at least 25%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

P :

Electrical power (W)

PR:

Power ratio (–)

R opt :

Optimum module electrical resistance (Ω)

T in :

Air inlet temperature (K)

T out :

Air outlet temperature (K)

T H :

Module hot side temperature (K)

T C :

Module cold side temperature (K)

T i :

Hot side temperature at position i (K)

U :

Output voltage (V)

α :

Seebeck coefficient (V K−1)

ΔT :

T H – T C

η e :

Heat exchanger efficiency

CF:

Model with the cone at the front of the heat exchanger

CB:

Model with the cone at the back of the heat exchanger

WC:

Model without cone

References

  1. N. Espinosa, M. Lazard, L. Aixala, and H. Scherrer, J. Electron. Mater. (2010). doi:10.1007/s11664-010-1305-2.

    Google Scholar 

  2. K. Sun-Kook, W. Byeong-Cheol, R. Seok-Ho, K. Shi-Ho, Y. Jeong-Ho, and J. Ju-Chan, J. Electron. Mater. (2011). doi:10.1007/s11664-011-1569-1.

    Google Scholar 

  3. M.F. Remeli, L. Tan, A. Date, B. Singh, and A. Akbarzadeh, Energ. Convers. Manage (2015). doi:10.1016/j.enconman.2014.12.001.

    Google Scholar 

  4. K.T. Wojciechowski, M. Schmidt, R. Zybala, J. Merkisz, P. Fuc, and P. Lijewski, J. Electron. Mater. (2009). doi:10.1007/s11664-009-1010-1.

    Google Scholar 

  5. X. Liu, C.G. Yu, Y.P. Wang, and C.Q. Su, J. Electron. Mater. (2014). doi:10.1007/s11664-014-3015-7.

    Google Scholar 

  6. M. Klein Altstedde, F. Rinderknecht, and H. Friedrich, J. Electron. Mater. (2014). doi:10.1007/s11664-014-2990-z.

    Google Scholar 

  7. Y. Shuhai, D. Qing, D. Hai, S. Gequn, and J. Kui, Energ. Convers. Manage. (2015). doi:10.1016/j.enconman.2015.03.002.

    Google Scholar 

  8. X. Liu, Y.D. Deng, Z. Li, and C.Q. Su, Energ. Convers. Manag. (2015). doi:10.1016/j.enconman.2014.11.015.

    Google Scholar 

  9. I. Byung deok, K. Hyung ik, S. Jung wook, and L. Ki hyung, Int. J. Heat Mass Trans. (2015). doi:10.1016/j.ijheatmasstransfer.2015.03.052.

    Google Scholar 

  10. B. Shengqiang, L. Hongliang, W. Ting, Y. Xianglin, S. Xun, and C. Lidong, Case Stud. Therm. Eng. (2014). doi:10.1016/j.csite.2014.07.003.

    Google Scholar 

  11. Y. Wang, C. Wu, Z. Tang, X. Yang, Y. Deng, and C. Su, J. Electron. Mater. (2014). doi:10.1007/s11664-014-3527-1.

    Google Scholar 

  12. K. Qiu and A.C.S. Hayden, J. Electron. Mater. (2010). doi:10.1007/s11664-010-1473-0.

    Google Scholar 

  13. A.M. Goudarzi, P. Mazandarani, R. Panahi, H. Behsaz, A. Rezania, and L.A. Rosendahl, J. Electron. Mater. (2013). doi:10.1007/s11664-013-2545-8.

    Google Scholar 

  14. N.R. Kristiansen and H.K. Nielsen, J. Electron. Mater. (2010). doi:10.1007/s11664-010-1189-1.

    Google Scholar 

  15. L. Miao, M. Zhang, S. Tanemura, T. Tanaka, Y.P. Kang, and G. Xu, J. Electron. Mater. (2012). doi:10.1007/s11664-012-2076-8.

    Google Scholar 

  16. C. Lertsatitthanakorn, S. Soponronnarit, J. Jamaradloedluk, M. Rungsiyopas, and R. Sarachitti, J. Electron. Mater. (2013). doi:10.1007/s11664-013-2945-9.

    Google Scholar 

  17. K.T. Wojciechowski, J. Merkisz, P. Fuc, J. Tomankiewicz, R. Zybala, J. Leszczynski, P. Lijewski, and P. Nieroda, Combust. Engines 154, 60 (2013).

    Google Scholar 

  18. K.T. Wojciechowski, T. Zybala, J. Tomankiewicz, P. Fuc, P. Lijewski, J. Wojciechowski, and J. Merkisz, Thermoelectr. Goes Automot. II, 177 (2012).

    Google Scholar 

  19. T. Hua, S. Xiuxiu, J. Qi, L. Xingyu, S. Gequn, and W. Xu, Energy (2015). doi:10.1016/j.energy.2015.02.063.

    Google Scholar 

  20. H. Wei, Z. Gan, Z. Xingxing, J. Jie, L. Guiqiang, and Z. Xudong, Appl. Energ. (2015). doi:10.1016/j.apenergy.2014.12.075.

    Google Scholar 

  21. ANSYS CFX Solver Theory and Modeling Guide. ANSYS Inc.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. MusiaŁ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MusiaŁ, M., Borcuch, M. & Wojciechowski, K. The Influence of a Dispersion Cone on the Temperature Distribution in the Heat Exchanger of a Thermoelectric Generator. J. Electron. Mater. 45, 1517–1522 (2016). https://doi.org/10.1007/s11664-015-4090-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4090-0

Keywords

Navigation