Skip to main content
Log in

Microstructure Evolution and Shear Behavior of the Solder Joints for Flip-Chip LED on ENIG Substrate

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The microstructure evolution and shear behavior of the solder joints for the flip-chip light-emitting diode on the electroless nickel/immersion gold (ENIG) substrate were investigated in this study. The experimental results reveal that the solder joints for the anode and cathode have different microstructures and failure characteristics during the shear test before and after isothermal aging. For the solder joints for the anode, the interfacial intermetallic compound (IMC) is (Au, Ni)Sn4 at the solder/anode interface but dendritic Ni3Sn4 grains at the solder/ENIG interface after reflow. Meanwhile, the dendritic Ni3Sn4 grains are surrounded by (Au, Ni)Sn4, which suppresses the growth of the Ni3Sn4 grains during aging. For the solder joints for the cathode, a nano scaled Au-rich layer can be observed near the cathode/solder layer interface after reflow. And the Au-rich layer moves toward the bulk solder because of the volume expansion by the transformation from Au into (Au, Ni)Sn4 during reflow and isothermal aging. Due to the diffusion of the Au atom from the Au-rich layer into the bulk solder, the Au-rich layer transformed into an interface inside of the solder joint. The average shear force of the solder joints shows a decrease from 380 gf to 250 gf because of the microstructure evolution during the isothermal aging for 1000 h at 85°C. After long time aging, the primary failure mode of the solder joint for the anode changed from the anode broken to the brittle failure of the solder layer. The delamination between the IMC layer and the insulation layer is suggested to be the dominated failure mode of the solder joint for the cathode after aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.Y. Tsai, C.Y. Tang, C.Y. Yen, and L.B. Chang, IEEE Trans. Device Mater. Reliab. 14, 161 (2014).

    Article  Google Scholar 

  2. Y. Liu, S.Y.Y. Leung, J. Zhao, K.Y.W. Cell, C.A. Yuan, G.Q. Zhang, F.L. Sun, and L.L. Luo, Microelectron. Reliab. 54, 2028 (2014).

    Article  Google Scholar 

  3. K.C. Shen, W.Y. Lin, D.S. Wuu, S.Y. Huang, K.S. Wen, S.F. Pai, L.W. Wu, and R.H. Horng, IEEE Electron Device Lett. 34, 274 (2013).

    Article  Google Scholar 

  4. R.H. Horng, S.H. Chuang, C.H. Tien, S.C. Lin, and D.S. Wuu, Opt. Express 22, A941 (2014).

    Article  Google Scholar 

  5. M.J. Jeng, K.L. Chiang, H.Y. Chang, C.Y. Yen, C.C. Lin, Y.H. Chang, M.J. Lai, Y.L. Lee, and L.B. Chang, Microelectron. Reliab. 52, 884 (2012).

    Article  Google Scholar 

  6. T. Chung, J.H. Jhang, J.S. Chen, Y.C. Lo, G.H. Ho, M.L. Wu, and C.C. Sun, Microelectron. Reliab. 52, 872 (2012).

    Article  Google Scholar 

  7. Z. Li, Y. Tang, X. Ding, C. Li, D. Yuan, and Y. Lu, Appl. Therm. Eng. 65, 236 (2014).

    Article  Google Scholar 

  8. H.H. Wu, K.H. Lin, and S.T. Lin, Microelectron. J. 43, 280 (2012).

    Article  Google Scholar 

  9. Y. Li and C.P. Wong, Mater. Sci. Eng. R 5, 11 (2006).

    Google Scholar 

  10. J.W. Kim, Y.C. Lee, and S.B. Jung, J. Electron. Mater. 37, 9 (2008).

    Article  Google Scholar 

  11. S.J. Wu, H.C. Hsu, S.L. Fu, and J.N. Yeh, Electron. Mater. Lett. 10, 497 (2014).

    Article  Google Scholar 

  12. C.P. Wang, T.T. Chen, H.K. Fu, T.L. Chang, P.T. Chou, and I.E.E.E. Trans, Electron Devices 60, 1668 (2013).

    Article  Google Scholar 

  13. U. Lafont, H. Zeijl, and S. Zwaag, Microelectron. Reliab. 52, 71 (2012).

    Article  Google Scholar 

  14. M. Kong, S. Jeon, C. Hwang, and Y.C. Lee, J. Electron. Packag. 134, 021002 (2012).

    Article  Google Scholar 

  15. O. Krammer, Microelectron. Reliab. 54, 457 (2014).

    Article  Google Scholar 

  16. S.Q. Gao and Y.H. Zhou, Microelectron. Reliab. 53, 1137 (2013).

    Article  Google Scholar 

  17. Y. Liu, F.L. Sun, H. Zhang, and P. Zou, J. Mater. Sci. 23, 1705 (2012).

    Google Scholar 

  18. G.K. Sujan, A. Haseeb, and A.B.M. Afifi, Mater. Charact. 97, 199 (2014).

    Article  Google Scholar 

  19. Y. Liu, J. Zhao, C.A. Yuan, and F.L. Sun, IEEE Trans. Compon. Packag. Manuf. Technol. 4, 1754 (2014).

    Article  Google Scholar 

  20. J. Chen, J. Shen, W. Xie, and H. Liu, J. Mater. Sci. 22, 1703 (2011).

    Google Scholar 

  21. C.E. Ho, R. Zheng, G.L. Luo, A.H. Lin, and C.R. Kao, J. Electron. Mater. 29, 1175 (2000).

    Article  Google Scholar 

  22. W.L. Shih, T.L. Yang, H.Y. Chuang, M.S. Kuo, and C.R. Kao, J. Electron. Mater. 43, 4262 (2014).

    Article  Google Scholar 

  23. M. Powers, J. Pan, J. Silk, and P. Hyland, J. Electron. Mater. 41, 224 (2012).

    Article  Google Scholar 

  24. J.W. Yoon, H.S. Chun, and S.B. Jung, Mater. Sci. Eng. A 483, 731 (2008).

    Article  Google Scholar 

  25. C. Fuchs, T. Schreck, and M. Kaloudis, J. Mater. Sci. 47, 4036 (2012).

    Article  Google Scholar 

  26. P. Premchander and Y.T. Lee, Asian J. Chem. 25, S482 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Sun, F., Luo, L. et al. Microstructure Evolution and Shear Behavior of the Solder Joints for Flip-Chip LED on ENIG Substrate. J. Electron. Mater. 44, 2450–2457 (2015). https://doi.org/10.1007/s11664-015-3774-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3774-9

Keywords

Navigation