Skip to main content
Log in

Thermoelectric Exhaust Heat Recovery with Heat Pipe-Based Thermal Control

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Heat pipe (HP)-based heat exchangers can be used for very low resistance heat transfer between a hot and a cold source. Their operating temperature depends solely on the boiling point of their working fluid, so it is possible to control the heat transfer temperature if the pressure of the HP can be adjusted. This is the case of the variable conductance HPs (VCHP). This solution makes VCHPs ideal for the passive control of thermoelectric generator (TEG) temperature levels. The present work assesses, both theoretically and experimentally, the merit of the aforementioned approach. A thermal and electrical model of a TEG with VCHP assist is proposed. Experimental results obtained with a proof of concept prototype attached to a small single-cylinder engine are presented and used to validate the model. It was found that the HP heat exchanger indeed enables the TEG to operate at a constant, optimal temperature in a passive and safe way, and with a minimal overall thermal resistance, under part load, it effectively reduces the active module area without deprecating the temperature level of the active modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

1D:

One-dimensional

3D:

Three-dimensional

EREV:

Range extended electric vehicle

HEV:

Hybrid electric vehicle

HP:

Heat pipe

IC:

Internal combustion

ORC:

Organic rankine cycle

TE:

Thermoelectric

TEG:

Thermoelectric generator

VCHP:

Variable conductance heat pipe

c p :

Specific heat at constant pressure (J kg−1 K−1)

g :

Acceleration of gravity (m s−2)

h c :

Contact heat transfer coefficient (W m−2 K−1)

H L :

Enthalpy of vaporisation (J kg−1)

I :

Electric current (A)

k :

Thermal conductivity (W m−1 K−1)

k l :

Thermal conductivity of liquid (W m−1 K−1)

L c :

Active length of the condenser (m)

\({\dot{m}}\) :

Mass flow rate (kg s−1)

N pairs :

Number of (P–N) pairs in a thermoelectric module

n teg :

Number of thermoelectric modules

P max :

Electrical output power at matched load (W)

\({\dot{Q}}\) :

Thermal power (W)

\({\dot{q}}\) :

Thermal power generated per unit volume (W m−3)

R :

Thermal resistance (K W−1)

\({Ri_{{{\rm{total}}_{{{\rm{system}}_{\rm{e}} }} }}}\) :

Total electrical resistance of the module (Ω)

S :

Shape factor (m−1)

T :

Temperature (K)

T s :

Saturation temperature of the working fluid

T cond_w :

Temperature of the condenser wall

V o :

Open circuit voltage (V)

α :

Seebeck coefficient (V K−1)

η :

Effectiveness of heat exchanger

μ l :

Dynamic viscosity of the liquid (Pa s)

ρ :

Electrical resistivity (Ω m)

ρ c :

Contact resistivity (Ω m2)

ρ l :

Density of the liquid (kg m−3)

BiTe:

Thermoelectric material/legs

cold:

Cold side of the thermoelectric generator

coolant:

Liquid for cooling the cold face of TEG

downstream:

Downstream of the module (in terms of heat flux direction)

e:

Electric

evap:

Evaporator (sector1)

exh:

Exhaust gases

hot:

Hot side of the thermoelectric generator

hot junction:

Corresponding to the power leaving the hot junction

HP:

Heat pipe

in:

At the inlet

Joule total:

Total Joule power generated within all the legs

l :

Liquid

out:

At the outlet

Peltier:

By Peltier effect

Sector1:

Evaporator region

Sector2:

Condenser region (including coolant system)

TEG:

Thermoelectric generator module

total:

Corresponding to all legs, not just one leg

upstream:

Upstream of the module (in terms of heat flux direction)

References

  1. A.E. Atabania, I.A. Badruddina, S. Mekhilefc, and A.S. Silitonga, Renew. Sust. Energy Rev. 15, 4586–4610 (2011).

    Article  Google Scholar 

  2. B. Ribeiro and J. Martins, SAE Tech. Pap. Ser. No. 2007-01-0261 (SAE Int’l, Warrendale, 2007).

  3. J.J.G. Martins, K. Uzuneanu, B. Ribeiro, and O. Jasansky, SAE Tech. Pap. Ser. No. 2004-01-0617, Modeling of Spark Ignition Engines (SAE Int’l, Warrendale, 2004).

  4. J. Pinto, T. Costa, J. Martins, and F.P. Brito, New Trends in Mechanism and Machine Science: From Fundamentals to Industrial Applications (New York: Springer, 2014), pp. 221–232.

    Google Scholar 

  5. M. Mori, T. Yamagami, M. Sorazawa, T. Miyabe, S. Takahashi, and T. Haraguchi, SAE Tech. Pap. Ser. No. 2011-01-1335 (SAE Int’l, Warrendale, 2011).

  6. J. Martins and F.P. Brito, Carros Elétricos (Porto: Publindústria, 2012).

    Google Scholar 

  7. J. Martins, Motores de Combustão Interna, 4th ed. (Porto: Publindústria, 2013).

    Google Scholar 

  8. J. Heywood, Internal Combustion Engine Fundamentals (New York: McGraw Hill, 1988).

    Google Scholar 

  9. J. Ribau, C. Silva, F.P. Brito, and J. Martins, Energy Convers. Manag. 58, 120–133 (2012).

    Article  Google Scholar 

  10. L. Bell, Science 321, 1457–1461 (2008).

    Article  Google Scholar 

  11. D.M. Rowe and G. Min, IEE Proc. A 143, 351 (1996).

    Google Scholar 

  12. T.C. Hung, T.Y. Shai, and S.K. Wang, Energy 22, 661–667 (1997).

    Article  Google Scholar 

  13. P. Pichanusakorn and P. Bandaru, Mater. Sci. Eng. R 67, 19–63 (2010).

    Article  Google Scholar 

  14. C.B. Vining, Nat. Mater. 8, 83–85 (2009).

    Article  Google Scholar 

  15. G. Min and D.M. Rowe, IEEE T. Energy Convers. 22, 528–534 (2007).

    Article  Google Scholar 

  16. J.P. Carmo, J. Antunes, M.F. Silva, J.F. Ribeiro, L.M. Goncalves, and J.H. Correia, Measurement 44, 2194–2199 (2011).

    Article  Google Scholar 

  17. J. Yang and F.R. Stabler, J. Electron. Mater. 38, 1245–1251 (2009).

    Article  Google Scholar 

  18. J.P. Carmo, L.M. Goncalves, R.F. Wolffenbuttel, and J.H. Correia, Sensor Actuators A 161, 204 (2010).

    Article  Google Scholar 

  19. M.S. Dresselhaus, G. Chen, M.Y. Tang, and R.G. Yang, et al., Adv. Mater. 19, 1043 (2007).

    Article  Google Scholar 

  20. F.P. Brito, J. Martins, L.M. Goncalves, N. Antunes, and D. Sousa, SAE Int. J. Passeng. Cars Mech. Syst. 6, 2 (2013).

    Google Scholar 

  21. F.P. Brito, J. Martins, R. Sousa, and L.M. Gonçalves, SAE Int. J. Passeng. Cars Electron. Electr. Syst 5, 561–571 (2012).

    Article  Google Scholar 

  22. D. Reay and P. Kew, Heat Pipes: Theory, Design and Applications, 5th ed. (Butterworth-Heinemann Elsevier, New York, 2006), Chapter: Variable conductance heat pipes, pp. 215–218; Chapter: Theoretical background: Heat transfer in the condenser, p. 81; Chapter: Heat transfer and fluid flow theory, pp. 66–67.

  23. J. Martins, F.P. Brito, L.M. Goncalves, and J. Antunes, SAE Tech. Pap. Ser. No. 2011-01-0315, (SAE Int’l, Warrendale, 2011).

  24. F.P. Brito, J. Martins, L.M. Goncalves, and R. Sousa, 37th IEEE Conference on Industrial Electronics Society (IECON 2011), November 7–10, Melbourne, Australia (IEEE Xplore, 2011).

  25. A. Zukauskas, Advances Heat Transfer, Vol. 8, ed. J.P. Hartnett and T.F. Irvine (New York: Academic, 1972)

    Google Scholar 

  26. F.P. Incropera and D.P. deWitt, Fundamentals of Heat and Mass Transfer, 3rd ed. (Wiley, New York, 1990), Chapter 1—Introduction, p. 4; Chapter 3.5—Conduction with thermal energy generation, pp. 108–110; Chapter 3.6 Heat transfer from extended surfaces, p. 133; Chapter 4.3.3: The conduction shape factor, p. 180; Chapter 8.4.2—The entry region, pp. 494–495.

  27. B. Snaith, P.W. O’Callaghan, and S.D. Probert, Appl. Energy 16, 175–191 (1984).

    Article  Google Scholar 

  28. G.P. Peterson and L.S. Fletcher, Proceedings of the International Symposium on CoolingTechnology for Electronic Equipment (Honolulu, 1987), pp. 438–448.

  29. M.M. Yovanovich, Heat Transfer—1986, Vol. 1, ed. C.L. Tien, V.P. Carey, and J.K. Ferrel (New York: Hemisphere, 1986),

    Google Scholar 

  30. E. Fried, Thermal Conductivity, Vol. 2, ed. R.P. Tye (London: Academic, 1969),

    Google Scholar 

  31. D.M. Rowe, Thermoelectrics Handbook: Macro to Nano, ed. D.M. Rowe (New York: CRC, 2005), pp. 1-1–1-14.

    Chapter  Google Scholar 

Download references

Acknowledgements

Project ThinHarvest (FCOMP-01-0124-FEDER-041343/EXPL/EMS-ENE/1023/2013) and post doctoral grant SFRH/BPD/89553/2012, financed by FEDER funds through Programa Operacional Fatores de Competitividade—COMPETE and National funds through PIDDAC and FCT—Fundação para a Ciência e a Tecnologia; Luso-American Foundation/National Science Foundation (FLAD/NSF) 2013 PORTUGAL—U.S. Research Networks Program, Project “Waste Exhaust Energy Recovery of Internal Combustion Engines”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. P. Brito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito, F.P., Martins, J., Hançer, E. et al. Thermoelectric Exhaust Heat Recovery with Heat Pipe-Based Thermal Control. J. Electron. Mater. 44, 1984–1997 (2015). https://doi.org/10.1007/s11664-015-3638-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3638-3

Keywords

Navigation