Skip to main content
Log in

Thermoelectric Properties of TlGdQ2 (Q = Se, Te) and Tl9GdTe6

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The ternary thallium chalcogenides TlGdQ2 (Q = Se, Te), and Tl9GdTe6 were synthesized, and their thermoelectric properties were evaluated. The chalcogenides TlGdQ2 are isostructural with TlSbQ2 (space group \( R\bar{3}m \)), adopting the α-NaFeO2 structure type, and Tl9GdTe6 is isostructural with Tl9BiTe6 (space group I4/mcm). TlGdSe2 was found to be a wide-bandgap semiconductor with rather high Seebeck coefficient and low electrical conductivity. The corresponding telluride TlGdTe2 behaves like a doped semiconductor, and possesses very low thermal conductivity at room temperature on the order of 0.5 W m−1 K−1, a property advantageous for thermoelectric applications. Tl9GdTe6 exhibits relatively high room-temperature electrical conductivity of around 850 Ω−1 cm−1 and a low Seebeck coefficient of 27 μV K−1, yielding a low power factor. Of these three compounds, TlGdTe2 exhibits the best thermoelectric properties, with maximum dimensionless figure of merit in the measured temperature regime of 0.5 at 550 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.M. Rowe, Thermoelectrics Handbook: Macro to Nano. (Boca Raton, FL: CRC, Taylor & Francis, 2006).

    Google Scholar 

  2. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  3. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).

    Article  CAS  Google Scholar 

  4. J. Baxter, Z.X. Bian, G. Chen, D. Danielson, M.S. Dresselhaus, A.G. Fedorov, T.S. Fisher, C.W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D.R. Rolison, T. Sands, L. Shi, D. Sholl, and Y.Y. Wu, Energy Environ. Sci. 2, 559 (2009).

    Article  CAS  Google Scholar 

  5. H. Kleinke, Chem. Mater. 22, 604 (2010).

    Article  CAS  Google Scholar 

  6. M.A. McGuire, T.K. Reynolds, and F.J. DiSalvo, Chem. Mater. 17, 2875 (2005).

    Article  CAS  Google Scholar 

  7. M.A. McGuire, T.J. Scheidemantel, J.V. Badding, and F.J. DiSalvo, Chem. Mater. 17, 6186 (2005).

    Article  CAS  Google Scholar 

  8. C.R. Sankar, S. Bangarigadu-Sanasy, A. Assoud, and H. Kleinke, J. Mater. Chem. 20, 7485 (2010).

    Article  CAS  Google Scholar 

  9. C.R. Sankar, S. Bangarigadu-Sanasy, A. Assoud, and H. Kleinke, Inorg. Chem. 50, 245 (2011).

    Article  CAS  Google Scholar 

  10. S. Bangarigadu-Sanasy, C.R. Sankar, A. Assoud, and H. Kleinke, Dalton Trans. 40, 862 (2011).

    Article  CAS  Google Scholar 

  11. A.V. Shevelkov, Russ. Chem. Rev. 77, 1 (2008).

    Article  CAS  Google Scholar 

  12. K. Kurosaki, H. Uneda, H. Muta, and S. Yamanaka, J. Alloys Compd. 376, 43 (2004).

    Article  CAS  Google Scholar 

  13. B. Wölfing, C. Kloc, J. Teubner, and E. Bucher, Phys. Rev. Lett. 86, 4350 (2001).

    Article  Google Scholar 

  14. S. Yamanaka, A. Kosuga, and K. Kurosaki, J. Alloys Compd. 352, 275 (2003).

    Article  CAS  Google Scholar 

  15. B.H. Yan, C.X. Liu, H.J. Zhang, C.Y. Yam, X.L. Qi, T. Frauenheim, and S.C. Zhang, Europhys. Lett. 90, 1 (2010).

    Article  Google Scholar 

  16. H. Lin, R.S. Markiewicz, L.A. Wray, L. Fu, M.Z. Hasan, and A. Bansil, Phys. Rev. Lett. 105, 036404 (2010).

    Article  Google Scholar 

  17. K. Kuroda, M. Ye, A. Kimura, S.V. Eremeev, E.E. Krasovskii, E.V. Chulkov, Y. Ueda, K. Miyamoto, T. Okuda, K. Shimada, H. Namatame, and M. Taniguchi, Phys. Rev. Lett. 105, 146801 (2010).

    Article  CAS  Google Scholar 

  18. W.X. Feng, D. Xiao, J. Ding, and Y.G. Yao, Phys. Rev. Lett. 106, 016402 (2011).

    Article  Google Scholar 

  19. M. Duczmal and L. Pawlak, J. Alloys Compd. 262, 316 (1997).

    Article  Google Scholar 

  20. A. Duczmal, E. Mosiniewicz-Szablewska, and S. Pokrzywnicki, Phys. Stat. Sol. 196a, 321 (2003).

    Article  Google Scholar 

  21. D.-Y. Chung, T.P. Hogan, M. Rocci-Lane, P. Brazis, J.R. Ireland, C.R. Kannewurf, M. Bastea, C. Uher, and M.G. Kanatzidis, J. Am. Chem. Soc. 126, 6414 (2004).

    Article  CAS  Google Scholar 

  22. A.C. Larson and R.B. von Dreele, GSAS-General Structure Analysis System (Los Alamos, NM: Los Alamos National Laboratory, 2000).

    Google Scholar 

  23. B.H. Toby, J. Appl. Crystallogr. 34, 210 (2001).

    Article  CAS  Google Scholar 

  24. E.F. Hockings and J.G. White, Acta Crystallogr. 14, 328 (1961).

    Article  CAS  Google Scholar 

  25. R. Cerny, J.M. Joubert, Y. Filinchuk, and Y. Feutelais, Acta Crystallogr. C 58, i63 (2002).

    Google Scholar 

  26. X. Shi, J. Yang, J.R. Salvador, M.F. Chi, J.Y. Cho, H. Wang, S.Q. Bai, J.H. Yang, W.Q. Zhang, and L.D. Chen, J. Am. Chem. Soc. 133, 7837 (2011).

    Article  CAS  Google Scholar 

  27. H. Xu, K.M. Kleinke, T. Holgate, H. Zhang, Z. Su, T.M. Tritt, and H. Kleinke, J. Appl. Phys. 105, 053703/1 (2009).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Kleinke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Three tables with atomic positions of TlGdSe2, TlGdTe2, and Tl9GdTe6. (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sankar, C.R., Bangarigadu-Sanasy, S. & Kleinke, H. Thermoelectric Properties of TlGdQ2 (Q = Se, Te) and Tl9GdTe6 . J. Electron. Mater. 41, 1662–1666 (2012). https://doi.org/10.1007/s11664-011-1846-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1846-z

Keywords

Navigation