Skip to main content
Log in

Numerical Modeling of the Performance of Thermal Interface Materials in the Form of Paste-Coated Sheets

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The performance of thermal interface materials in the form of core sheets coated on both sides with a thermal paste is numerically modeled by finite-element analysis. The paste is polyol-ester-based carbon black paste and serves to improve the conformability. Good agreement is found between modeling and experimental results that involve copper proximate surfaces sandwiching the thermal interface material. The core sheets are copper, aluminum, indium, and flexible graphite. Flexible graphite (made from exfoliated graphite) is advantageous in its low elastic modulus, whereas copper and aluminum foils are advantageous in their high thermal conductivity. Indium is advantageous in its low elastic modulus compared with copper or aluminum and in its high thermal conductivity compared with flexible graphite. Among the four types of core sheet with identical thickness, coated indium foil gives the best performance for the range of foil thickness of 6 μm to 112 μm for the case of smooth (0.01 μm roughness) proximate surfaces and 117 μm to 320 μm for the case of rough (15 μm roughness) proximate surfaces. Aluminum foil gives the best performance for the thickness range of 112 μm to 2000 μm in the case of smooth proximate surfaces. For thicknesses below these ranges, flexible graphite performs the best. For thicknesses above these ranges, copper foil performs the best.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

q x :

heat flow rate in the x direction (W)

q y :

heat flow rate in the y direction (W)

k :

thermal conductivity (W/m K)

A :

area perpendicular to the heat flow direction (m2)

T :

temperature (K)

x, y:

distance in the horizontal and vertical directions (m)

A C :

area of the 1 inch × 1 inch copper block (m2)

k C :

thermal conductivity of copper (W/m K)

T1, T2, T3, T4:

temperatures read by thermo couples 1 to 4 (K)

ΔT :

temperature difference between T 1 and T 2 or between T 3 and T 4 (K)

T A :

temperature at the top surface of the thermal interface material (K)

T D :

temperature at the bottom surface of the thermal interface material (K)

d A :

distance between thermocouples T 1 and T 2 (i.e., 25 mm)

d B :

distance between thermocouple T 2 and the top surface of the thermal interface material (i.e., 5 mm)

d C :

distance between thermocouples T 3 and T 4 (i.e., 25 mm)

d A :

distance between thermocouple T 3 and the bottom surface of the thermal interface material (i.e., 5 mm)

θ:

thermal resistivity (m2 K/W)

TCC:

thermal contact conductance (W/m2 K)

References

  1. C. Lin and D.D.L. Chung, J. Mater. Sci. 42, 9245 (2007).

    Article  CAS  Google Scholar 

  2. C. Lin and D.D.L. Chung, Carbon 45, 2922 (2007).

    Article  CAS  Google Scholar 

  3. C. Leong, Y. Aoyagi, and D.D.L. Chung, Carbon 44, 435 (2006).

    Article  CAS  Google Scholar 

  4. C. Leong, Y. Aoyagi, and D.D.L. Chung, J. Electron. Mater. 34, 1336 (2005).

    Article  CAS  Google Scholar 

  5. C. Leong and D.D.L. Chung, Carbon 42, 2323 (2004).

    Article  CAS  Google Scholar 

  6. C. Leong and D.D.L. Chung, Carbon 41, 2459 (2003).

    Article  CAS  Google Scholar 

  7. C. Lin, T.A. Howe, and D.D.L. Chung, J. Electron. Mater. 36, 659 (2007).

    Article  CAS  Google Scholar 

  8. T.A. Howe, C.-K. Leong, and D.D.L. Chung, J. Electron. Mater. 35, 1628 (2006).

    Article  CAS  Google Scholar 

  9. Y. Xu, C. Leong, and D.D.L. Chung, J. Electron. Mater. 36, 1181 (2007).

    Article  CAS  Google Scholar 

  10. H. Huang, C. Liu, Y. Wu, and S. Fan, Adv. Mater. 17, 1652 (2005).

    Article  CAS  Google Scholar 

  11. C. Lin and D.D.L. Chung, J. Electron. Mater. 37, 1698 (2008).

    Article  CAS  Google Scholar 

  12. A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, and R.C. Haddon, J. Phys. Chem. C 111, 7565 (2007).

    Article  CAS  Google Scholar 

  13. P.P.S.S. Abadi, C.-K. Leong, and D.D.L. Chung, J. Electron. Mater. 38, 175 (2009).

    Article  Google Scholar 

  14. R. Prasher, Proc. IEEE 94, 1571 (2006).

    Article  CAS  Google Scholar 

  15. E.E. Marotta, S.J. Mazzuca, and J. Norley, IEEE Trans. Compon. Packag. Tech. 28, 102 (2005).

    Article  CAS  Google Scholar 

  16. S. Shaikh, K. Lafdi, and E. Silverman, Carbon 45, 695 (2007).

    Article  CAS  Google Scholar 

  17. C.-P. Chiu, G.L. Solbrekken, and Y.D. Chung, Proceedings of the 13th IEEE Semiconductor Thermal Management and Management Symp. (Institute of Electrical and Electronics Engineers, 1997), p. 57.

  18. R.A. Shaik, A.N. Beall, and A. Razani, Heat Transfer Eng. 22, 41 (2001).

    CAS  Google Scholar 

  19. K. Zhang, M.M.F. Yuen, N. Wang, J.Y. Miao, D.G.W. Xiao, and H.B. Fan, Proc. 56th Electronic Components and Technology Conf. (San Diego, CA, 2006), p. 177.

  20. R. Schacht, D. May, B. Wunderle, O. Wittler, A. Gollhardt, B. Michel, and H. Reichl, Proc. 12th Therminic 2006 (Nice, Côte d’Azur, France, 2006).

  21. D.D.L. Chung, J. Mater. Sci. 39, 2645 (2004).

    Article  CAS  Google Scholar 

  22. R.L. Webb and J.P. Gwinn, Proc. ITherm (2002), p. 671.

  23. F. Hua, C. Deppisch, and T. Fitzgerald, Adv. Microelectron. 16 (2006).

  24. M.G. Cooper, B.B. Mike, and M.M. Yovanovich, Int. J. Heat Mass Trans. 12, 279 (1969).

    Article  Google Scholar 

  25. J.A. Greenwood and J.B.P. Williamson, Proc. R. Soc. Lond. A 295, 300 (1966).

    Article  CAS  Google Scholar 

  26. C. Lin and D.D.L. Chung, Carbon 47, 295 (2009).

    Article  CAS  Google Scholar 

  27. A. Buch, Short Handbook of Metal Elements Properties and Elastic Properties of Pure Metals (Warsaw: Krzysztof Biesaga, 2005), pp. 35–42.

    Google Scholar 

  28. I. Michio and F.Y. Kang, Carbon Materials Science and Engineering—From Fundamentals to Applications (Beijing: Tsinghua University Press, 2006), p. 335.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. L. Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pour Shahid Saeed Abadi, P., Chung, D.D.L. Numerical Modeling of the Performance of Thermal Interface Materials in the Form of Paste-Coated Sheets. J. Electron. Mater. 40, 1490–1500 (2011). https://doi.org/10.1007/s11664-011-1630-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1630-0

Keywords

Navigation