Skip to main content
Log in

Thermoelectric Heat Pump as a Thermal Cycler

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Thermal waves induced in a thermoelectric (TE) element by periodic current pulses are studied. An analytical description is obtained in the form of a Fourier series. Different combinations of current pulses and frequencies are reviewed. The utmost performance of a TE thermal cycler is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

T(x, τ):

temperature (K)

x :

coordinate (cm)

τ :

time (s)

τ1 < τp:

direct current pulse duration (s)

τ p :

wave period (s)

f = 1/τp:

wave frequency (Hz)

a = λ/c:

thermal diffusivity (cm2/s)

λ :

thermal conductivity (W/cm K)

c :

specific heat (J/K cm3)

ρ :

electrical resistance (Ω cm)

α :

Seebeck coefficient (V/K)

z = α2/(ρλ) :

figure of merit (K−1)

ΔT max :

maximum stationary temperature difference (K)

i(τ):

electrical current density (A/cm2)

i1 > 0:

direct current pulse

i2 < 0:

reversed current pulse

l :

TE leg length (cm)

G :

heat capacity of the attached mass per unit of junction area (J/K cm2)

R c :

electrical contact resistance (Ω cm2)

T h :

heat sink temperature (K)

Tm(x):

mean integral temperature (K)

ΔT(τ) = T(l, τ) − T m(l) :

temperature oscillation at x = l (K)

A = T(l, 0) − T(l, τ1) :

temperature wave amplitude (K)

\( \omega_{n} = {\frac{\textstyle2\pi n}{\textstyle{\tau_{\rm{p}} }}};\quad \beta_{n} = \sqrt {{\frac{\textstyle{\omega_{n} }}{\textstyle2a}}} ,\quad n=1,2, 3,\ldots \)

References

  1. Nextreme Controls Polymerase Chain Reaction Process with Microscopic Peltier Heat Pump, Thermal News, eNewsletter, January (2009). http://www.thermalnews.com/newsletters/2009/newsletter_01_09.htm.

  2. J. Blum, A.-C. Levasseur-Regourd, O. Muñoz, R.J. Slobodrian, and A. Vedernikov, Europhys. News 39 (3), 27 (2008).

    Article  ADS  Google Scholar 

  3. J.A. Chavez, J.A. Ortega, J. Salazar, A. Turo, and M.J. Garcia, Proc. of the 17th Instrum. and Meas. Technol. Conf., Vol. 2 (Baltimore, MD: IEEE, 2000), p. 1019.

  4. S. Dilhaire, L.-D. Patino-Lopez, S. Grauby, J.-M. Rampnoux, S. Jorez, and W. Claeys, Proc. 21st Int. Conf. on Thermoelectrics (Long Beach, CA: IEEE, 2002), p. 321.

  5. A.D. Downey, T.P. Hogan, and B. Cook, Rev. Sci. Instrum. 78, 093904-1 (2007).

    Google Scholar 

  6. I.N. Bronshtein and K.A. Semendyaev, Spravochnik po Matematike (Moskva: Nauka, 1981).

    Google Scholar 

  7. V. Semenyuk, Proc. 25th Int. Conf. on Thermoelectrics (Vienna: IEEE, 2006), p. 322.

  8. H. Böttner, J. Nurnus, and A. Schubert, Thermoelectrics Handbook: Macro to Nano, ed. D.M. Rowe (Boca Raton, Fl: CRC Press, 2006), p. 46–1.

  9. H. Bottner, A. Schubert, K.H. Schlereth, D. Eberhard, A. Gavrikov, M. Jägle, G. Kühner, C. Künzel, J. Nurnus, and G. Plecher, Proc. 6 th European Workshop on Thermoelectrics (Freiburg: Fraunhofer IPM, 2001).

  10. www.micropelt.com.

  11. R. Venkatasubramanian, E. Sivola, and B. O’Qinn, Thermoelectrics Handbook: Macro to Nano, ed. D.M. Rowe (Boca Raton, Fl: CRC Press, 2006), p. 49–1.

  12. www.nextreme.com.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Semenyuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semenyuk, V. Thermoelectric Heat Pump as a Thermal Cycler. J. Electron. Mater. 39, 1510–1515 (2010). https://doi.org/10.1007/s11664-010-1281-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1281-6

Keywords

Navigation