Skip to main content
Log in

Establishment time of liquid flow in a bath agitated by bottom gas injection

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The establishment time of gas-liquid two-phase flows in a cylindrical bath agitated by bottom gas injection through a central single-hole bottom nozzle was investigated. Because the turbulence intensity in the bath was comparable to or larger than the unity, the conventional definition of the flow establishment time based on the history of mean velocity was not suitable for the present case. In fact, it was difficult to determine the flow establishment time based on the well-known 90 or 99 pct criterion for the mean velocity. Accordingly, two methods of determining the flow establishment time by focusing on the turbulence components instead of the mean velocity components were proposed. Velocity measurements were made with a two-channel laser Doppler velocimeter. The flow establishment time was correlated as a function of gas flow rate. Close agreement was obtained by the two methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D :

bath diameter

E g :

energy introduced in a bath

g :

acceleration due to gravity

H L :

bath depth

N :

number of velocity data

r, z :

radial and axial coordinates

Q L :

liquid flow rate entrained into bubble plume

Q Lbs :

Q L value evaluated at the bath surface

Q g :

gas flow rate

T T :

flow establishment time

t c :

characteristic time

u, v :

axial and radial velocity components

\(\bar u,\bar v\) :

long-time averaged values of axial and radial velocity components

u′, v′:

axial and radial turbulence components

urms, vrms :

rms values of axial and radial turbulence components

\(\bar u_{sa} \) :

short-time averaged value of axial velocity component

u sa :

axial turbulence component defined by Eq. [6]

u sa,rms :

rms value of u sa

Δt :

short-time interval

ϱ L, ϱ g :

densities of liquid and gas

References

  1. K. Mori and M. Sano: Tetsu-to-Hagané, 1981, vol. 67, pp. 672–95.

    CAS  Google Scholar 

  2. J. Szekely, G. Carlson, and L. Helle: Ladle Metall., Springer-Verlag, Secaucus, NJ, 1989.

    Google Scholar 

  3. Y. Sahai and G.R.St. Pierre: Advances in Transport Processes in Metallurgical Systems, Elsevier, New York, NY, 1992.

    Google Scholar 

  4. M. Iguchi, T. Uemura, F. Yamamoto, and Z. Morita: Jpn. J. Multiphase Flow, 1992, vol. 6, pp. 54–64.

    Google Scholar 

  5. D. Mazumder and R.I.L. Guthrie: Iron Steel Inst. Jpn. Int. 1995, vol. 35, pp. 1–15.

    Google Scholar 

  6. Japan Society of Mechanical Engineer: Handbook of Gas-Liquid Two-Phase Flow, Corona Book Co. Ltd., Tokyo, 1989, p. 221.

    Google Scholar 

  7. Y. Kato, K. Nakanishi, T. Nozaki, K. Zuzuki, and T. Emi: Tetsu-to-Hagané, 1982, vol. 68, p. 1604–12.

    CAS  Google Scholar 

  8. S. Kojima, M. Yoshida, A. Iwatani, and H. Take: Kawasaki Steel Tech. Rep., 1987, vol. 19, p. 1–6.

    Google Scholar 

  9. M. Iguchi, S. Hosohara, T. Kondoh, Y. Itoh, and Z. Morita: Tetsu-to-Hagané, 1993, vol. 79, pp. 934–40; Iron Steel Inst. Jpn. Int., 1994, vol. 34, pp. 330–37.

    CAS  Google Scholar 

  10. M. Iguchi, S. Hosohara, T. Koga, R. Yamaguchi, and Z. Morita: Tetsu-to-Hagané, 1992, vol. 78, p. 4778–85; Iron Steel Inst. Jpn. Int., 1993, vol. 33, pp. 1037–44.

    Google Scholar 

  11. R.E. Hutton: Trans. ASME, J. Appl. Mech., 1964, p. 123–30.

  12. H.N. Abramson, W.H. Chu, and D.D. Kana: Trans. ASME, J. Appl. Mech., 1966, p. 777–84.

  13. A. Kimura and H. Ohasi: Trans. Jpn. Soc. Mech. Eng. Part I, 1978, vol. 44, p. 3024–33.

    Google Scholar 

  14. A. Kimura and H. Ohasi: Trans. Jpn. Soc. Mech. Eng. Part I, 1978, vol. 44, p. 3446–54.

    Google Scholar 

  15. S.T. Johansen, D.G.C. Robertson, K. Woje, and T.A. Engh: Metall. Trans. B, 1988, vol. 19B, pp. 745–54.

    CAS  Google Scholar 

  16. S.T. Johansen and F. Boysan: Metall. Trans. B, 1988, vol. 19B, pp. 755–64.

    CAS  Google Scholar 

  17. A. Murthy, J. Szekely, and N. El-Kaddah: Metall. Trans. B, 1988, vol. 19B, pp. 765–75.

    CAS  Google Scholar 

  18. M. Iguchi, H. Takeuchi, and Z. Morita: Tetsu-to-Hagané, 1990, vol. 76, pp. 699–706; Iron Steel Inst. Jpn. Int., 1991, vol. 31, pp. 246–53.

    CAS  Google Scholar 

  19. Y.Y. Sheng and G.A. Irons: Metall. Trans. B, 1992, vol. 23B, pp. 779–88.

    CAS  Google Scholar 

  20. M. Iguchi, H. Ueda, and T. Uemura: Int. J. Multiphase Flow, 1995, vol. 21–5, pp. 861–73.

    Article  Google Scholar 

  21. R.B. Bird, W.E. Stewart, and E.N. Lightfoot: Transport Phenomena, John Wiley & Sons, New York, NY, 1960, p. 126.

    Google Scholar 

  22. J.O. Hinze: Turbulence, 2nd ed. McGraw-Hill, New York, NY, 1975, p. 639.

    Google Scholar 

  23. H. Schlichting: Boundary-Layer Theory, 6th ed., McGraw-Hill, New York, NY, 1968, p. 523 (translated by T. Kestin).

    Google Scholar 

  24. M. Iguchi: Trans. Jpn. Soc. Mech. Eng., 1987, vol. 53-B, pp. 3546–54; JSME Int. J., 1988, vol. 31–8, pp. 623–31.

    Google Scholar 

  25. M. Iguchi, H. Takeuchi, and M. Ohmi: Trans. Jpn. Soc. Mech. Eng., 1987, vol. 53B, pp. 706–73.

    Google Scholar 

  26. J.O. Hinze: Turbulence, 2nd ed., McGraw-Hill, New York, NY, 1975, p. 223.

    Google Scholar 

  27. A.M. Leitch and W.D. Baines: J. Fluid Mech., 1989, vol. 205, pp. 77–98.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iguchi, M., Kondoh, T. & Nakajima, K. Establishment time of liquid flow in a bath agitated by bottom gas injection. Metall Mater Trans B 28, 605–612 (1997). https://doi.org/10.1007/s11663-997-0032-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-997-0032-4

Keywords

Navigation