Skip to main content
Log in

Kinetics of Silicothermic Reduction of Manganese Oxide for Advanced High-Strength Steel Production

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The kinetics of silicothermic reduction of manganese oxide from MnO–SiO2–CaO–Al2O3 slags reacting with Fe-Si droplets were studied in the temperature range of 1823 K to 1923 K (1550 °C to 1650 °C). The effects of initial droplet mass, initial droplet silicon content, and initial slag manganese oxide content were studied. Data obtained for 15 pct silicon showed agreement with control by mass transport of MnO in the slag with a mass transfer coefficient (k s) of 4.0 × 10−5 m/s at 1873 K (1600 °C). However, when this rate-determining step was tested at different initial silicon contents, the agreement was lost, suggesting mixed control between silicon transport in the metal and manganese oxide transport in the slag. Increasing the temperature resulted in a decrease in the rate of reaction because of an increase in the favorability of SiO as a product. Significant gas generation was found during all experiments, as a result of silicon monoxide production. The ratio of silicon monoxide to silica formation was increased by factors favoring silicon transport over that of manganese, further supporting the conclusion that the reaction is under mixed control by transports of both silicon and manganese oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Z.H. Cai, H.Ding, X.Xue, and Q.B. Xin: Mater. Sci. Eng. A, 2013, vol. 560A, pp. 388–95.

    Article  Google Scholar 

  2. O.S. Bobkova and V.V. Barsegyan: Metallurgist, 2006, vol. 50, pp. 463–68.

    Article  Google Scholar 

  3. L.N. Kologrivova, A.Ya. Nakonechnyi, Z.G. Trofimova, O.V. Nosochenko, and N.N. Kulik: Metallurg, 1987, vol. 5, pp. 28–29.

    Google Scholar 

  4. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, and M.A. Van Ende: Calphad, 2016, vol. 54, pp. 35–53.

    Article  Google Scholar 

  5. M.W. Chase, Jr., C.A. Davies, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald, and A.N. Syverud: NIST Stand. Ref. Database 13, 1985, vol. 1.

  6. W.L. Daines and R.D. Pehlke: Trans. Met. Soc. AIME, 1968, vol. 242, pp. 565–75.

    Google Scholar 

  7. E. Shibata, H. Sun, and K. Mori: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 279–86.

    Article  Google Scholar 

  8. J.H. Heo, Y. Chung, and J.H. Park: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2015, vol. 46B, pp. 1154–61.

  9. H. Sohn, Z. Chen, and W. Jung: Steel Res., 2000, vol. 71, pp. 145–52.

    Article  Google Scholar 

  10. S.K. Tarby and W.O. Philbrook: Trans. Metall. Soc. AIME, 1967, vol. 239, pp. 1005–17.

    Google Scholar 

  11. W.L. Daines and R.D. Pehlke: Trans. Met. Soc. AIME, 1971, vol. 2, pp. 1203–11.

    Google Scholar 

  12. R.J. Pomfret and P. Grieveson: Ironmak. Steelmak., 1978, vol. 5, pp. 191–97.

    Google Scholar 

  13. M. Ashizuka, A. Moribe, and K. Sawamura: Tetsu-to-Hagane, 1975, vol. 61, pp. 36–45.

    Google Scholar 

  14. K. Xu, G. Jiang, W. Ding, L. Gu, S. Guo, and B. Zhao: ISIJ Int., 1993, vol. 33, pp. 104–8.

    Article  Google Scholar 

  15. R. Kononov, O. Ostrovski, and S. Ganguly: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2008, vol. 39B, pp. 662–68.

  16. H. Sun, M Yaser Lone, S. Ganguly, and O. Ostrovski: ISIJ Int., 2010, vol. 50, pp. 639–46.

    Article  Google Scholar 

  17. A. Sharan and A. W. Cramb: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 87–94.

    Article  Google Scholar 

  18. H. Gaye, L. D. Lucas, M. Olette, and P. V. Riboud: Can. Metall. Q., 1984, vol. 23, pp. 179–91.

    Article  Google Scholar 

  19. A. Jakobsson, Du Sichen, S. Seetharaman, and N.N. Viswanathan: Philos. Trans. R. Soc. Lond. A, 1998, vol. 356A, pp. 995–1001.

  20. P.V.V. Riboud and L.D. D. Lucas: Can. Metall. Q., 1981, vol. 20, pp. 199–208.

    Article  Google Scholar 

  21. Y. Chung and A.W. Cramb: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 957–71.

    Article  Google Scholar 

  22. M.A. Rhamdhani, K.S. Coley, and G.A. Brooks: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 219–27.

    Article  Google Scholar 

  23. R.J. Pomfret and P. Grieveson: Can. Metall. Q., 1983, vol. 22, pp. 287–99.

    Article  Google Scholar 

  24. Y. Chung and A.W. Cramb: Philos. Trans. R. Soc. A. Math. Phys. Eng. Sci., 1998, vol. 356, pp. 981–93.

    Article  Google Scholar 

  25. J. F. White and D. Sichen: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2014, vol. 45B, pp. 96–105.

  26. A.N. Assis, J. Warnett, S. Spooner, Richard J. Fruehan, M.A. Williams, and S. Sridhar: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 568–76.

    Article  Google Scholar 

  27. S. Spooner, Andre N. Assis, J. Warnett, R. Fruehan, Mark A. Williams, and S. Sridhar: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2123–32.

    Article  Google Scholar 

  28. M.A. Rhamdhani: PhD Thesis - McMaster Univ., 2005.

  29. E. Chen and K. S. Coley: Ironmak. Steelmak., 2010, vol. 37, pp. 541–45.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Natural Science and Engineering Research Council of Canada (NSERC, STPGP463252-14) for the funding support. The authors offer their special thanks to Arcelor Mittal Dofasco, US Steel Canada, Praxair, and Hatch Ltd. acknowledging their in-kind support, technical expertise, and their many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Coley.

Additional information

Manuscript submitted September 30, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamieson, B.J., Coley, K.S. Kinetics of Silicothermic Reduction of Manganese Oxide for Advanced High-Strength Steel Production. Metall Mater Trans B 48, 1613–1624 (2017). https://doi.org/10.1007/s11663-017-0967-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-0967-z

Keywords

Navigation