Skip to main content
Log in

Modeling the Hydrogen Solubility in Liquid Aluminum Alloys

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The modeling of hydrogen solubility in multicomponent Al-(Li, Mg, Cu, and Si) liquid phase has been performed with a thermodynamic approach using the modified quasichemical model with the pair approximation (MQMPA). All hydrogen solubility data available in literature was assessed critically to obtain the binary parameters of the MQMPA model for the Al-H, Li-H, Mg-H, Cu-H, Zn-H, and Si-H melts. For the Li-H system, a new thermodynamic description of the stable solid lithium hydride was determined based on the c p found in literature. The thermodynamic model for the Al-Li system also was reassessed in this work to take into account the short-range ordering observed for this system. Built-in interpolation techniques allow the model to estimate the thermodynamic properties of the multicomponent liquid solution from the liquid model parameters of the lower order subsystems. A comparison of the calculated hydrogen solubility performed at various equilibrium conditions of temperature, pressure, and composition with the available experimental data found in the literature is presented in this work, as well as a comparison with some results from previous modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. D.E.J. Talbot: Int. Metall. Rev., 1975, vol. 20, pp. 166–84.

    CAS  Google Scholar 

  2. W. Baukloh and F. Oesterlen: Z. Metallkd., 1938, vol. 30, no. 11, pp. 386–89.

    CAS  Google Scholar 

  3. H. Liu, L. Zhang, and M. Bouchard: Recent Dev. Light Met., Proc. Int. Symp., 1994, pp. 257–68.

  4. W.R. Opie and N.J. Grant: Trans. AIME, 1950, vol. 188, pp. 1237–41.

    CAS  Google Scholar 

  5. H. Shahani: Ph.D. Dissertation, Royal Institute of Technology, Stockholm, Sweden, 1984.

  6. P.N. Anyalebechi, D.E.J. Talbot, and D.A. Granger: Metall. Trans. B, 1988, vol. 19B, pp. 227–32.

    Article  CAS  ADS  Google Scholar 

  7. D.F. Chernega, Y.Y. Gotvyanskii, and T.N. Prisyazhnyuk: Liteinoe Proizvodstvo, 1977, vol. 12, pp. 9–10.

    Google Scholar 

  8. A.A. Grigor’eva and V.A. Danelkin: Tsvetn. Metal. (Moscow), 1984, vol. 1, pp. 87–89.

    Google Scholar 

  9. Y.C. Huang, T. Watanabe, and R. Komatsu: Proc. Int. Conf. Vac Metall., 4 th, 1974, pp. 176–79.

  10. E. Øvrelid, T.A. Engh, and D. Øymo: Light Metals, TMS, Warrendale, PA, 1994, pp. 771–78.

    Google Scholar 

  11. T. Watanabe, Y. Tachihara, Y.C. Huang, and R. Komatsu: J. Jpn. Inst. Light Met., 1976, vol. 26, no. 4, pp. 167–74.

    CAS  Google Scholar 

  12. D. Stephenson: Ph.D. Dissertation, Brunel University, Middlesex, England, 1984.

  13. P.N. Anyalebechi: Scripta Mater., 1996, vol. 34, no. 4, pp. 513–17.

    Article  CAS  Google Scholar 

  14. C.E. Ransley and D.E.J. Talbot: Z. Metallkd., 1955, vol. 46, no. 5, pp. 328–37.

    CAS  Google Scholar 

  15. M. Sargent: Ph.D. Dissertation, Brunel University, Middlesex, England, 1989.

  16. H. Liu and M. Bouchard: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 625–32.

    Article  CAS  Google Scholar 

  17. P.N. Anyalebechi: Scripta Metall. Mater., 1995, vol. 33, no. 8, pp. 1209–16.

    Article  CAS  Google Scholar 

  18. P.N. Anyalebechi: Light Metals, TMS, Warrendale, PA, 1998, pp. 827–42.

    Google Scholar 

  19. R.Y. Lin and M. Hoch: Metall. Trans. A, 1989, vol 20A, pp. 1785–91.

    CAS  ADS  Google Scholar 

  20. C. Qiu, G.B. Olson, S.M. Opalka, and D.L. Anton: J. Phase Equilib. Diffus., 2004, vol. 25, no. 6, pp. 520–27.

    Google Scholar 

  21. A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin, and Y. Dessureault: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 651–59.

    Article  CAS  ADS  Google Scholar 

  22. S. An Mey: Z. Metallkd., 1993, vol. 84, no. 7, pp. 451–55.

    CAS  Google Scholar 

  23. T. Buhler, S.G. Fries, P.J. Spence, and H.L. Lukas: J. Phase Equilib., 1998, vol. 19, no. 4, pp. 317–33.

    Article  CAS  Google Scholar 

  24. J. Gröbner, H.L. Lukas, and F. Aldinger: CALPHAD, 1996, vol. 20, no. 2, pp. 247–54.

    Article  Google Scholar 

  25. N. Saunders: CALPHAD, 1990, vol. 14, no. 1, pp. 61–70.

    Article  CAS  Google Scholar 

  26. A. Sieverts: Z. Phys. Chem., 1912, vol. 77, pp. 591–613.

    CAS  Google Scholar 

  27. R.H. Fowler and E.A. Guggenheim: Statistical Thermodynamics, Cambridge University Press, Cambridge, UK, 1939, pp. 350–66.

    MATH  Google Scholar 

  28. E. Ising: Z. Phys., 1925, vol. 31, pp. 253–58.

    Article  CAS  ADS  Google Scholar 

  29. A.T. Dinsdale: CALPHAD, 1991, vol. 15, no. 4, pp. 317–425.

    Article  CAS  Google Scholar 

  30. M.B. Bever and C.F. Floe: Trans. AIME, 1944, vol. 156, pp. 149–59.

    Google Scholar 

  31. J. Koeneman and A.G. Metcalfe: Trans. TMS-AIME, 1959, vol. 51, pp. 1072–81.

    Google Scholar 

  32. H. Liu, M. Bouchard, and L. Zhang: J. Mater. Sci., 1995, vol. 30, no. 17, pp. 4309–15.

    Article  CAS  ADS  Google Scholar 

  33. D.E.J. Talbot and P.N. Anyalebechi: Mater. Sci. Technol., 1988, vol. 4, no. 1, pp. 1–4.

    CAS  Google Scholar 

  34. J.R. Cahoon: Can. J. Phys., 2004, vol. 82, no. 4, pp. 291–301.

    Article  CAS  ADS  Google Scholar 

  35. A.L. Hines, H.A. Walls, and K.R. Jethani: Metall. Trans. A, 1985, vol. 16A, pp. 267–74.

    CAS  ADS  Google Scholar 

  36. C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melancon, A.D. Pelton, C. Robelin, and S. Petersen: CALPHAD, 2009, vol. 33, no. 2, pp. 295–311.

    Article  CAS  Google Scholar 

  37. M.W. Chase, Jr., C.A. Davies, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald, and A.N. Syverud: JANAF Thermochemical Tables, 3rd ed., American Chemical Society, New York, NY, 1985, pp. 1211.

    Google Scholar 

  38. L.L. Bircumshaw: Trans. Faraday Soc., 1935, vol. 31, pp. 1439–43.

    Article  CAS  Google Scholar 

  39. W. Eichenauer, K. Hattenbach, and A. Pebler: Z. Metallkd., 1961, vol. 52, no. 10, pp. 682–84.

    CAS  Google Scholar 

  40. H. Feichtinger and R.A. Morach: Aluminium (Isernhagen), 1987, vol. 63, no. 2, pp. 181–87.

    CAS  Google Scholar 

  41. W. Hofmann and J. Maatsch: Z. Melallkd., 1956, vol. 47, no. 2, pp. 89–95.

    Google Scholar 

  42. M. Imabayashi, M. Ichimura, and Y. Sasajima: J. Jpn. Inst. Light Met., 1995, vol. 45, no. 5, pp. 278–83.

    Google Scholar 

  43. C.E. Ransley and H. Neufeld: J. Inst. Metals, 1948, vol. 74, pp. 599–620.

    CAS  Google Scholar 

  44. A. Sieverts and H. Hagen: Z. Phys. Chem., 1931, vol. A155, pp. 314–17.

    CAS  Google Scholar 

  45. N.C. Blais and J.B. Mann: J. Chem. Phys., 1960, vol. 32, pp. 1459–465.

    Article  CAS  ADS  Google Scholar 

  46. H.S. Gregory: Proc. R. Soc. London, 1935, vol. A149, pp. 35–56.

    ADS  Google Scholar 

  47. J.P. Holman: Heat Transfer, 9th ed., McGraw-Hill, New York, NY, 2002, pp. 315–53.

    Google Scholar 

  48. H.L. Johnston and E.R. Grilly: J. Chem. Phys., 1946, vol. 14, pp. 233–8.

    Article  CAS  ADS  Google Scholar 

  49. K.L. Schafer and F.W. Reiter: Z. Elektrochem. Angew. Phys. Chem., 1957, vol. 61, pp. 1230–35.

    CAS  Google Scholar 

  50. N.B. Vargaftik and O.N. Oleshchuk: Izvest. VTI (Vsesoyuz. Teplotekh. Inst.), 1946, vol. 15, no. 6, pp. 7–15.

    CAS  Google Scholar 

  51. N.B. Vargaftik and Y.D. Vasilevskaya: Inzh.-Fiz. Zh., 1982, vol. 42, no. 3, pp. 412–17.

    CAS  Google Scholar 

  52. K. Gunji, S. Matoba, and K. Ono, Trans. Natl. Res. Inst. Metals, 1964, vol. 6, no. 5, pp. 202–09.

    Google Scholar 

  53. F. de Kazinczy and O. Lindberg: Jernkontorets Annaler, 1960, vol. 144, pp. 288–96.

    Google Scholar 

  54. E.S. Levin: Trudy Ural’skogo Politekhnicheskogo Instituta im. S. M. Kirova, 1974, vol. 231, pp. 86–92.

    CAS  Google Scholar 

  55. M.S. Petrushevskii, P.V. Gel’d, B.A. Baum, and T.K. Kostina: Metally, 1971, vol. 5, pp. 28–33.

    Google Scholar 

  56. A.V. Shishkin and A.S. Basin: Theor. Found. Chem. Eng., 2004, vol. 38, no. 6, pp. 660–68.

    Article  CAS  Google Scholar 

  57. V.I. Shapovalov, N.P. Serdyuk, and A.P. Semik: Dopovidi Akademii Nauk Ukrains’koi RSR, Seriya A: Fiziko-Matematichni ta Tekhnichni Nauki, 1981, vol. 6, pp. 99–101.

    Google Scholar 

  58. A. San-Martin and F.D. Manchester: Bull. Alloy Phase Diagrams, 1987, vol. 8, no. 5, pp. 431–37.

    CAS  Google Scholar 

  59. K. Zeng, T. Klassen, W. Oelerich, and R. Bormann: Int. J. Hydrogen Energy, 1999, vol. 24, no. 10, pp. 989–1004.

    Article  CAS  Google Scholar 

  60. E. Øvrelid, G.B. Fløistad, T. Rosenqvist, P. Bakke, and T.A. Engh: Scand. J. Metall., 1998, vol. 27, no. 3, pp. 133–40.

    Google Scholar 

  61. V.I. Shapovalov, A.P. Semik, and A.G. Timchenko: Metally, 1993, vol. 3, pp. 25–28.

    Google Scholar 

  62. M.L.V. Gayler: J. Inst. Metals, 1946, vol. 72, no. 1018, pp. 243–63.

    CAS  Google Scholar 

  63. N.P. Allen and T. Hewitt: J. Inst. Metals, 1933, vol. 623, pp. 1–16.

    Google Scholar 

  64. P. Röntgen and F. Möller: Metallwirtsch., 1934, vol. 13, pp. 81–93, 99–100.

    Google Scholar 

  65. H. Schenck and K.W. Lange: Arch. Eisenhuettenwes., 1966, vol. 37, no. 9, pp. 739–48.

    CAS  Google Scholar 

  66. M. Weinstein and J.F. Elliott: Trans. Am. Inst. Min. Metall. Pet. Eng., 1963, vol. 227, pp. 285–86.

    CAS  Google Scholar 

  67. V.M. Sokolov and I.V. Fedorenko: Int. J. Hydrogen Energy, 1996, vol. 21, nos. 11–12, pp. 931–34.

    Article  CAS  Google Scholar 

  68. V.G. Mogilatenko, D.F. Chernega, and K.I. Vashchenko: Izvestiya Vysshikh Uchebnykh Zavedenii, Tsvetnaya Metallurgiya, 1981, vol. 4, pp. 104–06.

    Google Scholar 

  69. P.F. Adams, M.G. Down, P. Hubberstey, and R.J. Pulham: J. Less-Common Met., 1975, vol. 42, no. 3, pp. 325–34.

    Article  CAS  Google Scholar 

  70. V.D. Bushmanov and S.P. Yatsenko: Russ. J. Phys. Chem., 1981, vol. 55, pp. 1680–81.

    Google Scholar 

  71. Z. Moser, F. Sommer, and B. Predel: Z. Metallkd., 1988, vol. 79, no. 11, pp 705–07.

    CAS  Google Scholar 

  72. J.F. Smith and Z. Moser: J. Nucl. Mater., 1976, vol. 59, no. 2, pp. 158–174.

    Article  CAS  ADS  Google Scholar 

  73. S. Fukada, M. Kinoshita, K. Kuroki, and T. Muroga: J. Nucl. Mater., 2005, vol. 346, nos. 2–3, pp. 293–97.

    Article  CAS  ADS  Google Scholar 

  74. F.K. Heumann and O.N. Salmon: KAPL-1667, U.S. Atomic Energy Commission, Washington, DC, 1956.

  75. C.B. Hurd and G.A. Moore: J. Am. Chem. Soc., 1935, vol. 57, pp. 332.

    Article  CAS  Google Scholar 

  76. H.R. Ihle and C.H. Wu: J. Inorg. Nucl. Chem., 1974, vol. 36, no. 10, pp. 2167–70.

    Article  CAS  Google Scholar 

  77. H. Katsuta, T. Ishigai, and K. Furukawa: Nucl. Technol., 1977, vol. 32, no. 3, pp. 297–303.

    CAS  Google Scholar 

  78. C.E. Messer, E.B. Damon, P.C. Maybury, J. Mellor, and R.A. Seales: J. Phys. Chem., 1958, vol. 62, pp. 220–22.

    Article  CAS  Google Scholar 

  79. R.F. Simandl: Report Y-2242, U.S. Department of Energy, Washington, DC, 1981.

  80. H.M. Smith and R.E. Webb: Report Y-2095, U.S. Army Environmental Command, Washington, DC, 1977.

  81. E. Veleckis, E.H. van Deventer, and M. Blander: J. Phys. Chem., 1974, vol. 78, no. 19, pp. 1933–40.

    Article  CAS  Google Scholar 

  82. Y. Yoshimura and T. Yanagi: Technical Report, Osaka University, 1981, vol. 31, nos. 1583–1605, pp. 191–96.

  83. J. Sangster and A.D. Pelton: J. Phase Equilib., 1993, vol. 14, no. 3, pp. 373–81.

    Article  CAS  Google Scholar 

  84. A.D. Pelton: Z. Metallkd., 1993, vol. 84, no. 11, pp. 767–72.

    CAS  Google Scholar 

  85. A.D. Pelton and P. Chartrand: Metall. Trans. A, 2001, vol. 32A, pp. 1355–60.

    Article  CAS  Google Scholar 

  86. N. Saunders: Z. Metallkd., 1989, vol. 80, no. 12, pp. 894–903.

    CAS  Google Scholar 

  87. Y. Sato and T. Yamamura: Shigen to Sozai, 1992, vol. 108, no. 11, pp. 803–07.

    CAS  Google Scholar 

  88. P.C. Yao and D.J. Fray: Metall. Trans. B, 1985, vol. 16B, pp. 41–46.

    Article  CAS  ADS  Google Scholar 

  89. S.P. Yatsenko and E.A. Saltykova: Russ. J. Phys. Chem., 1974, vol. 48, pp. 1402–03.

    Google Scholar 

  90. J.M. Hicter, A. Vermande, I. Ansara, and P. Desré: Rev. Int. Temp. Refr., 1971, vol. 8, pp. 197–99.

    CAS  Google Scholar 

  91. I. Ansara, A.T. Dinsdale, and M.H. Rand: COST 507, Thermochemical Database for Light Metal Alloys, Office for Official Publications of the European Communities, Luxembourg, 1998, pp. 2–396.

    Google Scholar 

  92. P.N. Anyalebechi: Foundry Trade J., 1993, pp. 257, 321.

  93. P. Chartrand and A.D. Pelton: J. Phase Equilib., 2000, vol. 21, no. 2, pp. 141–47.

    Article  CAS  Google Scholar 

  94. J.J. Lee and F. Sommer: Z. Metallkd., 1985, vol. 76, pp. 750–54.

    Google Scholar 

Download references

Acknowledgments

Financial support from Rio Tinto Alcan, Alcoa, Hydro Aluminium, and the Natural Sciences and Engineering Research Council of Canada through the CRD grants program is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Chartrand.

Additional information

Manuscript submitted September 2, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harvey, JP., Chartrand, P. Modeling the Hydrogen Solubility in Liquid Aluminum Alloys. Metall Mater Trans B 41, 908–924 (2010). https://doi.org/10.1007/s11663-010-9381-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-010-9381-5

Keywords

Navigation