Skip to main content
Log in

Mechanism governing nitrogen absorption by steel weld metal during laser welding

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The existence of monatomic nitrogen in the plasma just over the keyhole during CO2 laser welding was confirmed by the monochromatic image of a specific spectrum line emitted by monatomic nitrogen. The smaller reaction area of the molten pool with monatomic nitrogen is considered to lead to less nitrogen absorption during CO2 laser welding than that during arc welding. The effect of the penetration mode shows that the nitrogen absorption during CO2 laser welding mainly occurs on the upper surface of the molten pool. The nitrogen content in a reduced-pressure nitrogen atmosphere during CO2 laser welding is in good agreement with that obtained during yttrium aluminum garnet (YAG) laser welding within the range of low nitrogen (partial) pressures. This result supports the supposition that the different behaviors of nitrogen absorption between CO2 laser welding and YAG laser welding can be reasonably attributed to the lesser amount of monatomic nitrogen during YAG laser welding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.D. Pehlke: Unit Processes in Extractive Metallurgy, Elsevier, New York, NY, 1979, p. 141.

    Google Scholar 

  2. T. Kuwana and H. Kokawa: Trans. Jpn. Welding Soc., 1986, vol. 17, pp. 20–26.

    CAS  Google Scholar 

  3. T. Kuwana, H. Kokawa, and K. Naitoh: Trans. Jpn. Welding Soc., 1986, vol. 17, pp. 117–23.

    CAS  Google Scholar 

  4. S. Ohno and M. Uda: Trans. Nat. Res. Inst. Met., 1981, vol. 23 (4), pp. 243–48.

    Google Scholar 

  5. M. Uda and S. Ohno: Trans. Nat. Res. Inst. Met., 1978, vol. 20 (6), pp. 358–65.

    CAS  Google Scholar 

  6. J.D. Katz and T.B. King: Metall. Trans. B, 1989, vol. 20B, pp. 175–85.

    CAS  Google Scholar 

  7. G. den Ouden and O. Griebling: in Recent Trends in Welding Science and Technology, S.A. David and J.M. Vitek, eds., ASM INTERNATIONAL, Metals Park, OH, 1990, pp. 431–35.

    Google Scholar 

  8. A. Bandopadhyay, A. Banerjee, and T. DebRoy: Metall. Trans. B, 1992, vol. 23B, pp. 207–14.

    CAS  Google Scholar 

  9. K. Mundra and T. DebRoy: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 149–57.

    CAS  Google Scholar 

  10. T.A. Palmer and T. DebRoy: Welding J., 1996, vol. 75, pp. 197s-207s.

    Google Scholar 

  11. T.A. Palmer, K. Mundra, and T. DebRoy: in Mathematical Modelling of the Weld Phenomena 3, H. Cerjak, ed., The Institute of Materials, London, 1997, pp. 3–40.

    Google Scholar 

  12. T. Kuwana, H. Kokawa, and M. Saotome: Mathematical Modeling of the Weld Phenomena 3, H. Cerjak, ed., The Institute of Materials, London, 1997, pp. 64–81.

    Google Scholar 

  13. T.A. Palmer and T. DebRoy: Sci. Technol. Welding Joining, 1998, vol. 3, pp. 190–203.

    CAS  Google Scholar 

  14. T.A. Palmer and T. DebRoy: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1371–85.

    Article  CAS  Google Scholar 

  15. Y. Sato, W. Dong, H. Kokawa, and T. Kuwana: Iron Steel Inst. Jpn. Int., 2000, vol. 40, Suppl., pp. 20–24.

    Google Scholar 

  16. W. Dong, H. Kokawa, Y.S. Sato, and S. Tsukamoto: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 75–82.

    CAS  Google Scholar 

  17. W.W. Duley: Laser Welding, A Wiley-Interscience Publication, John Wiley & Sons, Inc., 1999, p. 159.

  18. T.P. Hughes: Plasma and Laser Light, Adam Hilger Ltd., 1975, p. 44.

  19. G.J. Dunn, C.D. Allemand, and T.W. Eager: Metall. Trans. A, 1986, vol. 17A, pp. 1851–63.

    CAS  Google Scholar 

  20. E.W. Kim, C.D. Allemand, and T.W. Eager: Welding J., 1987, vol. 66, pp. 369s-377s.

    Google Scholar 

  21. S. Tsukamoto, Y. Asai, H. Tanaka, and T. Shida: Proc. ICALEO ’99, 1999, vol. 87, pp. D73-D82.

    Google Scholar 

  22. S. Tsukamoto, K. Hiraoka, Y. Asai, H. Irie, M. Yoshino, and T. Shida: Proc. ICALEO ’96, 1996, vol. 81, pp. B76-B85.

    CAS  Google Scholar 

  23. S. Tsukamoto, I. Kawaguchi, G. Arakane, and H. Honda: Sci. Technol. Welding Joining, 2001, vol. 6, pp. 363–67.

    CAS  Google Scholar 

  24. J. Norrish: Advanced Welding Process, JOP Publishing Ltd., Bristol, UK, 1992, p. 191.

    Google Scholar 

  25. S. Tsukamoto, K. Hiraoka, Y. Asai, H. Irie, and M. Oguma: Proc. 5th Int. Conf. on Trends in Welding Research, J.M. Vitek, S.A. David, J.A. Johnson, H.B. Smartt, and T. DebRoy, eds., ASM INTERNATIONAL, Metals Park, OH, 1999, pp. 431–36.

    Google Scholar 

  26. S. Tsukamoto, Y. Asai, H. Tanaka, and T. Shida: Proc. ICALEO ’99, 1999, vol. 87, pp. D73-D82.

    Google Scholar 

  27. W. Sokolowski, G. Herzinger, and E. Beyer: Proc. SPIE ’89, 1989, vol. 1132, pp. 288–95.

    CAS  Google Scholar 

  28. W.M. Steen: Laser Material Processing, Springer-Verlag, London, 1991, p. 132.

    Google Scholar 

  29. A. Verwaerde, R. Fabbro, and G. Deshors: J. Appl. Phys., 1995, vol. 78, pp. 2981–84.

    Article  CAS  Google Scholar 

  30. A. Matsunawa, H. Yoshida, and S. Katayama: Proc. ICALEO ’84, 1984, vol. 69, pp. 34–40.

    Google Scholar 

  31. T. Kuwana and H. Kokawa: Trans. Jpn. Welding Soc., 1988, vol. 19, pp. 92–99.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, W., Kokawa, H., Sato, Y.S. et al. Mechanism governing nitrogen absorption by steel weld metal during laser welding. Metall Mater Trans B 35, 331–338 (2004). https://doi.org/10.1007/s11663-004-0033-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-004-0033-5

Keywords

Navigation