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Additive manufacturing (AM) processes have many benefits for the fabrication of alloy parts,
including the potential for greater microstructural control and targeted properties than tradi-
tional metallurgy processes. To accelerate utilization of this process to produce such parts, an
effective computational modeling approach to identify the relationships between material and
process parameters, microstructure, and part properties is essential. Development of such a
model requires accounting for the many factors in play during this process, including laser
absorption, material addition and melting, fluid flow, various modes of heat transport, and
solidification. In this paper, we start with a more modest goal, to create a multiscale model for a
specific AM process, Laser Engineered Net Shaping (LENS™), which couples a continuum-
level description of a simplified beam melting problem (coupling heat absorption, heat trans-
port, and fluid flow) with a Lattice Boltzmann-cellular automata (LB-CA) microscale model of
combined fluid flow, solute transport, and solidification. We apply this model to a binary Ti-5.5
wt pct W alloy and compare calculated quantities, such as dendrite arm spacing, with experi-
mental results reported in a companion paper.
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I. INTRODUCTION

THE Laser Engineered Net Shaping (LENS™)
Process is an additive manufacturing (AM) technique
for the fabrication of metallic parts, originally developed
at Sandia National Laboratories in the 1990s. Parts are
built in a layer-by-layer fashion as powder is injected
into a melt pool created by a focused laser beam, which
is moved in a specific pattern to build the desired part.
LENS™ and other energy deposition-based AM pro-
cesses have gathered interest because of their potential
for producing parts with advantageous microstructural
features,[1] unique structures,[2] and/or improved
mechanical properties.[3] Additional abilities of such
deposition processes include building of compositionally
or functionally graded parts,[4] fully dense parts, and use
in part repair.[5] Parts made from titanium alloys in
particular, owing to its low density, high strength, and
corrosion resistance, have the potential to be produced

via LENS™ for applications ranging from biomedical to
aerospace.[6] One of the biggest challenges in the use of
AM processes is, however, the details of the relation-
ships between processing parameters and the properties
of the final part. While extensive research has been done
in modeling of the molten pool and microstructure
produced in welding operations, different process
parameters, material properties, and forces acting on
the molten pool in laser and electron beam-based
deposition processes necessitate model extensions for
AM conditions. The development of such a model for a
given additive process is aided by a detailed under-
standing of similarities and differences between welding
and AM conditions, and how the conditions affect
development of the microstructure in the solidified
material. The purpose of this paper is to present the
first step in the development of a multiscale computa-
tional model of AM processes, with the goal of
predicting details of the as-solidified microstructures
and properties in metallic alloys. We focus on the
LENS™ process for a specific alloy system.
There is a wide range of physical phenomena occur-

ring during the deposition and rapid solidification of
alloys created via LENS™ and similar beam-based
deposition processes. As the laser is moved across the
sample, a melt pool is created that involves not only the
melted powder feedstock but also previously deposited
layers. Heat transport through various modes in solid,
liquid, and gas are important in determining the
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temperature field and molten pool dimensions.[7] Owing
to the inherent asymmetry of the beam melting problem
(particularly when beam motion is accounted for), there
will be a significant location dependence of the thermal
gradient and cooling rate; these temperature fields play a
large role in initial microstructure formation and thus on
the properties of the final part. Much of our detailed
understanding of these fields come from applications of
the finite element method (FEM), which has been used
extensively to model them.[8–13] For solidification in the
LENS™ process in particular, Hofmeister[8] used a
combination of thermal imaging and finite element
modeling to estimate cooling rates and thermal gradients
in the molten pool for various sets of process parameters.
Similarly, Wang and Felicelli[10] used a 2D finite element
model to calculate temperature as a function of time in
different regions of themolten pool for the deposition of a
thin plate structure with a moving beam, a work later
expanded to 3D by the same authors.[11]

While the role of fluid transport is sometimes
neglected in the calculation of these temperature fields,
the melt pool created in beam-based melting problems is
highly dynamic.[14] Large temperature gradients, capil-
lary forces, and Marangoni convection play important
roles in its evolution as well as in the evolution of the
corresponding temperature fields.[15,16] For example, the
role of Marangoni convection in welding has been
studied extensively[17–19] and several FEM-based models
of coupled fluid and heat transport in weld pools that
include Marangoni and buoyancy forces have been
developed.[20–22] Such models typically used multi-layer
meshes and solved the incompressible Navier–Stokes
equations for fluid flow in the melt pool. Later models
expanded on this work to include material addition,
with the corresponding forces on the molten pool arising
from powder injection.[23–25] More recently, Wei et al.[26]

modeled a beam-based melting and solidification prob-
lem with fluid flow, heat transport, and solidification in
order to study the effects of epitaxy on the grain growth
and texture of multiple deposited layers. Acharya
et al.[27] modeled a similar problem for scanning laser
epitaxy use in part repair, investigating the role of
process parameters and fluid transport on solidification
conditions. Additionally, Morville et al.[28] used COM-
SOL Multiphysics® to simulate the fluid flow, melting,
and transient temperature conditions encountered dur-
ing direct laser metal deposition. Another approach has
been based on the use of the Lattice Boltzmann method
(LB), which is an attractive method for solving this
particular fluid transport problem (relative to Navier–
Stokes algorithms) because of its ease of handling
complex geometries,[29,30] ease of modeling the changing
boundary conditions found in solidification[31,32] and its
ability to model coupled fluid, heat, and solute transport
problems.[7,31,33] Additionally, the method is computa-
tionally efficient and easily parallelized.[34,35] Körner
et al.[7,36] used a thermal Lattice Boltzmann model for
the combined heat transport, fluid flow, and phase
change problem, for Ti-6Al-4V in a powder bed-based
AM process.

The initial solidification is highly dependent on the
temperature field and is important to the development of

the as-solidified microstructure. By influencing the gas–
liquid interface alongwith local cooling rates and thermal
gradients, fluid flow can influence microstructural
changes such the formation of stray grains,[37] the
orientation of grains at the solidification front,[38] and
the development of porosity and surface roughness.[39]

Calculated thermal gradient G and solidification rate R
values from eithermathematical models or heat transport
FEM-based models (with and without consideration of
fluid flow) can be used to empirically determine
microstructural quantities such as dendrite arm spac-
ing,[40] or map pairs ofG and R into zones of “columnar,”
“equiaxed,” and “mixed” grain morphology.[41–43]

Cellular automata (CA) models of solidification, first
developed by Rappaz and Gandin,[44] have successfully
been coupled with process-scale models to simulate
grain growth[43,45] as well as the growth of dendritic
colonies within grains.[46] The CA used by Yin and
Felicelli,[46] originally developed by Beltran-Sanchez and
Stefanescu[47] based on the work of Rappaz, has been
used to successfully model binary alloy solidification by
others as well.[48–50] It has also been expanded into 3D
and used for ternary alloy growth.[51] The coupled LB-
CA model has recently been applied to model combined
fluid flow, solute transport, and solidification problems
for binary and ternary alloy systems.[33,52–58] Use of a
CA for solidification has the advantage of computa-
tional efficiency over alternative approaches, such as the
phase field method, but discretization error and grid
effects are significant drawbacks. Corrections to mini-
mize the grid effects that tend to occur in such models
have been proposed[59–61] and utilized by many solidi-
fication models. Combinations of the phase field and
cellular automata methods can be used to model
multiscale solidification as well; for example, Tan and
Shin[62] considers solidification of both grains (using a
CA) and dendritic colonies (using phase field) in 2D at
the appropriate length and time scales.
The present work uses a multiscale approach to

model microstructure in a binary alloy (Ti-5.5 wt pct
W) system, which was chosen because of its the
potential for significant grain growth restriction based
on its phase diagram.[63] We employed the commercial
software package COMSOL Multiphysics® to model
the macroscale process as a simplified beam melting
problem, considering the effects of fluid flow, heat
transport, and temperature-dependent materials prop-
erties. At the microscale, information passed from
COMSOL simulations is used to determine initial
conditions, thermal gradients, cooling rates, and fluid
flow velocities to be passed to a LB-CA model. The
focus of this paper is on the application of the LB-CA
model to the combined fluid flow, solute transport, and
solidification for domains within the COMSOL-simu-
lated LENS melt pool. In Section II, we present
background information on solidification that moti-
vates our choice of the model, which is described in
Section III. Results are summarized in Section IV and
comparisons to experiment are given in Section V,
accompanied by a discussion of the validity of the
model. Section VI presents conclusions and needs for
future work.
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II. BACKGROUND

The development of the as-solidified microstructure in
beam-based solidification processes depends on the
temperature field, particularly the local thermal gradient
G and cooling rate _T, as well as materials properties of
the solidifying alloy. Assuming that the rate of heat
transport in the solid is much faster than that of the
liquid and that the thermal gradient ahead of the
interface is very large, there will be a positive temper-
ature gradient ahead of the solidification front and the
latent heat released on solidification will be conducted
back through the solid. This situation leads to con-
strained growth as described by Kurz and Fischer,[64]

with a negligible thermal component to the undercool-
ing ahead of the front. For binary alloy growth of an
alloy with composition C0, these conditions lead to the
development of a solutal boundary layer arising from
the difference in liquidus and solidus composition at a
given undercooling relative to the initial composition’s
liquidus temperature TC0

L . The difference between the
local temperature in the melt and the liquidus temper-
ature at the local solute concentration is referred to as
the constitutional undercooling. Perturbations of the
originally planar interface can more effectively conduct
away this boundary layer than a planar boundary and,
provided a region of constitutional undercooling exists
ahead of the solidification front, the planar interface will
break down into long cells as the perturbations grow
into the undercooled liquid. The surfaces of these cells
may in turn become unstable and break down into
secondary and/or ternary arms, depending on the
solidification conditions.[65]

The radii of the perturbations that form cells or
dendrites are limited by the solid–liquid surface energy,
which serves to locally depress the liquidus temperature

and works against solidification in regions of high
curvature. We can represent this effect in a model by
including an interfacial component to the total under-
cooling. The dendrite tip radius represents a balance (for a
given set of conditions) between a sharp tip (which can
most effectively conduct away the solutal boundary layer
being formed in its wake) and a blunt tip (which has less
solid–liquid interfacial area). Given the rapid rates of
solidification in beam melting processes, the process of
planar front breakdown and development of cells and
dendrites is very common. In the case of the Ti-W system
with low solute concentration (seeFigure 1(a) for its phase
diagram,[66]), the solute partition coefficient k, which
describes the ratio of the liquidus to the solidus slope, is
greater than1; the equilibriumconcentrationof solute at a
given undercooling for the solid phase will be larger than
that for the liquid phase. Therefore, as the solid grows and
absorbs solute, the solutal boundary layer will be depleted
of solute relative to the initial alloy concentration. The
region of the phase diagram focused on in this paper is
such that the liquidus and solidus curves can be approx-
imated as linear, as shown in Figure 1(b).
As detailed by Rappaz and Gandin,[44] the solidifica-

tion morphologies depend on the interplay between the
local thermal gradient G and cooling rate. For the
planar front to become unstable and break down into
cells, G must be small enough for development of the
region of constitutional undercooling ahead of the front
and the solidification rate must be fast enough such that
the more efficient solute diffusion around the perturba-
tion tips overcomes the interfacial energy penalty of
their curvatures, allowing them to grow into cells rather
than melting back into the liquid. At even faster
solidification rates (large _T) and smaller G, the surfaces
of the cells themselves are unstable and a columnar

Fig. 1—(a) The equilibrium phase diagram for the Ti-W system. As a beta-isomorphous element, W exhibits mutual solubility with the high-tem-
perature BCC phase of Ti. This combined with the large melting point difference between the two elements leads to a large range of tempera-
tures over which solidification occurs. The alpha HCP phase appears at low temperatures. (b) The region of interest in the phase diagram for the
solidification problem (highlighted in (A) with blue). Over this relatively narrow range of temperature and dilute W concentrations, the equilib-
rium liquidus and solidus are approximated as linear (Color figure online).
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dendritic microstructure is formed. At the fastest solid-
ification rates and smallest G, nucleation in the under-
cooled zone dominates over growth of the original
grains and a transition to an equiaxed dendritic
microstructure occurs. Kurz and Fischer[64] detail the
typical ranges of G and _T values in binary alloy
solidification that leads to different morphologies.
Additionally, the cells and dendrites that form tend to
be finer with increasing cooling rate.[64,67,68] Solidifica-
tion during the LENS™ process occurs under locally
high cooling rates and large thermal gradients; experi-
mental and modeling work on LENS™ in Hofmeister
et al.[8] shows G on order of 105 K/m and _T between 103

and 104 K/s, with the larger values closer to the melt
pool bottom. The multiscale model of LENS™ solidi-
fication in Yin and Felicelli[46] yielded similar values,
while the solidification maps by Bontha et al.[42] show
thermal gradients and solidification velocities on par
with or larger than those in the previous works. These
conditions would be expected to heavily favor planar
interface breakdown and the development of cells and
dendrites,[65] and experimental work on rapid solidifica-
tion of β-Ti alloys has shown the dominant microstruc-
tural feature to be long columnar dendritic grains and/
or cellular structures heavily textured with the 〈001〉
directions aligned with the heat flow direction.[69–71]

While these large thermal gradients typically give rise to
a strong dendritic or cellular microstructure, reduction
in G and _T near the top of the melt pool may give rise to
mixed columnar and equiaxed structure.[42] As shown
later, the current model is capable of simulating all of
these morphologies (cellular, dendritic, and equiaxed)
under appropriate conditions.

While the primary driver in the development of
solidification microstructures are the effects described
above, there are other phenomenon that must also be
taken into account to best model molten pool develop-
ment and solidification in the LENS™ process. Specif-
ically, the effects of epitaxial growth[26] as well as the
movement of the laser beam[9,13,72] can have a significant
effect on the dendrite orientations. Epitaxial growth
leads to preferred initial growth in prescribed directions,
which may not align with the large thermal gradients.
The moving beam leads to an anisotropic melt pool
where G and _T vary significantly based on melt pool
location.[73,74] Reheating and remelting of previous
layers, the different conditions encountered in each
layer, and solid-state phase transformations in previ-
ously deposited layers will also play roles in microstruc-
tural development.[1] While these factors are not fully
accounted for in the present work, the basic formalism
described next is capable of modeling these effects.

III. APPROACH

Owing to the different physical phenomena at varied
length and time scales of this problem, as described
above, a multiscale approach is needed. In the long
term, our goal is to couple fluid flow, heat flow, and
solute transport to a solidification model to more
completely describe the process. In this paper, we focus

on a first step toward this goal: the coupling of a
microscale model of solidification with a continuum-
level simulation of the melt pool, which will provide
boundary conditions for the microscale. At the contin-
uum scale, the commercial software package COMSOL
Multiphysics® is used to model heat absorption with
heat and fluid transport for a simplified beam melting
problem. At the microscale, a LB-CA model simulates
solute and fluid transport during solidification.

A. Process Modeling

The sets of conservation equations for energy,
momentum, and mass equations are coupled and solved
in two dimensions using the fluid flow and heat transfer
modules of COMSOL Multiphysics®. The fluid flow
module accounts for buoyancy and the Marangoni
effect assuming laminar flow and a Newtonian fluid,
while the heat transport module considers conduction,
convection, and radiation as modes of transport. Linear
variation of surface tension with temperature through
the thermocapillary coefficient γ, as well as temperature-
dependent model input values for density, thermal
conductivity, and heat capacity for both liquid and
solid β Ti-5.5 wt pct W are considered in the model.
They are estimated as described in Section IV. The
Marangoni effect was incorporated in a similar manner
as in the COMSOL simulations of Morville et al.,[28]

being modeled with the relation g@u=@y ¼ c@T=@x, in
which η is the dynamic viscosity of the fluid (equivalent
to the kinematic viscosity multiplied by the fluid
density), @u=@y is the variation in fluid velocity in the
direction perpendicular to the free surface, and ∂T/∂x is
the temperature gradient along the free surface.[75]

Three values of the beam power were used in the
COMSOL simulations: 183 W, 259 W, and 367 W
(referred to from this point on as “low,” “middle,” and,
“high”). The beam diameter was 500 μm for each power,
with a Gaussian distribution of energy. The model
simulates a stationary beammelting problem, with a fixed
molten pool geometry (estimated based on SEM images)
that is varied as a function of input power.[63] Owing to
these assumptions, calculated values for temperature and
fluid flow fields are used here only to estimate the thermal
gradients, cooling rates, and fluid flow fields at short times
near themelt poolwalls after turningoff the energy source.
These estimated values will serve as initial and boundary
conditions for the microscale fluid flow and solidification
model, detailed in Sections III–B and III–C.

B. The Lattice Boltzmann Method

The Lattice Boltzmann Method (LBM), an evolution
of the lattice gas cellular automata, provides an alter-
native to solving the full Navier–Stokes equations in
fluid dynamics problems.[29,76] LBM models the fluid as
a series of fictitious fluid particle distribution functions
fiðx; tÞ at each grid point x and time t, which removes the
noise inherent to the particle-based lattice gas mod-
el.[29,77] Being based on both microscale particle behav-
ior while satisfying mesoscale conservation and
evolution equations for fluid, the LBM provides a way
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to bridge the two scales[78,79] and has accurately simu-
lated benchmark fluid flow problems (e.g., Couette
flow).[29,76,80] In the two-dimensional applications de-
scribed here, an LBM time step consists of solving the
discrete Boltzmann equation for the distribution func-
tions on a square lattice via successive collision and
propagation steps. In the present work, the D2Q9 lattice
is used (see Figure 2). A second set of distribution
functions, represented by giðx; tÞ, is used to model the
distribution of solute. These distribution functions
undergo collision and propagation steps on the same
LB lattice as the fluid and are coupled to the fluid
particle distribution functions through the macroscopic
velocity u. The details of the LBM to solve coupled fluid
and solute transport problems are well documented in
the literature[52–56] and are shown briefly in the
Appendix. The LBM for fluid and solute transport
was verified by Zhou for several coupled fluid and solute
transport problems in 1D and 2D.[81] We note that the
LBM is also capable of simulating turbulent flow,
though it typically requires very fine grids and/or
alternations to some of the equations.[29]

Coupled transport of fluid flow, heat, and solute
would not be possible to simulate accurately in the
present model for molten titanium alloys, which is
limited to a single grid spacing and time step, owing to
the disparate rates of heat and solute transport. The
thermal Lattice Boltzmann method for coupled heat and
incompressible fluid flow fields has been used previously
to simulate convection problems[29,82–84] and been cou-
pled to cellular automata (CA) to simulate the solid–
liquid phase change for pure materials.[7,31,32,36,79] If it is
assumed that the fluid is incompressible, viscous heat
dissipation is negligible, and no work is done by the
external pressure, an additional set of distribution
functions can be introduced to the model for heat
transport. These are analogous to those for solute (the
heat is advected as a passive scalar), but include a heat
diffusivity, internal energy density, and a heat source

term in place of solute diffusivity, concentration, and the
solute source term, respectively. The inclusion of tem-
perature-dependent force terms for effects such as
capillarity, wetting, or buoyancy allows the coupling of
the energy evolution equations into those for fluid.[7,85]

Use of the thermal Lattice Boltzmann method with a
second set of distribution functions to model the internal
energy density has been shown to agree with analytical
solutions for natural convection, lid-driven convection in
square cavities, and other benchmark fluid dynamics
problems.[78,82,85,86]

Though the present work is focused on microstructure
evolution and not the process-scale melt pool dynamics,
we are exploring such a model for consideration of the
coupled fluid flow and heat transport problem at the
appropriate scale. This approach has a notable advan-
tage over the present COMSOL model in that it enables
direct tracking of the solid–liquid interface, allowing for
direct coupling to the microstructure evolution model.

C. Cellular Automata (CA) for Solidification

In our approach, solidification of an initially liquid
domain is calculated on the same grid andat the same time
step as the LBM calculations. Three cell types are
considered: solid, liquid, and interface. Solid cells act as
impenetrable boundaries for the fluid flow, while fluid
flow is allowed within interface cells. Liquid cells cannot
directly border a solid cell—a layer of interface cells is
always present. Once an interface cell has completely
solidified, it is changed to solid and neighboring liquid
cells become new interface cells. As in the original CA of
Rappaz, the amount of solidification in an interface cell
over a given time step is calculated as a function of the
local undercooling.[44] In this CA, however, the calcula-
tion is not given by an analytical function of solidification
velocity with undercooling but rather by assuming that
the driving force for free energy is dominated by local
interface kinetics. The driving free energy, GK, is propor-
tional to an interfacial velocity V for the cell. The
fundamental equations for these quantities are[87]

DGK

RTI
¼ 1� keqð Þ

meq
L

TTi
m þmeq

L CL � TI

� � ½1�

and

V ¼ fV0
�DGK

RTI

� �
½2�

in which R is the gas constant, TI is the local interface
temperature in the cell (determined via the macroscale
temperature fields as functions of time), and CL the lo-
cal solute concentration in the cell (as calculated via
LBM). TTi

m , k
eq, and mL

eq are the melting point of pure
solvent (titanium here), the equilibrium liquidus slope,
and the equilibrium solute partition coefficient, respec-
tively, as determined from the phase diagram (Figure 1).
The parameters mL

eq and keq are assumed to be constant
with low solute concentrations, as indicated in Figure 1
(b). The change in solid fraction Δfs is related to the
interface velocity V, Δx, Δt, and the angle between the
interface normal and the grid axis direction via

Fig. 2—The D2Q9 lattice used in the Lattice Boltzmann model. The
velocities are denoted by the vectors ei with the magnitudes given in
Eq. [A1].
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Dfs ¼ VD cos uð ÞDt
Dx

½3�

This equation for ΔGK can be rewritten in terms of the
local equilibrium solute concentrations Ceq

L and Ceq
S as

DGK

RTI
¼ Ceq

S � Ceq
L þ CLð1� keqÞ ½4�

These equilibrium concentrations, in turn, are func-
tions of the cell’s local temperature and the phase
diagram, as described below. An additional term,
related to the local interface curvature j (calculated
via the algorithm given in Beltran-Sanchez and Ste-
fanescu,[88]) Gibbs–Thomson coefficient , and a function
characterizing the crystal anisotropy (the function for a
crystal with fourfold symmetry used by Jelinek et al.[35]

is used here) is added to the expression for Ceq
L to

account for the local depression of the liquidus arising
from the solid–liquid interfacial energy,

Ceq
L ¼ TI � TTi

m

meq
L

þ j 1� d cosð4ð/� hÞð Þ
meq

L

½5�

in which h is a given grain’s “preferred” orientation,
and d a coefficient characterizing the surface energy
anisotropy. The solute concentration of the solid
formed is given by

C
eq
S ¼ keqC

eq
L ½6�

If a non-zero change in solid fraction is calculated, the
appropriate amount of solute must be added or with-
drawn from the cell via the LBM solute distribution
functions. This is calculated by solving the solute bal-
ance in the cell; note that if fs approaches or reaches 1,
the solute must instead be added or removed from
cells that still contain appreciable liquid.

S ¼ DfsðCL � Ceq
S Þ

1� fs � Dfs
½7�

If keq > 1 (as in the case of the Ti-W system), there is an
additional constraint that solidification cannot occur if
the amount of withdrawn solute leads to a subzero
concentration. To reduce the deleterious effects of grid
anisotropy on the growing colonies, the approach taken
by Zhan et al.[61] is used in which solidification of
“clusters” of cells are evolved in tandem, effectively
expanding the local neighborhood of the solidification
from the typical Moore or Von Neumann neighbor-
hoods and allowing the colonies that are misaligned
with the grid to maintain their preferred orientations.

To account for nucleation of new grains, a proba-
bilistic approach, similar to that of Rappaz, is taken in
which the change in local undercooling over a given
amount of time is related to the probability that
nucleation has occurred in the cell. If the probability is
larger than a randomly generated number, a new grain is
nucleated. The equation used for the density of nuclei as
a function of undercooling, as well as the equation for

the nucleation probability, is described in more detail in
Yin and Felicelli.[46] However, for the COMSOL sim-
ulations of LENS solidification at the melt pool wall, the
thermal gradient is large enough that such nucleation
did not occur at a rate comparable to that of columnar
growth from epitaxial colonies at the wall. The resultant
microstructures are thus dominated by the growth of
epitaxial dendrites nucleated along the boundary.

IV. RESULTS AND DISCUSSION

Because of sparse thermochemical data on the Ti-W
system, many of the materials constants had to be
approximated. For the estimation of specific heat,
density, and viscosity as functions of temperature as
required for COMSOL, the values for a different molten
titanium system with more available data (Ti-6Al-4V)
were used. The assumption is that such properties for
the Ti-5.5W system would be similar, which is reason-
able if the material is treated as homogenous continuum
as in the COMSOL simulations. For the solidification
model, reasonable values from the previous solidifica-
tion models or order-of-magnitude estimates were made
when parameters were unknown for the Ti-5.5W system.
The constants used in the solidification model and
sources for the values and/or equations used to obtain
them are described in Table I, along with temperature-
dependent equations for Ti-6Al-4V properties. Please
see Figure 1(b) for definitions of the parameters used to
characterize the phase diagram. The phase diagram and
solidification model in general are performed using mole
fraction of W; the results are converted to weight
percent of W for the figures. All solidification model
results used the Ti-W phase diagram, though for the
multiscale simulations, the temperature and fluid flow
data are from COMSOL results for Ti-6Al-4V.

A. Model Examples

To test the solidification model, the thermal gradient
G was held constant at 100,000 K/m and cooling rate Ṫ
varied to examine dendrite tip undercooling as a
function of tip velocity. The mesh size was set to 0.4
μm, and the time step to 0.64 μs. For each Ṫ, the model
was run until the rate of advance of the tip was near the
steady state Ṫ/G (adding rows to the simulations as
necessary), at which the interface temperature was
determined. Due to discretization, these temperatures
and velocities were not exactly constant and error bars
are included to account for the uncertainty in the exact
values. At larger Ṫ, the steady-state dendrite tip veloc-
ities are larger and a corresponding larger driving force
for solidification is necessary to maintain the steady
state. Since this requires a larger undercooling, the tip
temperature decreases with increasing cooling rate as
shown in Figure 3, which shows the same trends as the
analytical model of Kurz, Giovanola, and Trivedi for
constrained alloy growth.[89] However, the present work
used different equations, model parameters, and was
limited to two dimensions, so the exact dependence of
tip velocity and undercooling achieved here and that
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calculated by the analytical model is not directly
comparable. For many solidification velocities, some-
what smaller undercooling is needed to achieve the same
dendrite tip velocity here relative to the analytical
prediction. This suggests that the choices for f and V0

in Eq. [2] may be large, leading to a small overestimation
of local solidification rates

To validate the combined solute transport, solidifica-
tion, and fluid flow model, we compared the case of a
single nuclei growing in a melt at constant undercooling
(20 K below TC0

L ) with and without fluid flow. The mesh
size was set to 0.4 μm and the time step to 0.64 μs, with a

301 by 301 grid and 40,000 total times steps of
simulation time. The left, top, and bottom boundaries
were held at constant solute concentration C0. The right
boundary is held at a constant concentration gradient to
mimic the fact that the domain is semi-infinite and at
some point far away from the dendrite, there is no
concentration gradient. A constant velocity boundary
condition on the left boundary maintained a fluid flow
field from left to right, diverging to the left of the
growing dendrite and converging on its right. In
Figure 4, we compare a growing dendrite for the case
without fluid flow (a) and that with fluid flow (b). In the
figure, we see that fluid flow has a clear impact on the
dendrite symmetry; the arm growing opposite the
direction of the fluid flow has solute supplied to it via
the fluid flowing from the left boundary, and the solute-
depleted boundary region that formed as the solid grew
was advected away by the flow. Thus, the arm growing
opposite the direction of the fluid flow grows more
rapidly than the other arms. The opposite arm has its
growth stunted, as the solute-depleted region tends to
build up near the convergence region of the fluid. The
arms transverse to the direction of flow grew somewhat
faster as well, though not nearly as much as the arm
opposite the flow direction. This effect is confirmed by
other similar LB-CA models for dendritic growth in
binary alloys.[52,53,55]

B. Microstructure Simulation

In this section, we investigate the variety of
microstructures the present model is capable of simu-
lating. At relatively small thermal gradients and solid-

Table I. Parameters Used in the Macro- and Microscale Models

Parameter Name Symbol Value Units Source

COMSOL parameters
Solid heat capacity (298 K to 1268 K) (25 °C to 995 °C) cp

S 483.04 − 0.215T K/kg K (°C) 94

Solid heat capacity (1268 K to 1923 K) (995 °C to 1650 °C) cp
S 412.7 + 0.1801T K/kg K (°C) 94

Solid density (298 K to 1268 K) (25 °C to 995 °C) ρS 4461.1 − 0.1419T kg/m3 94
Solid density (1268 K to 1923 K) (995 °C to 1650 °C) ρS 4462.6 − 0.1425T kg/m3 94

Solid thermal conductivity (298 K to 1268 K) (25 °C to 995 °C) kS 1.2595 + 0.0157T W/m K (°C) 94
Solid thermal conductivity (1268 K to 1923 K) (995 °C to 1650 °C) kS 3.5127 + 0.0127T W/m K (°C) 94
Liquid heat capacity cp

L 831 K/kg K (°C) 94

Liquid density ρL 5227.6-0.688T kg/m3 94
Liquid thermal conductivity kL −12.752 + 0.024T W/m K (°C) 94
Thermocapillary coefficient γ −2.7 9 10−4 N/m K (°C) 28
LB-CA Parameters
Liquidus slope mL 59.4 K (°C)/mol. pct 66
Partition coefficient k 3.56 none 66
Initial liquid solute concentration C0 1.49 mol. pct
Pure solvent melting point Tm 1943 (1670) K (°C) 66
Gibbs–Thomson coefficient Γ 2.4 9 10−7 m K (°C) 52
Degree of surface energy anisotropy δ 0.6 none 35
Fraction of sites for growth f 0.01 none 87
Upper limit crystal growth velocity V0 1000 m/s 87, 95
Liquid density ρ 4865 kg/m3 95
Kinematic viscosity υ 4.66 9 10−7 m2/s 95 through 97
Solute diffusion frequency factor D0 1.4 9 10−7 m2/s 98
Solute diffusion activation energy Q 62.5 kJ/mol. 98

Fig. 3—The present model prediction for the dendrite tip velocity–
undercooling relationship of a single Ti-5.5 weight percent dendrite
at steady state during constrained solidification. At larger solidifica-
tion velocities, a larger undercooling relative to the equilibrium liq-
uidus temperature for Ti-5.5W is necessary to drive solidification.
The thermal gradient was held at 100,000 K/m for all data points.
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ification velocities, nucleation of new grains ahead of the
primary solidification front becomes significant. Homo-
geneous nucleation of new grains is modeled as a
Gaussian process that is a function of undercooling and
is characterized by three parameters[46,90]: the maximum
nucleation density Nmax, the mean nucleation under-
cooling ΔTN, and the standard deviation of the nucle-
ation distribution T. These parameters are typically
unknown and difficult to predict, particularly when
heterogeneous nucleation sites are activated much more
easily.[91] They are often roughly estimated; for exam-
ple,[90] used ΔTN = 5 K, ΔT = 0.5 K, and Nmax = 1012

m−3 for Al-3 wt pct Cu.[92] used a Gaussian distribution
for both surface and volume nucleation of Al-7 wt pct
Si, placing ΔTN at 10 K. Experimental observations by
Basak and Das[93] estimated ΔTN to be near 0.2 ΔTm in a
pure metal. In the present calculations, the ΔTN and ΔTσ
values from Boettinger[91] and Nmax of 5 9 1012 m−3 were
used. As shown by Dong and Lee,[90] the choice of
parameters will have a significant impact on the location
of the columnar to equiaxed transition within the
solidification maps in Bontha et al.[42,65] Unmelted
particles and other melt inhomogeneities, which are
particularly an issue with high melting point alloying
additions such as tungsten, would be expected to play a
significant role in nucleation and will be addressed in
future work with a process model that consider such
factors.

To model epitaxial growth of multiple dendritic
colonies, liquid domains were initialized with the bottom
wall 5 K below TC0

L . Heterogeneous nucleation sites
covering this wall are all initially active, with randomly
chosen solid fractions and orientations near or aligned
with the heat flow direction. Domains were chosen to
have constant G and V (where V ¼ _T

�
G). With V =

0.0002 m/s and G = 50,000 K/m, a relatively coarse
columnar dendritic microstructure results (as shown in
Figure 5(a)). At a faster solidification rate (V= 0.001 m/

s) and the same thermal gradient, a transition to a
microstructure dominated by grains nucleated ahead of
the initial columnar dendritic front is observed (see
Figure 5(b)). There were no exact values for V or G at
which this transition occurs, rather a gradual trend
toward nucleated grains dominating the microstructure
over the epitaxial columnar grains as G was reduced and
V increased. This observation is on par with that
observed by Dong and Lee[90] in directional solidifica-
tion modeling. Under the conditions encountered in AM
processes, this columnar to equiaxed transition may
occur near the top of the molten pool in the latter stages
of solidification. However, owing to the limitations of
the present macroscale model, the present work is
limited to the early-stage solidification near the molten
pool bottom. The more rapid solidification rate and
larger thermal gradient near the molten pool walls lead
to finer columnar dendrites as shown in Figure 5(c), or
cellular structures as shown in Figure 5(d). Nucleation
at the small length scale of these structures did not occur
in the model. Growth of both cells and dendrites under
AM conditions has been observed experimentally,[93]

and the transition from dendrites to cells at fast cooling
rates has been modeled via CA previously.[46]

C. Multiscale Modeling of LENS Microstructure

The COMSOL simulations for Ti-6Al-4V, despite
using three different values for power (183 W (“low”),
259 W (“middle”), and 367 W (“high”)) and melt pool
size, yielded the same general fluid flow pattern as
shown in Figure 6. The general pattern of the flow
consists of two large convection cells on the left and
right sides of the melt pool, with some more minor fluid
flow in the central portion of the melt pool just below
the energy source. The formation of similar convection
patterns, with two main cells driven by surface forces
and slower fluid flow below the region of energy

Fig. 4—Solidification of a single dendrite in a melt of constant undercooling (20 K below the liquidus temperature for Ti-5.5W) after 0.0256
s. (a) In the absence of fluid flow, solute transport is limited to diffusion. The dendrite is symmetrical as the dendrite arms grow into the liq-
uid. (b) With fluid driven at 0.001 m/s from left to right, solute transport via both diffusion and advection alters the symmetry of (A) as the
arms grow at different rates depending on their orientation relative to the fluid flow direction. The color bar corresponds to the concentration of
W in wt pct.

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 48A, JULY 2017—3613



absorption, has been seen in two-dimensional models of
welding and AM processes and arises primarily from the
Marangoni effect.[18,23,27,28] The size and relative veloc-
ity of the fluid within these convection cells were
observed to have significantly larger surface velocity at
higher beam powers because of the larger thermal
gradients present under those conditions. For the
microstructure results presented here, we consider two
regions at the melt pool walls that are aligned with the
maximum temperature gradients (the 0.1 mm squares
highlighted in Figure 6 for the low-power case). The
analogous regions to those of Figure 6 are used for
simulation of the solidification for the each of the three
power levels, though the exact X and Y coordinates will

vary as the size of the melt pool changes with beam
power. For region “A,” just underneath the large
convection cell, the fluid flow is parallel to the wall.
To model this region, the fluid is initialized everywhere
to the COMSOL value for the magnitude of the fluid
flow in the region for the given power. Since there is
additional solidification occurring on both sides of this
location, periodic boundary conditions are used for the
LB fluid flow, solute flow, and the solidification CA. The
top boundary is held at a fluid velocity in the positive X
direction from COMSOL. Immediately above region
“B,” fluid flow is perpendicular to the interface, diverg-
ing to the left and right near the wall. For this region,
the top boundary is held at a constant velocity in the

Fig. 5—Variations of microstructure depending on solidification conditions. (a) represents coarse columnar dendrites (cooling rate 10 K/s, ther-
mal gradient 50,000 K/m) and (b) A mixture of columnar and equiaxed dendrites nucleated from the bulk liquid (cooling rate 50 K/s, thermal
gradient 50,000 K/m). Under the more rapid solidification conditions and larger thermal gradients as would typically be encountered in the
LENS process, more fine columnar dendrites as in (c) (cooling rate 2500 K/s, thermal gradient 250,000 K/m) and columnar cells as in (d) (cool-
ing rate 4000 K/s, thermal gradient 250,000 K/m) would be more typical. The color bar corresponds to the concentration of W in wt pct.

Fig. 6—COMSOL simulation results for temperature (a) (in K) and fluid velocity magnitude (b) (in m/s) under conditions representative of the
LENS process. The black outline represents the fixed molten pool geometry considered. Due to the effects of the strong Marangoni convection,
the temperature field is not symmetric about the region where beam absorption occurred. This leads to significant differences in thermal gradient
and fluid flow pattern in Domain A, represented by the red square, and Domain B, represented by the blue square (Color figure online).
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negative Y direction as determined with COMSOL,
while the left and right boundaries are subject to zero
velocity gradient conditions to allow the fluid to flow
out either side. The left and right boundaries are also
subject to a zero-concentration gradient boundary
condition. In both cases, the top boundary is held at a
constant concentration C0, providing a source of solute
for the growing solid. The solidification at other regions
along the solidification boundary was not modeled here.

While the local thermal gradients and cooling rates
vary as a function of laser power for a given location,
they also vary strongly from the effects of convection in
the melt pool. Because of the large convection cell, the
thermal gradients ahead of the solidification front at
location “A” are small relative to the rest of the molten
pool. The cooling rates are also relatively slow as heat
from the top of the melt pool is advected into this region
by the fluid flow from the adjacent cell. At location “B,”
the thermal gradient is very large as a result of the heat
being advected downward and the fast heat conduction
out through the solid. The cooling rate is initially slow
owing to the latent heat release and the advected heat
from above, but as the Marangoni convection weakens
following shutoff of the heat source, more rapid cooling
occurs. As shown in the table below, the expected trend
of decreasing thermal gradient and cooling rate with
increasing laser power generally holds for location “A,”
but at location “B” the slowest cooling rate occurs for
the middle power. At higher powers, increased fluid flow
advects heat toward the sides and away from the bottom
melt pool wall.

Using the temperatures predicted by COMSOL at
multiple times following shutoff of the power source, we
approximated the temperature as a function of time at
the tops and bottoms of the two solidification regions
following laser shutoff. It was observed that for all three
input powers and both domains, cooling started slowly
(generally in the first 0.02 seconds) and then tended to
occur at a constant rate. The thermal gradient was at its
largest at the time of laser shutoff, then tending to
decrease or remain constant. For this reason, parabolic
functions were fit to the first 0.02 seconds for the top
and bottom temperatures, and linear functions after the
0.02 second mark. It was assumed that the temperature
gradients over these small domains are linear, and cells
between the top and bottom walls were assigned
temperatures interpolated from the two wall values
depending on their relative locations in the domain.
Figure 7 shows an example of these functions for the
low-power case in region “A.”

The modeled microstructures for region A under the
low, middle, and high powers (along with the total time
taken for 37.5 and 97.5 pct domain solidification) are
shown in Figure 8. Chosen values for the length and
time scales in the model were Δx = 2.857 9 10−7 m and
Δt = 3.2543 9 10−7 seconds. As expected, the time to
solidification increased with increasing power because of
the decrease in cooling rate and corresponding decrease
in steady-state dendrite tip velocity. With the decreased
cooling rate, the solute concentrations within the den-
drites increased as well; the smaller tip velocities
required smaller local undercooling values, which cor-

respond to higher values for CS
eq. A finer microstructure

(smaller dendrite arm spacing) was formed in the low-
power case relative to the middle and high powers—
another function of cooling rate. Relative to “control”
simulations with no fluid transport and solute transport
in the liquid by diffusion only, there was negligible
differences in solidification time, dendrite arm spacing,
or concentration profiles in the liquid and solid, largely
because there is little to no vertical movement of the
fluid, and the horizontal movement of the fluid with the
periodic boundary condition does not effectively mix the
solutal boundary layer ahead of the solid. This condi-
tion is somewhat similar to that encountered by the tips
perpendicular to the direction of the fluid flow in the
example in Figure 4. In addition, the velocity at the
solidification front itself tends toward zero as it was
driven from the top boundary rather than from the
sides. As a result, the region of fluid that is moving fast
enough to effectively mix the solute is always ahead of,
not at, the solidification front.
The domain B microstructures at 99 pct solidification

are shown in Figure 9 alongside their control counter-
parts that included no fluid transport. Chosen values
for length and time scales were x = 2.55 9 10−7 m and t
= 2.60 9 10−7 s in these calculations, which results in
the same relaxation parameters for fluid and solute as
those in domain A. These structures are more signif-
icantly affected by the fluid flow as it is initially flowing
toward the front, which leads to a scenario similar to
that of the dendrite tip facing the fluid flow shown in
Figure 4; solute is supplied to the front by the incoming
solute-rich fluid as the solidification process consumes
it. For the low-power case, the fluid flow is not strong
enough to have an effect and for the high-power case,
the local undercooling near steady-state is already near
the equilibrium solidus value. Under this condition,
adding more solute will not increase the driving force.
Because of this effect and the relatively small fluid
velocity, the difference between the low-power
microstructure and its control counterpart is small

Fig. 7—Local temperature as a function of time following energy
source shutoff at the bottom (solid line) and top (dashed line) of Do-
main A for the COMSOL simulation performed at low power. The
thermal gradient and cooling rate across the domain depend on posi-
tion and time.
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and only visible at the domain bottom (corresponding
to early solidification, prior to reaching larger under-
cooling values). The 99 pct solidification threshold is

reached at approximately the same time for calculations
with and without fluid flow. The high-power case, with
its faster fluid flow, shows a larger region near the bases

Fig. 8—Model results for solute concentration profile in Domain A microstructure. Arrows represent fluid velocity, for cells that have not com-
pletely solidified. At partial domain solidification (a-c), more time is needed to reach the same solidification threshold with increasing input pow-
er. At complete domain solidification (d-f), this is again true; it is also seen that a larger solute concentration in the dendrite arms is present as
well with increasing input power. The color bar corresponds to the concentration of W in wt pct.

Fig. 9—Model results for solute concentration profile in Domain B microstructure. (a-c) represent the microstructure without fluid flow for the
low, middle, and high power, while (d-f) represent the microstructure with fluid flow at the same power. The most notable difference is the ten-
dency for more solute to get incorporated into the dendrite arms, as fluid from the top boundary is driven toward the solidification front allow-
ing some mixing of the solutal boundary layer. The color bar corresponds to the concentration of W in wt pct.
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of the dendrites with larger concentration than its
control counterpart. However, it too has the majority
of solidification taking place near the limit of consti-
tutional undercooling and the 99 pct threshold is
reached only slightly faster with the inclusion of fluid
flow. The middle power, with the slowest solidification
rate, is examined more closely at three different times in
the solidification process in Figure 10. The fluid,
initially moving in the direction of the front, is pushed
back as it begins to advance and forced out the side.
The fluid goes from a primarily vertical flow to more
horizontal, and the fluid flow at the wall tends toward
zero. However, the time period in which the fluid flow
was supplying solute from the constant concentration
top boundary to the front was long enough that a
significant difference in early solidification rate and
solid concentration is seen.

D. Comparison to Experiment

By plotting solute (W) concentration at the tops of the
dendrite arms, and dividing the domain width by the
number of concentration peaks, the primary dendrite

Fig. 10—Solute concentration profile for Domain B at the middle input power. (a-c) represent the solute concentration field as well as the fluid
velocity field for various times, while (d-f) represent the same times on a control run done in the absence of fluid flow. The early solidification
occurs faster and at higher solute concentrations with fluid flow, as it allows mixing of the solutal boundary layer with the addition of relatively
solute-rich fluid from the top boundary. The color bar corresponds to the concentration of W in wt pct.

Table II. Thermal Parameters from the Macroscale Simulations

Initial Thermal
Gradient (K/m) (°C/m)

Thermal Gradient
After 0.06 s (K/m) (°C/m)

Overall Mean
Cooling Rate Over
0.06 s (K/s) (°C/s)

Fluid Velocity at
Boundary (m/s)

Location A: low power 500,000 130,000 2550 0.005
Location A: middle power 480,000 152,760 1289 0.010
Location A: high power 470,000 470,000 866 0.050
Location B: low power 960,000 170,000 6758 0.001
Location B: middle power 760,000 210,000 2541 0.005
Location B: high power 930,000 150,000 6483 0.010

Table III. Predicted Dendrite arm Spacing Under Different

AM Processing Conditions

Simulation Mean Dendrite Arm spacing (μm)

Domain A—low power 9.09
Domain A—middle power 14.29
Domain A—high power 14.29
Domain B—low power 5.26
Domain B—middle power 9.09
Domain B—high power 5.26
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arm spacing for each domain and power can be
calculated. The results are shown in Tables II and III
with an example given in Figure 11(a). In general, the
arm spacing tended to be smaller for Domain B, which
was to be expected as the cooling rates in that position
of the melt pool tended to be larger .

The spacing, as is often the case,[90]) was non-uniform,
making the calculation of primary dendrite arm spacing
subject to some statistical error. Values of the estimated
model parameters, such as the Gibbs–Thomson and
diffusion coefficient, would be expected to alter the
dendrite radii as well as the spacing, though variation of
these parameters was not considered in the present
work. Comparing Domain B arm spacing values to
those from Domain B control runs with no fluid flow
yielded little to no distinct differences, though some
variation did occur. Since fluid flow seemed to only have
an effect on the very early stages of solidification, any
differences in spacing would likely be negligible closer to
the tops of the domains as steady state is approached;
the “extra” or “missing” arms would either coalesce or
form later on.

Figure 11(a) shows the solidified concentration profile
from Domain B at high power for three Y positions.
Closer to the bottom of the domain (light gray line), the
solid concentration of W within the dendrite arms was
large as the early solidification occurred at higher
temperature and therefore higher solute concentration.
As solidification proceeded, the solidification front
approached a steady-state undercooling close to the
constitutional limit (e.g., the concentration within the
dendrite arms approached C0).

The simulated concentration fluctuations can be
compared to experimental data of the concentration
variation of W collected by EDS, as described in
Mendoza et al.[63] and shown in Figure 11(b). The
experimental concentration profile showed variations
in solute concentration with periodicity that is quite
close to what we predict in the simulations (about 7
µm). While the predicted magnitudes in the concen-

tration profile are quite close to the experimental W
concentrations, there are uncertainties that hinder the
direct comparison between the two results, both from
inadequacies in the model and in our ability to
identify whether the simulated and experimental data
correspond to the same location in the melt pool, i.e.,
that the solidification has the same thermodynamic
and flow conditions. The potential errors in the
modeling are many. In addition to the specific
solidification model, the present work does not
account for the impingement of dendrites in one
domain on those in another as the beam moves and
the grains grow. The dendritic colonies in the fastest
growing grains could dominate the sample’s volume
and be most likely to show up on an EDS line scan;
we simply selected two random domains and modeled
the solidification conditions and microstructures, not
necessarily the ones in the most favorable positions for
growth. The present model also does not account for
the deposition of new material, building of multiple
layers, the energy source motion, and is limited to the
COMSOL approximation of steady-state molten pool
conditions. While location-dependent values of ther-
mal gradient and cooling rate were observed in the
simulated melt pool, these additional factors are also
sources of large variation of thermal conditions within
real molten pools in AM processes. To fully under-
stand the variation of thermal conditions within a
molten pool under a given set of process parameters,
the relative importance of all of these factors would
need to be accounted for. A more complex process
model, such as a thermal Lattice Boltzmann model
accounting for the moving beam and tracking of the
solid–liquid interface, coupled to a model of the
impingement of grains during solidification, would be
necessary to more accurately model the solute con-
centration values within the dendritic colonies. These
caveats aside, however, we are quite encouraged at the
ability of the LB-CA model to predict the behavior of
AM dendritic microstructures.

Fig. 11—(a) Variation in solute concentration as a function of X position in the domain, for three different Y positions in the modeled
microstructure for Domain B. The peaks represent dendrite arms, while the valleys represent the solute-depleted interdendritic liquid, allowing
an estimate of primary dendrite arm spacing. As the dendritic front advances, the solute concentration within the dendrite arms decreases as the
local temperature decreases and the solidification front approaches a steady-state velocity. (b) EDS results on a Ti-5.5W as-deposited sample fab-
ricated via LENS, showing a similar concentration profile at the same length scale.[63]
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V. CONCLUSIONS AND FUTURE WORK

The current microscale LB-CA model was able to
reproduce realistic columnar dendritic and cellular
microstructures under the conditions expected in LENS
solidification based on COMSOL simulation results.
The correct general trends in solidification rate and
morphology were achieved with variation of solidifica-
tion conditions. The results of the COMSOL process-
scale simulations show that convection in the melt may
play a significant role in the temperature gradients and
cooling rates that develop; the solidification at different
locations within this molten pool would be occurring
under vastly different temperatures and fluid flow fields.
The LB-CA modeled microscale solidification with fluid
flow based on the COMSOL results, from which it was
shown that fluid flow parallel to the interface fails to
effectively mix the solutal boundary layer and ap-
proaches zero at the wall, leading to a negligible effect
on solidification. Fluid flow in select locations in which
the fluid is brought in from the center of the melt pool
may lead to locally increased solidification rate and
concentration variations arising from more effective
mixing of the solutal boundary layer. However, fluid
flow from the center of the melt pool also brings in heat,
which may slow the solidification rate and negate this
effect. The primary effect of fluid flow appeared to be in
its alterations to the local thermal gradients and cooling
rates in the melt pool, which in turn alter local
solidification behavior. The fluid flow tended not to
have a direct impact on the solute transport, as its
orientation was generally parallel to the primary solid-
ification front.

Comparison of the modeled dendritic colonies to EDS
line scan results on the same alloy shows that the
predicted primary dendrite arm spacing of 5-15 μm is
accurate, though the EDS values of solute concentration
within the dendrite arms and interdendritic regions are
not an exact match with the model as it did not account
for several processes (such as solid-state diffusion in
reheated layers) that are known to occur. To further
build on this work, a process-scale model that explicitly
tracks the interface and can directly pass temperature
fields to the microscale model is needed, which would
allow for the solidification problem to be modeled more
accurately and for a larger region of the melt pool. A
concurrent multiscale model, in which the solidification
model and process-scale heat and fluid transport model
interact in a concurrent way, would be expected to
improve the accuracy and variety of conditions that can
be modeled. Modeling the solidification of grains
instead of the individual dendrites has been shown to
be feasible for AM processes[76] and would provide
information that is likely to have a larger impact on the
understanding of the mechanical properties of produced
parts. Other potential future steps include expansion of
the model to 3D, inclusion of multiple layer deposition
and effects of epitaxy, deviation from local equilibrium
compositions and phases, along with inhomogeneities in
the melt such as unmelted particles. In short, while the

present results are an important first step, there is much
yet to accomplish before having a truly predictive AM
process model.
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APPENDIX: LATTICE BOLTZMANN METHOD
DETAILS

For the D2Q9 lattice as shown in Figure 2, the fluid
density distribution function fiðx; tÞat each lattice site at
position x and time t has 9 components. The corre-
sponding unit vectors for velocity are given as follows:

ei ¼
ð0; 0Þ i ¼ 1
ð�c; 0Þ i ¼ 2; 3; 4; 5
ð�c;�cÞ i ¼ 6; 7; 8; 9

8<
: ½A1�

where c is the lattice speed Dx=Dt. We use a square
lattice with constant lattice spacing Δx and time step
Δt. These distribution functions, over a given time
step, undergo successive collision and propagation
steps. During the propagation step, the particle distri-
butions located at position Δx at time t are moved to
position xþ ei at time tþ Dt by

fini xþ ei ; tþ Dtð Þ ¼ fouti x; tð Þ ½A2�
in which the distribution at an arbitrary site moving in
the i direction moves to the next lattice site in that
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direction. Superscripts “in” and “out” refer to the
functions going into and out of the collisions at time t,
respectively. A key assumption to the LBM is that
during the collision step, the fluid at each site evolves
toward its equilibrium distribution, i.e.,

fouti xi; tð Þ ¼ fini x; tð Þ þ 1

sf
feqi x; tð Þ � fini x; tð Þ� � ½A3�

in which the equilibrium distribution is given by

feqi x; tð Þ ¼ xiq 1þ ei � u
c2s

þ ðei � uÞ2
2c4s

� u2

2c2s

 !
½A4�

The effects of the flow in each direction of the distribu-
tion functions are weighted by

xi ¼
4=9 i ¼ 1
1=9 i ¼ 2; 3; 4; 5
1=36 i ¼ 6; 7; 8; 9

8><
>: ½A5�

Here, the commonly used BGK approximation re-
places the collision operator as a single relaxation time
τf for fluid, which is related to the viscosity ν as fol-
lows:

sf ¼ 3þ 1

2
½A6�

In these equations, cs
2 is the speed of sound, given by

c2/3. At each lattice site, conservation of mass and
momentum give the macroscopic fluid density ρ and
velocity u, given by

q ¼
X
i

fi ½A7�

and

u ¼ 1

q

X
i

eifi; ½A8�

respectively. We note that if the next lattice site contains
no fluid, the directions of the distribution functions are
reversed such that they will “bounce back” into the
liquid on the next time step.

As the method approximates an incompressible New-
tonian flow, these equations are only accurate for Mach
numbers much less than 1 (the Mach number here is
defined as juj=cs). Körner et al.[7] We note that a body
force term Fi could be added to the collision equation to
simulate the effects of an external force, such as
buoyancy or surface tension,[7,77] which is not consid-
ered in the model shown here.

As shown in the previous work, analogous collision
and propagation equations can be solved for solute
transport coupled to the fluid flow via the fluid velocity
u. The solute transport problem is solved on the same
lattice with the same time step as the fluid flow,
characterized by solute distribution functions giðx; tÞ
that collide and propagate on the same grid as the fluid.
It is assumed that these functions are passively advected
by the fluid; they are coupled to the fluid flow problem
via the velocity u at each grid point, but do not in turn

affect the fluid flow field. The collision and propagation
equations for solute are

gini xþ ei; tþ Dtð Þ ¼ gouti x; tð Þ ½A9�
and

gouti xi; tð Þ ¼ gini x; tð Þ þ 1

ss
geqi x; tð Þ � gini x; tð Þ� �þ xiS

½A10�
respectively. In Eq. [17], S is a term representing the
change in the liquid’s solute concentration over the
time step (calculated as a function of the solidification
process, as described below). The equations for the
equilibrium solute distribution functions and solute
relaxation parameter are given by

g
eq
i x; tð Þ ¼ xiq 1þ ei � u

c2s

� �
½A11�

and

ss ¼ 3Dþ 1

2
½A12�

The solute diffusivity “D” is considered to vary as a
function of temperature; therefore, the relaxation
parameter will vary slightly among different locations
in the simulation domain. The macroscopic solute con-
centration at a given point is calculated as

C ¼
X
i

gi ½A13�

If the velocity field is set to zero everywhere, purely
diffusive solute transport can be considered, while if the
solute diffusivity is very small, τS approaches 1/2 (very
slow relaxation toward equilibrium) and purely advec-
tive solute transport can be modeled.[99] By performing
the collision and propagation steps consecutively for
both fluid and solute, the coupled transport of both
quantities can be modeled.
Although the present work does not use the thermal

Lattice Boltzmann method, if it is assumed that the heat
is passively advected by the fluid, the equations for
coupled heat and fluid transport are very similar to
those of fluid and solute transport. A gravity-buoyancy
force term may be introduced into the fluid collision
equation using the Boussinesq approximation that
density is a linear function of temperature in the force
term, though the fluid is still considered incompressible
with constant properties elsewhere in the model.[78] Such
a body force would have the basic form

Fi ¼ 3wieigbðT� T0Þ ½A14�
in which g is a dimensionless vector representing gravity,
b is a coefficient of thermal expansion, T is a local
temperature (calculated from the internal energy distri-
bution functions), and T0 a reference temperature. Note
that this would drive fluid with a temperature less than
T0 downward from gravitational forces, while fluid
above T0 would have a force in the opposite direction.
This temperature-dependent force term couples the fluid
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flow field to the temperature field, and the fluid velocity
u in turn exerts influence on the equilibrium energy
distribution at each grid point as it did for the solute
distribution. To model AM processes via the thermal
Lattice Boltzmann method, capillary and thermocapil-
lary forces at the liquid–gas interface would be necessary
as well.
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