Skip to main content
Log in

Low-Power Laser/Arc Hybrid Welding Behavior in AZ-Based Mg Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The low-power laser/arc hybrid welding behaviors of the AZ-based Mg alloys in similar and dissimilar joints are examined in this study in terms of welding parameters, fusion-zone characteristics, mechanical properties, welding temperature fields, and laser-induced arc plasma/plume. Experiments were conducted using a low-power (300 W) pulsed Nd:YAG laser with a gas tungsten welding arc. The results show that the AZ-based Mg alloys can be easily welded by laser/arc hybrid welding process. The introduction of low-power laser beam can stabilize the welding arc even at a high-speed welding, and spattering behavior of laser welding disappeared due to the introduction of welding arc. With the increases of arc power, a higher weld depth can be obtained, and the weld depths for laser and arc acting in combination (laser/arc) are 2 times higher than those of for laser and arc acting separately (laser + arc) in optimal conditions. The postweld tensile strength of Mg alloys could recover ∼80 to 100 pct of the original strength in similar or dissimilar joints. The fatigue strength in laser/arc hybrid welded specimens is equal to that of the unweld base metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P.G. Sanders, J.S. Keske, K.H. Leong, G.J. Kornecki: Laser Appl., 1999, vol. 11, pp. 96–103

    CAS  Google Scholar 

  2. S.F. Su, J.C. Huang, H.K. Lin, N.J. Ho: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1461–73

    Article  CAS  Google Scholar 

  3. M. Rethmeier, S. Wiesner: Z. Metallkd., 2001, vol. 92 (3), pp. 281–85

    CAS  Google Scholar 

  4. H. Krohn and S. Singh: Proc. Trends in Welding of Lightweight Automotive and Railroad Vehicles, Wels, Austria, 1997, pp. 625–26

  5. J. Matsumoto, M. Kobayashi, and M. Hotta: Welding Int., 1990, No. 4, pp. 23–28

  6. S.H. Wu, J.C. Huang, Y.N. Wang: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2455–69

    Article  CAS  Google Scholar 

  7. P. Seyffarth, I. Krivtsun: Laser-Arc Processes and Their Applications in Welding and Material Treatment, 1st ed., Taylor & Francis, New York, NY, 2002, pp. 5–10

    Google Scholar 

  8. J. Tusek, M. Suban: Sci. Technol. Weld. Joining, 1999, vol. 4, pp. 308–11

    Article  Google Scholar 

  9. W.M. Steen, M. Eboo: Metal Construct., 1979, vol. 11 (7), pp. 332–35

    Google Scholar 

  10. T.P. Diebold, C.E. Albright: Welding J., 1984, vol. 63 (6), pp. 18–24

    Google Scholar 

  11. U. Dilthey: in Proc. IIW Asia Pacific Welding Congr., W. Scholz, ed., Abington Publishing, Auckland, New Zealand, 1996, pp. 65–81

  12. T. Kim, J. Kim, Y. Hasegawa, Y. Suga: Mater. Sci. Forum, 2004, vols. 449–452, pp. 417–20

    Article  Google Scholar 

  13. L.M. Liu, G. Song, J.F. Wang, G.L. Liang: Trans. Nonferrous Met. Soc. China, 2004, vol. 14 (3), pp. 550–55

    CAS  Google Scholar 

  14. L.M. Liu, M.S. Chi, R.S. Huang, G. Song, Y. Zhou: Sci. China, Ser. E, 2006, vol. 36 (1), pp. 29–38

    Article  CAS  Google Scholar 

  15. L.M. Liu, J.F. Wang, G. Song: Chin. J. Lasers, 2004, vol. 31 (12), pp. 1523–26

    CAS  Google Scholar 

  16. A. Stern, A. Munitz: J. Mater. Sci. Lett., 1999, vol. 18, pp. 853–55

    Article  CAS  Google Scholar 

  17. Y. Kojima, S. Kamado: Mater. Sci. Forum, 2005, vols. 488–489, pp. 9–16

    Google Scholar 

  18. W.Y. Zhang: Welding Heat Transfer, 1st ed., China Mechanism Industry Press, Beijing, 1989, pp. 159–67

    Google Scholar 

  19. S. Nagarajan, P. Banerjee, W.H. Chen: IEEE T. Rob. Autom., 1992, vol. 8, p. 86

    Article  Google Scholar 

  20. H.C. Wilik, S. Kottilingam, R.H. Zee: J. Mater. Process. Technol., 2001, vol. 113, p. 228

    Article  Google Scholar 

  21. H. Holm, C.E. Kjeldsen, J.K. Kristensen: J. Mater. Process. Technol., 2003, vol. 139, p. 499

    Article  Google Scholar 

  22. A. Bicknell, J.S. Smith, J. Lucas: Meas. Sci. Technol., 1994, vol. 3, p. 371

    Article  Google Scholar 

  23. D. Farson, R. Richardson, X. Li: Welding J., 1998, vol. 77, p. 396

    Google Scholar 

  24. O. Moriaki, S. Yukio, Y. Akihide, and O. Masanori: NKK Techn. Rev., 2002, No. 86, pp. 8–12

  25. W.M. Steen: J. Appl. Phys., 1980, vol. 51 (11), pp. 5636–641

    Article  Google Scholar 

  26. B. Hu and G. den Ouden: Sci. Technol. Weld. Joining, 2005, No. 1, pp. 76–81

  27. J. Lu, X.W. Ni, A.Z. He: Interacting Physics of Laser and Materials, 1st ed., Mechanical and Industrial Publishing Company, Beijing, 1996, pp. 201–05

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the sponsorship from National Natural Science Foundation of China (Grant No. 50675028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.M. Liu.

Additional information

Manuscript submitted July 17, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Song, G. & Zhu, M. Low-Power Laser/Arc Hybrid Welding Behavior in AZ-Based Mg Alloys. Metall Mater Trans A 39, 1702–1711 (2008). https://doi.org/10.1007/s11661-008-9533-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9533-2

Keywords

Navigation