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On Fractional Order Adaptive Observer
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Abstract: This article derives a new scheme to an adaptive observer for a class of fractional order systems. Global asymptotic

convergence for joint state-parameter estimation is established for linear time invariant single-input single-output systems. For such

fractional order systems, it is proved that all the signals in the resulting closed-loop system are globally uniformly bounded, the state

and parameter estimation errors converge to zero. Potential applications of the presented adaptive observer include online system

identification, fault detection, adaptive control of fractional order systems, etc. Numerical simulation examples are presented to

demonstrate the performance of the proposed adaptive observer.
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1 Introduction

Over the past decades, fractional order systems have

attracted increasing attention from the control commu-

nity, since many engineering plants and processes can-

not be described concisely and precisely without intro-

ducing fractional order calculus[1, 2]. Due to more and

more scholars devoting themselves to the fractional order

field, a tremendous amount of valuable results on system

identification[3, 4], controllability and observability[5, 6], sta-

bility analysis[7−9] and controller synthesis[10−12] of frac-

tional order systems have been reported in the literature.

Many fundamentals and applications of fractional order

control systems can be found in [3] and the reference

therein.

The reconstruction of system state from its input and

output has received a great deal of attention recently. Doye

et al.[13] studied the fractional order Luenberger observer

and observer-based controller design. Further, it was ex-

tended to the uncertain case via linear matrix inequality

approach[14]. There are some special Luenberger state ob-

servers, such as the discrete form observer[15] and propor-

tional integral (PI) observer[16]. With the frequency dis-

tributed model[17] of a fractional order system proposed, an

interesting result is obtained that the conventional state is a

pseudo state of the system, not the true state. Based on the

frequency distributed model, Sabatier et al.[18, 19] discussed

the observability of a class of fractional order systems and

proposed a class of Luenberger observers.

Despite the plentiful achievements, some critical prob-

lems still need further investigation. The system parame-

ters should be known. For the case where no a priori knowl-

edge of the system parameters is available, the so-called
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adaptive observers should be introduced. The basic idea in

the approach is to use a Luenberger observer that will con-

tinuously adapt to the parameters. The related research in

the integer order area has been reported in [20−23], while

there exist few results in the literature investigating this

point in fractional order area. There are two main reasons.

Firstly, it is difficult to prove the stability of the closed-loop

system. Secondly, the parameter identification belongs to

the category of identification of continuous systems[24], in

which there are still many problems to be solved. To the

best of our knowledge, looking for an adaptive observer for

fractional order system still remains open.

Motivated by these observations, this article focuses on

adaptive observation for fractional order system. The the-

oretical contributions of this work are as follows. Firstly,

a novel adaptive observation scheme is derived, which con-

tinuously adapts to the parameters in the observer. Sec-

ondly, based on the identification of continuous system, a

modified parameter identified algorithm of fractional order

system is proposed. The former study solves the problem

“viable or not”, making the impossible possible. The latter

one improves the performance of the fractional order system

identification.

The remainder of this article is organized as follows. Sec-

tion 2 briefly provides some preliminaries for fractional or-

der system and problem statement. A novel adaptive ob-

servation scheme is proposed in Section 3. In Section 4, two

simulation examples are provided to illustrate the validity

of the proposed approach. Finally, Section 5 concludes the

study.

2 Preliminaries

Consider the following linear time invariant single-input

single-output (LTI SISO) plant

G (s) =
b1s

(m−1)α + b2s
(m−2)α + · · · + bm

snα + a1s(n−1)α + a2s(n−2)α + · · · + an
(1)
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where α ∈ (0, 1) is the fractional commensurate order, u(t)

is assumed as a piecewise continuous bounded function of

time, y(t) is the measureable output, ai(i = 1, 2, · · · , n)

and bj(j = 1, 2, · · · , m) are constants but unknown, m, n

are known positive integers and m < n, and the system is

supposed to be stable.

In this study, the Caputo′s definition is adopted for frac-

tional order derivative, i.e.,

cD
α
t f (t)

Δ
=

1

Γ (k − α)

∫ t

c

f (k) (τ )

(t − τ )α−k+1
dτ (2)

where k is a positive integer and k−1 ≤ α < k. To simplify

the notation, we denote the fractional derivative of order α

as Dα instead of 0D
α
t in this work.

This study aims at constructing a scheme that estimates

both the plant parameters
{

ap = [ a1 a2 · · · an ]T

bp = [ b1 b2 · · · bm ]T
(3)

as well as the system pseudo state x(t) using only input u(t)

and output measurements y(t).

To construct the above scheme, we first introduce a def-

inition as follows.

Definition 1. Matrix A of the system

Dαx (t) = Ax (t) (4)

is said to be a stable matrix if and only if it satisfies

|arg (spec (A))| >
απ

2
(5)

where arg (z) denotes the principle argument of z and

spec (A) denotes the spectrum of A.

3 Fractional order adaptive observer

3.1 Observer design

A minimal realization of the system (1) can be expressed

as {
Dαx (t) = Ax (t) + Bu (t)

y (t) = Cx (t) + v (t)
(6)

where the stable matrix A ∈ Rn×n, B, CT ∈ Rn, {A, B} is

controllable and {A,C} is observable, and the measurement

noise v (t) is white noise with variance σ2
v.

On the basis of this transformation, the problem becomes

how to construct a scheme that estimates both the plant

parameters, i.e., A, B, C as well as the state vector x(t). A

good starting point for designing an adaptive observer is

the Luenberger observer[22, 23]

{
Dαx̂ (t) = Ax̂ (t) + Bu (t) + L [y (t) − ŷ (t)]

ŷ (t) = Cx̂ (t)
(7)

where L is chosen so that A − LC is a stable matrix and

guarantees that x̂ (t) converges to x (t) exponentially for

any initial condition x (0) and any input u (t).

In order to construct the structure of the adaptive ob-

server, the unknown matrices A, B and C in the Luenberger

observer (7) should be replaced with their estimates Â, B̂

and Ĉ, respectively, generated by some adaptive law.

{
Dαx̂ (t) = Â (t) x̂ (t) + B̂ (t)u (t) + L [y (t) − ŷ (t)]

ŷ (t) = Ĉ (t) x̂ (t) .

(8)

There are mainly 3 disadvantages in such the structure

of the adaptive observer:

1) The estimate matrix Â cannot be guaranteed as sta-

ble, which implies that the estimate state x̂(t) may not be

convergent.

2) Since the state space realization result of the transfer

matrix G(s) is not unique, matrices A, B and C are not

unique either.

3) The number of the parameters to be estimated is n2 +

2n, while the number of the unknown parameters in G(s)

is m + n.

To eliminate these disadvantages, a special realization

form called the observable canonical form is developed.

Therefore, matrices A, B and C in (6) are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A =
[
−ap

∣∣∣ In−1
01×(n−1)

]

B =

[
0(n−m)×1

bp

]

C = [

n︷ ︸︸ ︷
1 0 · · · 0 ].

(9)

Consequently, there are m + n parameters to be esti-

mated and we no longer need to estimate the matrix C.

Then, related parameters in the adaptive observer (8) can

be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Â (t) =
[
−âp (t)

∣∣∣ In−1
01×(n−1)

]

B̂ (t) =

[
0(n−m)×1

b̂p (t)

]

Ĉ (t) = C

L (t) = ao − âp (t)

(10)

where âp(t) and b̂p(t) are the estimates of vectors ap and

bp, respectively, and ao ∈ Rn is chosen such that

Ao =

[
−ao

∣∣∣∣ In−1

01×(n−1)

]
(11)

is a stable matrix.

Remark 1. Matrix Ao in (11) is not unique. Regarding

the stability, any stable matrices can be adopted for Ao.

In addition, the convergence speed of the state observation

depends on Ao.
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3.2 Parameter estimation

The corresponding differential equation of system (1) can

be expressed as

Dnαy (t) +
n∑

i=1

aiD
(n−i)αy (t) − Dnαv (t)−

n∑
i=1

aiD
(n−i)αv (t) =

m∑
j=1

bjD
(m−j)αu (t) .

(12)

To obtain a regression-like form of system (12), two meth-

ods will be introduced.

In method 1, define the differential operator pα =

Dα, D (pα) = pnα+ a1p
(n−1)α + · · · + an and N (pα) =

b1p
(m−1)α +b2p

(m−2)α + · · ·+bm. Then, system (12) can be

written in an alternative time-domain differential operator

form as

D (pα) y (t) − D (pα) v (t) = N (pα) u (t) . (13)

Filtering the signals on both sides of (13) with the fol-

lowing stable filter

F (pα) = pnα + f1p
(n−1)α + · · · + fn (14)

we have

y (t) =
F (pα) − D (pα)

F (pα)
y (t) +

N (pα)

F (pα)
u (t) +

D (pα)

F (pα)
v (t) . (15)

By defining some new variabilities, (15) can be expressed

in a regression-like form as

y (t) = ϕT (t) θ + v (t) (16)

where

ϕ (t) =

[
p(n−1)αy (t)

F (pα)
· · · y (t)

F (pα)

p(m−1)αu (t)

F (pα)
· · · u (t)

F (pα)

p(n−1)αv (t)

F (pα)
· · · v (t)

F (pα)

]T

θ = [ fT − aT
p bT

p cT
p ]

T

f = [ f1 f2 · · · fn ]
T

c = [ c1 c2 · · · cn ]
T
.

In method 2, considering the generalized Poisson moment

functional

1

H (pα)
=

(
1

pα + ω

)κ

(17)

with κ ≥ n, system (12) can be rewritten as

pnαy (t)

H (pα)
+

n∑
i=1

ai
p(n−i)αy (t)

H (pα)
− pnαv (t)

H (pα)
−

n∑
i=1

ai
p(n−i)αv (t)

H (pα)
=

m∑
j=1

bj
p(m−j)αu (t)

H (pα)
. (18)

By defining ȳ (t) = pnαy(t)
H(pα)

, system (18) can be written

in a regression-like form as

ȳ (t) = ϕ̄T (t) θ̄ + v (t) (19)

where the regressor and the parameter vectors are now de-

fined by

ϕ̄ (t) =

[−p(n−1)αy (t)

H (pα)
· · · −y (t)

H (pα)

p(m−1)αu (t)

H (pα)
· · · u (t)

H (pα)

p(n−1)αv (t)

H (pα)
· · · v (t)

H (pα)

]T

θ̄ = [ aT
p bT

p cT
p ]

T
, cp = [ c1 c2 · · · cn ]

T
.

Since it is very similar to estimate ap and bp based on the

least squares method through (16) and (19), respectively,

only the former one is introduced.

With regard to (16), at any time instant t = tk, k =

1, 2, · · · , L, the following standard linear regression-like

form can be obtained as

y (tk) = ϕT (tk) θ + v (tk) . (20)

Now, from L available samples of the input and output

signals observed at discrete times t1, · · · , tL, not necessarily

uniformly spaced, the linear least squares based parameter

estimates are given by

θ̂ (tL) =

[
L∑

k=1

ϕ (tk) ϕT (tk)

]−1 [
L∑

k=1

ϕ (tk) yT (tk)

]
. (21)

θ̂ (tL) cannot converge to θ, because ϕ (tk) is correlated

with v (tk). To correct the deviations of the parameter es-

timate, we replace ϕ (tk) with

ϕ̂ (tk) =

[
p(n−1)αy (tk)

F (pα)
· · · y (tk)

F (pα)

p(m−1)αu (tk)

F (pα)
· · · u (tk)

F (pα)

p(n−1)αv̂ (tk)

F (pα)
· · · v̂ (tk)

F (pα)

]T

(22)

where v̂ (tk) is the estimation of v (tk).

v̂ (tk) = y (tk−1) − ϕ̂T (tk−1) θ̂ (tk−1) . (23)

Consequently, the modified solution θ̂ (tL) can be ex-

pressed as

θ̂ (tL) =

[
L∑

k=1

ϕ̂ (tk) ϕ̂T (tk)

]−1 [
L∑

k=1

ϕ̂ (tk) yT (tk)

]
. (24)

To estimate the parameter on line, the matrix inversion

theorem is used to get the recursive least square algorithm

as ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

K (tk+1) =
P (tk) ϕ̂ (tk+1)

1 + ϕ̂T (tk+1) P (tk) ϕ̂ (tk+1)

ε (tk+1) = y (tk+1) − ϕ̂T (tk+1) θ̂ (tk)

θ̂ (tk+1) = θ̂ (tk) + K (tk+1) ε (tk+1)

P (tk+1) =
[
Im+2n − K (tk+1) ϕ̂T (tk+1)

]
P (tk)

v̂ (tk+1) = y (tk) − ϕ̂T (tk) θ̂ (tk)

(25)
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where k > 0, v̂ (t1) = 0, θ̂ (t1) can be chosen arbitrarily,

and P (t1) is usually selected as 103∼8Im+2n.

As a result, one can get the original system parameter

estimation from

θ̂ (tk) =

⎡
⎢⎣

f − âp (tk)

b̂p (tk)

ĉp (tk)

⎤
⎥⎦ (26)

or

ˆ̄θ (tk) =

⎡
⎢⎣

âp (tk)

b̂p (tk)

ĉp (tk)

⎤
⎥⎦ . (27)

Remark 2. The filter F (pα) in (14) is not unique. Re-

garding the stability and the maximum order of nα, any

filters can be adopted for F (pα).

Remark 3. The generalized Poisson moment functional
1

H(pα)
in (17) is not unique. Although any κ ≥ n is feasible,

one usually selects κ = n. In addition, ω can be selected to

guarantee system (1) and 1
H(pα)

have a similar bandwidth.

Remark 4. Actually, parameter cp can be calculated

from parameter ap and the coefficients of H(pα) or F (pα).

However, it is not affected that one can identify cp and ap

independently.

Remark 5. The two methods realize the parameter

adaptation by predicting the output y(t) and the filtered

output ȳ(t), receptively. Additionally, the parameter esti-

mation results depend on H(pα), F (pα) and other parame-

ters. As a result, it is hard to say which one is better.

3.3 Stability analysis

For any time tk ≤ t < tk+1, we have

{
âp (t) = âp (tk)

b̂p (t) = b̂p (tk) .
(28)

Based on the previous result, we are ready to present the

adaptive observer for the fractional order system.

Theorem 1. For plant (6), if the adaptive observer is

designed as (8), (10) and (25), then all the signals in the

closed-loop adaptive system are global uniformly bounded.

And if u(t) can guarantee that φ (t) is persistent excitation,

then the parameter estimation and state observation are

achieved as ⎧⎨
⎩

lim
t→∞

[θ − θ̂ (t)] = 0

lim
t→∞

[x (t) − x̂ (t)] = 0.
(29)

Proof. The observer equation we design can be written

as

Dαx̂ (t) = Aox̂ (t) + [Â (t) − Ao]x (t)+

b̂p (t)u (t) + L (t) v (t) . (30)

Since Ao is a stable matrix and b̂p, Â (t) , L (t) , x (t) , u (t),

v (t) are bounded, it follows that x̂ (t) is bounded, which in

turn implies that all signals are bounded.

Based on the convergence properties of the least squares

for the linear regression form problem, one concludes that

θ̂ (tL) is an unbiased estimation of θ. In other words, the

equation lim
t→∞

[θ − θ̂ (t)] = 0 holds.

Define the state observation error as

x̃ (t) = x (t) − x̂ (t) . (31)

Then, x̃ (t) satisfies

Dαx̃ (t) = Aox̃ (t) + b̃p (t)u (t) − ãp (t) [y (t) + v (t)] (32)

where ãp (t) = ap − âp (t) and b̃p (t) = bp − b̂p (t) are the

parameter errors.

Since θ − θ̂ (t) → 0 as t → ∞, it follows that ãp (t) →
0 and b̃p (t) → 0. Since u(t), y(t) and v(t) are bounded,

the error equation consists of a homogenous part which is

exponentially stable, and an input which is decaying to zero.

This implies that x̃ (t) → 0 as t → ∞. �
Remark 6. The application range of the proposed adap-

tive observer should be pointed out. Such an adaptive ob-

server applies to the linear fractional order systems where

the unknown parameters appear linearly in the dynamics.

To estimate the unknown parameters precisely, the inputs

to the systems must satisfy the conditions of persistent ex-

citation.

4 Numerical examples

Numerical examples illustrated in this section are im-

plemented via the piecewise numerical approximation algo-

rithm. To get more information about the algorithm, one

can refer to [25]. For all the numerical examples, consider

the following LTI SISO fractional order plant

G(s) =
s0.6 + 2

s1.2 + 5s0.6 + 10
.

The pseudo state space realization of observable canoni-

cal form is⎧⎪⎪⎨
⎪⎪⎩

Dαx (t) =

[
−5 1

−10 0

]
x (t) +

[
1

2

]
u (t)

y (t) = [ 1 0 ]x (t) + v (t) .

The stable matrix Ao is selected as

Ao =

[
−6 1

−8 0

]
.

The variance of the white noise v (t) is selected as

σ2
v = 0.000 1.

The related initial conditions are selected as

x (0) =

[
0.01

0.01

]
, x̂ (0) =

[
0

0

]
, v̂ (t1) = 0.01

θ̂ (t1) = [ 0.1 0.1 0.1 0.1 0.1 0.1 ]T

P (t1) = 104 × diag (1, 1, 1, 1, 1, 1) .

The multi-sine signal is selected as the system input u (t),

which is shown in Fig. 1.
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Fig. 1 System input u(t) in Examples 1 and 2

Example 1. Construct an adaptive observer with the

parameter identification based on the regression-like form

(16). Select the stable filter

F (pα) = p1.2 + 4p0.6 + 4.

Then, one has the simulation results shown in Figs. 2−4.

Fig. 2 Identification of parameter ap in Example 1

Fig. 3 Identification of parameter bp in Example 1

Example 2. Construct an adaptive observer with the

parameter identification based on the regression-like form

(19). Select the generalized Poisson moment functional

1

H (pα)
=

(
1

p0.6 + 2

)2

.

Then, one has the simulation results shown in Figs. 5−7.

Fig. 4 Observation of system state x(t) in Example 1

Fig. 5 Identification of parameter ap in Example 2

Fig. 6 Identification of parameter bp in Example 2

It can be seen from the results of Examples 1 and 2

that both adaptive observers make the state estimations

approach the actual states precisely, despite the presence of

unknown system parameters and measurement noise. How-

ever, the transient responses of the adaptive observer with

method 1 are better than those of the adaptive observer

with method 2. The observation error of adaptive observer

due to method 1 is less than that of the latter one.
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Fig. 7 Observation of system state x(t) in Example 2

5 Conclusions

In this article, a new adaptive observer design scheme

is proposed for LTI SISO fractional order plant. Both the

state and the unknown parameters can be efficiently ob-

served. Motivated by the noise estimation, a modified least

squares solution of the parameters is developed. For the

scheme of the proposed adaptive observer, the stability of

the closed-loop system and the parameter convergence have

been discussed in detail, with the parameters being identi-

fied rapidly and accurately. Simulation results from numer-

ical examples are provided to demonstrate the advantages

and effectiveness of the approaches proposed in this article.

It is believed that the approaches provide a new avenue

to solve the problem. Future research subjects will include

how to extend the results to multiple-input multiple-output

case and how to control the plant based on the proposed

adaptive observer.
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