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Abstract: Norm optimal iterative learning control (NOILC) has recently been applied to iterative learning control (ILC) problems

in which tracking is only required at a subset of isolated time points along the trial duration. This problem addresses the practical

needs of many applications, including industrial automation, crane control, satellite positioning and motion control within a medical

stroke rehabilitation context. This paper provides a substantial generalization of this framework by providing a solution to the problem

of convergence at intermediate points with simultaneous tracking of subsets of outputs to reference trajectories on subintervals. This

formulation enables the NOILC paradigm to tackle tasks which mix “point to point” movements with linear tracking requirements

and hence substantially broadens the application domain to include automation tasks which include welding or cutting movements, or

human motion control where the movement is restricted by the task to straight line and/or planar segments. A solution to the problem

is presented in the framework of NOILC and inherits NOILC′s well-defined convergence properties. Design guidelines and supporting

experimental results are included.
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1 Introduction

The objective of iterative learning control (ILC) is to fol-

low a motion profile defined over a fixed finite time interval,

0 ≤ t ≤ T , using data from previous executions of this task

to suitably update the control input until perfect tracking

of a defined reference, r(t), t ∈ [0, T ] is achieved. Often

in combination with current-trial information, the aim is to

sequentially improve the performance of the operation as

the trial/iteration/repetition index, k, increases. Since its

formal conception 30 years ago[1], ILC has been an area of

intense research interest in both theoretical and application

domains[2, 3]. A body of recent work has succeeded in re-

moving the stipulation that tracking of a reference signal

is required at all points of [0, T ]. The framework that has

been developed enforces tracking at only a subset of points

{tj} [3−7]
1≤j≤M and hence addresses applications such as

production line automation, crane control, satellite posi-

tioning, and robotic “pick and place” tasks in which the

system output (e.g., payload position) is only critical at a

finite set of prescribed time instants. It has also been used

to model human motor control[8] and within stroke reha-

bilitation to assist patients performing reaching and object

manipulation tasks[9].

This paper expands the framework to tackle more general
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tracking problems that encompass the requirement

1) that a defined output signal passes through specified

points at a finite number of times {tj} ⊂ [0, T ],

2) that, on defined subintervals [t̂j , t̂j+1), defined combi-

nations of subsets of the outputs track required signals,

3) that, on defined subintervals, the output vector is un-

specified but lies on a plane in the output space and,

4) no tracking of any kind is required elsewhere on [0, T ].

These tasks fit many requirements needed in automation

tasks which include welding or cutting movements, or hu-

man motion control where the movement is restricted by

the task to straight line and/or planar segments. This ex-

pansion of the framework also enables it to tackle a special

case of the “spatial ILC” problem[10−12] in which a path is

specified in space (or more generally, as a functional con-

straint between outputs), but no temporal constraint is im-

posed on how the system moves along this path (or plane).

Spatial ILC presents substantial novelty, but no framework

currently exists which provides widely applicable algorith-

mic solutions and performance analysis. The inclusion of

aspects of spatial ILC hence addresses applications requir-

ing a predefined path (or plane) to be specified between

intermediate point locations, but opens up the possibility

of moving along the path (or plane) in a way that achieves

some other objective (e.g., control effort minimisation).

Solutions are developed in this paper using the frame-

work of norm optimal ILC (NOILC), which is a promi-

nent member of the class of gradient based ILC algorithms

whose convergence and robustness properties have been ex-

tensively studied by many groups[13−15] . Appearing origi-
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nally in [16], NOILC embeds precise control over error

and input norm evolution and has received significant

attention in the ILC community[17−19], with experimen-

tal applications including an accelerator based free elec-

tron laser[20] , multi-axis laser facility[19] and within stroke

rehabilitation[20]. Theoretical developments to NOILC in-

clude extension to discrete time[21], an N-iteration ahead

predictive solution[22], acceleration mechanisms[23], the in-

clusion of convex input constraints[24] and analysis of the

effect of non-minimum phase zeros[25, 26]. To address 1)–4),

a substantial generalization of NOILC is required to com-

bine a general point-to-point tracking problem with partial

tracking requirements on subintervals. It is achieved in this

paper using an operator formulation of the plant dynamics

and the application of NOILC concepts to construct an it-

erative algorithm that converges to a control input signal

that ensures that specified values of system outputs y(tj)

or linear combinations of outputs Fjy(tj) are achieved at

specified intermediate times {tj}1≤j≤M , whilst simultane-

ously ensuring that specified, and possibly different, linear

combinations Pjy(t), 1 ≤ j ≤ M̂ of outputs track specified

signals on (possibly different) subintervals [t̂j−1, t̂j ]. Such

combinations could be simple tracking tasks for a subset

of the outputs or they could represent constraints on out-

put behaviour that are necessary for effective operation. If

no continuous tracking is required on an interval [tq−1, tq],

then this is simply described by setting Pq = 0. The prob-

lem therefore combines the requirement to pass through

defined points with the need to track defined signals on

disjoint sub-intervals. The formulation is extremely general

but can be realized by implementable feedback/feedforward

ILC algorithms.

This paper is structured as follows. In Section 2, the

intermediate weighting problem with partial tracking re-

quirements for continuous state space systems is modelled

in a general product Hilbert space setting and applied to

formulate the ILC problem in Section 3 as a NOILC prob-

lem. Experimental validation results are given in Section

4 on a non-minimum-phase electromechanical test facility

and their relationship to theoretical predictions is discussed.

Conclusions and future work appear in Section 5.

2 Modelling in a product Hilbert space

The problem can be interpreted as a NOILC objective

with emphasis placed on rapid and accurate convergence of

all (or a subset) of outputs (or linear combination of out-

puts) at specified intermediate times {tj}1≤j≤M with ef-

fective tracking of defined signals constructed from (linear

combinations of) outputs on subintervals [t̂j−1, t̂j ], 1 ≤ j ≤
M̂ . Through the introduction of parameters Pj , Qj , 1 ≤
j ≤ M and Q̂j , 1 ≤ j ≤ M̂ , the problem can hence be

expressed as a combination of the tracking of a standard

reference r(t), t ∈ [0, T ], and intermediate point tracking.

This enables NOILC solutions to be derived using the rele-

vant operators, signals and underlying signal spaces.

2.1 Input/output notation

Let S(A, B, C) be an m-output, �-input, state dimension

n linear, time-invariant system of the form

ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t), t ∈ [0, T ] (1)

written in the operator form

y = Gu + d, G : L�
2[0, T ] → Lm

2 [0, T ],

y, d ∈ Lm
2 [0, T ], u ∈ L�

2[0, T ] (2)

where convolution operator G and signal d are defined by

(Gu)(t) =

∫ t

o

CeA(t−s)Bu(s)ds, d(t) = CeAtx0, t ∈ [0, T ]

(3)

and T < ∞ is fixed. Note that all functions in the range of

G are continuous and differentiable.

Let 0 = t0 < t1 < · · · < TM = T (respectively

0 = t̂0 < t̂1 < · · · < T̂M̂ = T ) be M (respectively M̂)

distinct points in [0, T ] and, for any f ∈ Lm
2 [0, T ], consider

the linear map f �→ fe

fe =

⎡
⎢⎢⎢⎢⎣

F1f(t1)
...

FMf(tM )

Pf

⎤
⎥⎥⎥⎥⎦ ∈Rf1 × · · · × Rf1 × Lp1

2 [0, t̂1] × · · ·

× L
p

M̂
2 [t̂M̂−1, T ] (4)

where Fj is fj × m and of full row rank, 1 ≤ j ≤ M . The

inclusion of Fj is a generalization that enables only selected

elements or linear combinations of elements of f that are

important in the problem to be specified at t = tj .

The operator P is defined by the functional relations:

Pf =

⎡
⎢⎢⎣

(Pf)1
...

(Pf)M̂

⎤
⎥⎥⎦ , (Pf)j ∈ L

pj

2 [t̂j−1, t̂j ], 1 ≤ j ≤ M̂

where

(Pf)j(t) = Pjf(t), t ∈ [t̂j−1, t̂j ], 1 ≤ j ≤ M̂

and either

1) each Pj is a pj ×m matrix of full row rank (represent-

ing the tracking requirement Pjy(t) ≡ rP
j (t) on [tj−1, tj ])

2) or Pj = 0 (no tracking requirement on that interval).

They can be regarded as “partial projections” of the sig-

nal f on the domain [t̂j−1, t̂j ] representing combinations of

f of control interest in these intervals.

With this notation, the “extended output” ye from the

plant is defined to be a “partially projected” output signal

(Py)(t) plus the values Fjy(tj), 1 ≤ j ≤ M , at intermediate
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points, i.e., dynamics can be modelled by the form

ye = Geu + de, Geu = (Gu)e =

⎡
⎢⎢⎢⎢⎣

G1u
...

GMu

PGu

⎤
⎥⎥⎥⎥⎦ , de =

⎡
⎢⎢⎢⎢⎣

F1d(t1)
...

FMd(tM )

Pd

⎤
⎥⎥⎥⎥⎦

(5)

with Ge : L�
2[0, T ] → Rf1 × · · · × RfM × Lp1

2 [0, t̂1] × · · · ×
L

p
M̂

2 [t̂M̂−1, t̂M̂ ] as a linear bounded operator.

A technical note: If Ge does not have range dense in

Lp1
2 [0, t̂1] × · · · × L

p
M̂

2 [t̂M̂−1, t̂M̂ ], then Lp1
2 [0, t̂1] × · · · ×

L
p

M̂
2 [t̂M̂−1, t̂M̂ ] is replaced by the closure of the range of

Ge as the output Hilbert space with the natural inherited

topology. This has no effect on the theory which incorpo-

rates this easily by using the virtual reference r ∈ Lm
2 [0, T ].

Here, Gj : L�
2[0, T ] → Rfj is defined by the relation

Gju = Fj

∫ tj

0

CeA(tj−t)Bu(t)dt (6)

and (PG)j : L�
2[0, T ] → L

pj

2 [t̂j−1, t̂j ] is defined by

((PG)ju)(t) = Pj

∫ t

0

CeA(t−t′)Bu(t′)dt′, t ∈ [t̂j−1, t̂j ].

(7)

A reference signal re is constructed by specifying the de-

sired values of Fjy(tj), 1 ≤ j ≤ M and the desired signals

rP
j (t) for Pjy(t), t ∈ [t̂j−1, t̂j ], 1 ≤ j ≤ M̂ . The attainability

of this reference by the system requires consistency between

these characterizations, and is addressed as follows.

Tracking signal characterization: It is assumed that re

can be generated using a (possibly non-unique, but contin-

uous) virtual reference r for the plant output y such that

r−d lies in the range of G . In this case, the tracking error

ee = re − ye can be associated with the “usual” tracking

error e(t) = r(t) − y(t) used in NOILC as

ee(t) = re − ye = (r − y)e =

⎡
⎢⎢⎢⎢⎣

F1e(t1)
...

FMe(tM )

Pe

⎤
⎥⎥⎥⎥⎦ . (8)

It is useful to note the following:

1) The virtual reference r and the associated virtual er-

ror e will play a role in the simplification of the theory and

relating the optimization problems used in the algorithm

to, more traditional, optimal control problems. Note that

neither r nor e are needed in the final computations as they

are always multiplied by operations that convert them into

components of the extended signals such as Pje that can be

computed from the specified signal Pjr and the measured

plant output.

2) The pure intermediate point problem is obtained by

removing Pf from the definition of fe whilst NOILC is ob-

tained by removing the intermediate points and looking at

the case of M̂ = 1, t̂1 = T and P = I . In terms of defining

fe, this is just (respectively)

fe =

⎡
⎢⎢⎣

F1f(t1)
...

FMf(tM )

⎤
⎥⎥⎦ ∈ Rf1 × · · · × Rf1 , fe = f ∈ Lm

2 [0, T ].

(9)

It is noted that the first is obtained in what follows by set-

ting Pj = 0, 1 ≤ j ≤ M̂ whilst the second is obtained using

Fj = 0, 1 ≤ j ≤ M and Q̂j = Q, 1 ≤ j ≤ M̂ and Pj = I .

3) The extension of the problem to the case of all tj < T

is achieved by increasing M by one and then defining an ad-

ditional point at tM = T with the corresponding FM = 0.

4) If there are no tracking requirements on some subin-

terval [t̂q−1, t̂q], then simply set Pq = 0.

To illustrate the wide range of tracking signals that the

construction allows, consider the following example of a ref-

erence signal for the case of m = 3 and control over a time

interval [0, 12]:

1) The intermediate points are defined by the require-

ment that output y1(t) passes through the points y1 =

1, 2, 3, 2, 1, 0 at times t = 2, 4, 6, 8, 10, 12 respectively.

2) Dynamics of all outputs are constrained during the

subinterval [4, 8] ⊂ [0, 12], to satisfy the planar/spatial con-

straint y1(t) + y2(t) + y3(t) ≡ 2.

The resultant data set is t1 = 2, t2 = 4, t3 = 6, t4 =

8, t5 = 10, t6 = 12 with M = 6 and F1 = F2 = · · · = F6 =

[1, 0, 0]. The remaining data sets are t̂1 = 4, t̂2 = 8, t̂3 = 12

with M̂ = 3. Hence, P1 = P3 = 0 and P2 = [1, 1, 1] with

reference signals rP
1 (t) ≡ 0, rP (t) ≡ 0 and rP

2 (t) ≡ 2 on the

intervals [0, 4), [4, 8], (8, 12].

2.2 Hilbert space structures and operators

The product space Rf1 × · · · × Rf1 × Lp1
2 [0, t̂1] × · · · ×

L
p

M̂
2 [t̂M−1, T ] is a Hilbert space with inner product

〈(v1, · · · , vM , f1, · · · , fM̂ ), (w1, · · · , wM , g1, · · · , gM̂ )〉[Q] =
M∑

j=1

vT
j Qjwj +

M̂∑
j=1

∫ t̂j

t̂j−1
fj(t)

TQ̂jgj(t)dt

(10)

where the fj × fj matrices Qj , 1 ≤ j ≤ M and the pj × pj

matrices Q̂j , 1 ≤ j ≤ M̂ are all symmetric and positive def-

inite. The simple notation [Q] is used to denote the data

set [Q] = {Q1, · · · , QM , Q̂1, · · · , Q̂M̂}.
Using the normal definition of the associated norm,

namely ‖q‖ =
√〈q, q〉, the squared norm of the error ee,

expressed in terms of the “underlying” error e, is simply

‖ee‖2
[Q] =

M∑
j=1

eT(tj)F
T
j QjFje(tj)+

M̂∑
j=1

∫ t̂j

t̂j−1

eT(t)PT
j Q̂jPje(t)dt. (11)

Finally, note that
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1) L�
2[0, T ] is also a Hilbert space with inner product and

norm defined by

〈u1, u2〉R =

∫ T

0

uT
1 (t)Ru2(t)dt

‖u‖2
R =

∫ T

0

uT(t)Ru(t)dt (12)

where � × � matrix R is symmetric and positive definite.

2) Equation (11) suggests that any objective function

containing the term

M∑
j=1

eT(tj)Hje(tj) +

M̂∑
j=1

∫ t̂j

t̂j−1

eT(t)Q(t)e(t)dt

with Q(t) symmetric, positive semi-definite and piece-wise

constant on [0, T ] and each Hj symmetric and positive semi-

definite, can be associated with an ILC problem of the

type discussed in this paper by identifying the intervals

(t̂j−1, t̂j), 1 ≤ j ≤ M̂ where either Q(t) = 0 or Q(t) is

constant with rank pj ≤ m and setting

Q(t) = PT
j Q̂jPj , t ∈ [t̂j−1, t̂j), Q̂j = Q̂T

j > 0, 1 ≤ j ≤ M̂

Hj = FT
j QjFj , Qj = QT

j > 0, 1 ≤ j ≤ M̂ (13)

where each Fj has full row rank and either Pj has full row

rank or is zero.

3 Formulation of the ILC problem

In its original form, NOILC for linear, time-invariant,

state-space systems is based on the minimization of an ob-

jective function

uk+1 = arg min{J(uk+1) = ‖ek+1‖2 + ‖uk+1 − uk‖2 :

e = r − y, y = Gu + d}, k ≥ 0. (14)

It is clear that the new mixed problem introduced in the

previous section can be expressed in this form by identify-

ing G with Ge and the norms with the new norms defined.

It follows that the iterative procedure defined by construct-

ing uk+1 on iteration k + 1 by minimizing the objective

function

J(uk+1) =
M∑

j=1

eT
k+1(tj)F

T
j QjFjek+1(tj)+

M̂∑
j=1

∫ t̂j

t̂j−1

eT
k+1(t)Q(t)ek+1(t)dt+

∫ T

0

(
uk+1(t) − uk(t)

)T

R
(
uk+1(t) − uk(t)

)
dt

Q(t) =PT
j Q̂jPj , t ∈ (t̂j−1, t̂j ], 1 ≤ j ≤ M (15)

subject to the state space dynamics of S(A,B, C) is pre-

cisely a NOILC iteration for Ge. Note that the criterion is

expressed in terms of the virtual error ek+1 rather than the

extended error ee
k+1.

In the next sections, the solution is found in its Hilbert

space setting and then formulated as the solution of a two-

point boundary value problem with M “jump” conditions.

3.1 Formal solution of the intermedi-
ate point algorithm with subinterval
weighting

The new algorithm can be written, in the notation of the

previous section, as

uk+1 = arg min{J(uk+1) = ‖ee
k+1‖2

[Q] + ‖uk+1 − uk‖2
R :

ee = re − ye, ye = Geu + de}. (16)

This has identical structure to the NOILC problem origi-

nally proposed in [16], the only differences being the defini-

tion of operators, signals and the underlying Hilbert spaces.

The iterative solution to (16) is hence written formally as

uk+1 = uk + G∗
eee

k+1 ⇒ ee
k+1 = (I + GeG

∗
e)−1ee

k (17)

where G∗
e is the adjoint operator of Ge in the topology in-

troduced in Section 2. This yields the monotonicity and

convergence properties summarised in the following theo-

rem. Note that this guarantees monotonic convergence of

‖ee
k‖[Q] for all possible choices of symmetric positive definite

R, [Q], and furthermore that ‖ee
k‖[Q] → 0 implies ‖ee

k‖ → 0.

Theorem 1. Under the conditions defined above and

given an initial choice of input u0, the extended error norm

is monotonically decreasing

‖ee
k+1‖[Q] ≤ ‖ee

k‖[Q], ∀k ≥ 0 (18)

with equality holding if and only if uk+1 = uk. As a conse-

quence, there exists a real number E∞ ≥ 0 such that

lim
k→∞

‖ee
k‖[Q] = E∞ (19)

and E∞ = 0 if and only if

lim
k→∞

ee
k = 0. (20)

This condition is satisfied if the extended reference re lies

in the closure of the range of Ge. Finally,

1) the resultant input sequence satisfies

∞∑
k=1

‖uk+1 − uk‖2
R < ∞ (21)

2) if the kernel of G∗
e is {0}, the initial input u0 = 0

and the signal re − de lies in the range of GeG
∗
e , then the

input sequence {uk}k≥0 converges to the unique stationary

point, u∞, of the Lagrangian associated with the optimiza-

tion problem

u∞ = arg min{J(u) = ‖u‖2 : re = Geu + de}. (22)

In other word, it converges to the input achieving the track-

ing requirement that has the smallest energy as represented

by its norm in U .

Proof. The result follows from the work in [16] apart

from the last statement. To show this, note that the La-

grangian associated with the minimum energy problem is

just, with Lagrange multiplier λ ∈ Re,

L(u, λ) = ‖u‖2
U + 2 < λ, re − Geu − de >Re (23)
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which has a stationary point when u∞ = G∗
eλ and re =

Geu∞ + de, i.e., re − de = GeG
∗
eλ. The stationary point

solution for λ exists and is unique as is the defined input so-

lution u∞. This solution solves the minimum energy prob-

lem follows from the projection theorem in Hilbert space

and the fact that the linear variety {u : re = Geu + de}
is non-empty and closed. Next, we write the iterations for

the ILC algorithm in the form

uk+1 =uk + G∗
eek+1, ek+1 = (I + GeG

∗
e)−1ee

k, k ≥ 0

lim
k→∞

ee
k = 0. (24)

Using the notation X = (I + GeG
∗
e)−1, implies that uk =

G∗
e

∑k
j=1 Xjee

0. Writing re − de = ee
0 = GeG

∗
eλ0 and noting

that XGeG
∗
e = I − X gives

uk = G∗
e

(
k∑

j=1

Xjee
0

)
= G∗

e

⎛
⎝(k−1)∑

j=0

Xj(I − X)λ0

⎞
⎠ =

G∗
e(I − Xk)λ0. (25)

It follows that uk converges in norm to an input û∞ satisfy-

ing û∞ = G∗
eλ0 and re = Geû∞ + de, i.e., it converges to a

stationary point of the Lagrangian which is unique. Clearly

û∞ = u∞ and λ0 = λ. �
It is useful to note the following observations:

1) Convergence to the minimum energy controller distin-

guishes the proposed solution from any solution computed

using NOILC and an arbitrarily chosen reference signal r(t)

defined on the whole time interval [0, T ] but satisfying the

intermediate point and partial tracking requirements.

2) If all Pj = 0, the output space is finite dimensional

and GeG
∗
e is a square matrix, self adjoint in the defined

topology. The approach then reduces to the intermediate

point tracking problem[5]. In addition, G is right-invertible,

then the convergence is geometric as

‖ee
k+1‖[Q] ≤ 1

1 + σ2
‖ee

k‖[Q], ∀k ≥ 0 (26)

where σ2 is the smallest eigenvalue of the matrix GeG
∗
e . In

this case, invertibility of GeG
∗
e ensures convergence to zero

error.

3) In addition, taking the case of fj = m and Fj = Im

for example, the choice of Qj is available to the designer

to influence the nature and form of the convergence, e.g.,

choosing Qj = λj−1Q0 for some symmetric positive definite

matrix Q0 and some choice of λ ∈ (0, 1) will prioritise the

reduction of errors at tj−1 before tj .

4) In a similar manner, choosing different values for

Q̂j , 1 ≤ j ≤ M̂ places different priorities on convergence

on the subintervals [t̂j , t̂j+1).

In the discussion that follows, it is assumed that at least

one Q̂j is non-zero.

3.2 The two-point boundary value prob-
lem on iteration k + 1:

The solution (17) of NOILC problem (16) requires oper-

ator G∗
e , which is computed in the Appendix. Substituting

this operator into (17) converts the solution, uk+1, into the

form of a two-point boundary value problem (TPBVP) with

jump conditions, given by

ẋk+1(t) = Axk+1(t) + Buk+1(t)

xk+1(0) = x0

uk+1(t) = uk(t) + R−1BTp(t)

ṗ(t) = −ATp(t) − CTQ(t)ek+1(t), t ∈ [0, T ] (27)

where

p(T ) = CTFT
MQMFMek+1(T )

p(tj−) = p(tj+) + CTFT
j QjFjek+1(tj), 1≤j < M.

The next subsection converts this characterization into a

feedback/feedforward realization using Riccati techniques.

3.3 A causal algorithm
The formal solution as a boundary value problem can

be expressed either as a causal feedforward solution when

Q(t) = 0[5] or more generally, as a causal feedback plus

feedforward solution. The details are described below.

The approach to constructing a state feedback plus pre-

dictive/feedforward term causal solution is familiar and

closely related to the classical linear quadratic tracking

problem. The solution provided below is not unique but

all solutions are equivalent in the sense that they generate

the same uk+1. The approach is illustrated by writing

p(t) = −K(t)xk+1(t) + ξk+1(t) (28)

where K(t), ξk+1(t) are assumed to be continuous and

differentiable in each open segment (tj , tj+1) but possibly

discontinuous at the points t = tj and K(t) is symmetric.

The state vector is continuous on [0, T ].

A causal feedback solution for uk+1 is constructed as fol-

lows:

Step 1. Compute off-line the Riccati feedback matrix

from the matrix differential equation, terminal condition

and jumps

Q(t) = PT
j Q̂jPj , t ∈ (t̂j−1, t̂j ], 1 ≤ j ≤ M̂

K̇(t) + ATK(t) + K(t)A − K(t)BR−1BTK(t)+

CTQ(t)C = 0 (29)

with{
K(T ) = CTFT

MQMFMC

K(tj−) = K(tj+) + CTFT
j QjFjC, 1 ≤ j < M.

Step 2. On the (k+1)-th iteration, compute off-line the

predictive feedforward term from the differential equation,

terminal condition and jumps

ξ̇k+1(t) + ATξk+1(t) − K(t)BR−1BTξk+1(t)−
K(t)Buk(t) + CTQ(t)r(t) = 0

ξk+1(T ) = CTFT
MQMFMr(T )

ξk+1(tj−) = ξk+1(tj+) + CTFT
j QjFjr(tj), 1 ≤ j < M.

(30)
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Although these equations contain the virtual reference r(t),

note that Fjr(tj), 1 ≤ j ≤ M is specified in the tracking

problem and that the product Q(t)r(t) = PT
j Q̂jPjr(t), t ∈

[tj−1, tj ] is known as Pjr(t) is specified on [tj−1, tj ].

Step 3. Implement the control law

uk+1(t) = uk(t) + R−1BT [ξk+1(t) − K(t)xk+1(t)] (31)

to achieve the predicted monotonic convergence.

3.4 Performance and design observations

Given the tracking objectives, the choice of R, Q̂j , 1 ≤
j ≤ M̂ , Qj , 1 ≤ j ≤ M and tj , 1 ≤ j < M are open to the

designer of the system. As with the choice of Q and R in

the traditional linear quadratic regulator (LQR) problem,

there are no strict rules for their selection but the following

comments can be made.

1) The case when Q̂j �= 0 is equivalent, intuitively, to

a requirement that the output tracks reference Pjr(t) on

subintervals of [0, T ]. Changing the relative values of Q̂j

will change the relative convergence rates on the intervals

with the general rule that, increasing Q̂q will improve con-

vergence rates on the subinterval [t̂q−1, t̂q]. Also decreasing

the values of the Q̂j relative to the Qj will place increas-

ing emphasis on the specific intermediate points at times

tj , 1 ≤ j ≤ M leading to an expected faster reduction of

errors at the intermediate points and slower convergence

elsewhere. Details will depend upon plant dynamics and

the choice of R.

2) In general terms, reducing the value of R is expected,

intuitively to tend to accelerate algorithm convergence.

4 Experimental results

The approach has been tested on a six degree of freedom

anthropomorphic robotic arm (see Fig. 1) whose five rotary

joints are composed of PowerCubes (Schunk GmbH & Co.)

incorporating brushless servomotors with integrated power

electronics and transmission. These communicate with a

dSPACE ds1103 control board via a CAN bus at a rate

of 500 kbit/s, and each is controlled in torque mode. The

task considered involves planar movement using only two

actuated joints. Starting from an initial location, the end-

effector moves to a specified location (e.g., to pick up a tool

head), moving along a path (replicating a cutting or weld-

ing action), returning to another specified location (e.g.,

to replace/clean a tool head), and returning to the initial

location.

The plant model has been identified using frequency re-

sponse tests and is given by transfer function matrix (32).

Cascaded current and velocity control loops are used, with

inputs and outputs measured in radians.

The task requires the output to pass through selected

points at specified times plus the additional requirement

that a linear combination of outputs takes a specified func-

tional value on a proper subinterval. More precisely, zero

initial conditions are assumed for each iteration and track-

ing is represented by using intermediate point locations,

together with an output constraint that enforces a path

following component on a subinterval. The path following

component does not specify output values but does specify

their functional relationship.

Fig. 1 Robot showing actuated joints

The intermediate output values are given by the M = 5

time points

t1 = 3, t2 = 4, t3 = 10, t4 = 11, t5 = T = 14

with the corresponding outputs

r(t1) =

[
0.368 9

1.548 0

]
, r(t2) =

[
0.957 0

0.388 3

]
, r(t3) =

[
1.566 0

1.260 9

]
,

r(t4) =

[
0.419 1

1.672 3

]
, r(t5) =

[
0

0

]

where Fj = I , 1 ≤ j ≤ 5. In addition, tracking is also

defined by the constraint in the interval [4, 10].

y2 − 1.433y1 = −0.983 2 (i.e., M̂ =3, t̂1 =4, t̂2 =10, t̂3 =T ),

P1 = [0, 0], P2 = [−1.433, 1.0], P3 = [0, 0] ,

rP
1 (t) ≡ 0, rP

2 (t) = −0.983 2, rP
3 (t) ≡ 0 (32)

representing a coordinated spatial movement of the two

joints in terms of relative values. Note that this does not

specify numerical values of y1(t) or y2(t) individually at any

point in [4, 10]. To achieve the task, the control action (31)

has been implemented using the state feedback matrix (29)

and predictive feedforward term (30). As the states are not

measured directly, a Kalman filter provides the state

G(s) =

⎡
⎢⎢⎣

3.34e5s3 + 2.01e7s2 + 3.87e8s + 2.34e9

s8 + 217.8s7 + 1.9e4s6 + 8.42e5s5 + 2e7s4 + 2.42e8s3 + 1.17e9s2

720

s3 + 95s2 + 1300s + 8000

600

s3 + 89s2 + 1150s + 7500

4.5e4s3 + 1.71e7s2 + 1.72e9s + 1.8510

s9 + 203s8 + 1.72e4s7 + 7.82e5s6 + 2.06e7s5 + 3.14e8s4 + 2.55e9s3 + 8.50e9s2

⎤
⎥⎥⎦

(33)
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estimates using process and measurement disturbance co-

variance weights of 10I and I respectively.

To provide a comparative approach to quantify conver-

gence rates, the uniquely defined iteration index, k∗, corre-

sponding to the first index where the tracking criterion

‖ee
k‖ = ‖re − ye

k‖ < ε‖re‖ (34)

is met is noted. A value of ε = 0.01 is used in all the results

that follow corresponding to an improvement in tracking by

a factor of 100 relative to the extended reference.

Fig. 2 shows the converged paths after 200 trials using

R = I , Qj = 50I , 1 ≤ j ≤ 5 and Q̂j = 2, 1 ≤ j ≤ 3.

Corresponding output angles and control input signals are

shown in Fig. 3, together with signals on trials 1, 3 and 5.

Norm results over all trials are shown in Fig. 4 for a variety

of Qj and Q̂j .

Fig. 2 Observed paths on trial 200 in world space (correspond-

ing to path of robot end-effector in Cartesian space) and joint

space, using Qj = 50I and Q̂ = 2

Table 1 shows summary data, confirming that the both

the intermediate point tracking and the spatial tracking

components are achieved to high accuracy. As Qj increases

more emphasis is placed on minimizing the intermediate

point error, compared to the spatial tracking error. In prac-

tice, an optimum compromise can be found between Qj and

Q̂j values which provides convergence to low values of each

objective. At the same time, there is clearly a trade-off be-

tween rapid convergence to low error, and the control effort

required to achieve it. Lower values of Qj and Q̂j typically

enable less energy to be expended, but k∗ increases.

Table 1 Summary norm data, where ||Pek∗ || is the spatial

error norm, and the intermediate point (IP) tracking norm is

||ee
k∗ || − ||Pek∗ ||

Qj Q̂j ||ee
k∗ || ||Pek∗ || IP norm ‖uk∗‖ k∗

1I 1 0.176 2 0.025 7 0.150 5 12.911 >200

10I 1 0.056 0 0.039 1 0.016 9 14.507 39

20I 1 0.050 9 0.042 2 0.008 7 14.615 27

50I 1 0.045 3 0.041 7 0.003 6 14.804 20

100I 1 0.044 6 0.043 3 0.001 3 15.048 17

500I 1 0.035 1 0.034 4 0.000 7 16.373 17

1000I 1 0.034 6 0.034 3 0.000 3 17.464 19

1I 2 0.160 4 0.012 2 0.148 2 13.025 191

10I 2 0.045 5 0.028 5 0.017 0 14.578 33

20I 2 0.040 6 0.030 8 0.009 8 14.678 22

50I 2 0.034 3 0.030 2 0.004 1 14.869 13

100I 2 0.029 8 0.028 2 0.001 6 15.109 11

500I 2 0.024 4 0.023 8 0.000 6 16.466 10

1000I 2 0.025 8 0.025 5 0.000 3 17.520 11

1I 10 0.152 4 0.004 1 0.148 3 13.471 187

10I 10 0.026 6 0.010 9 0.015 7 14.964 27

20I 10 0.020 3 0.008 3 0.012 0 15.038 18

50I 10 0.016 7 0.010 7 0.006 0 15.246 12

100I 10 0.015 3 0.012 6 0.002 7 15.514 9

500I 10 0.017 2 0.016 5 0.000 7 16.850 8

1000I 10 0.012 8 0.012 5 0.000 3 17.892 8

1I 20 0.151 8 0.001 8 0.1500 13.850 189

10I 20 0.024 2 0.009 9 0.014 3 15.386 26

20I 20 0.019 8 0.007 7 0.012 1 15.481 18

50I 20 0.013 3 0.006 3 0.007 0 15.683 11

100I 20 0.011 1 0.006 8 0.004 2 15.971 10

500I 20 0.013 1 0.012 4 0.000 7 17.342 9

1000I 20 0.009 5 0.009 0 0.000 5 18.314 8

The combined intermediate point and spatial tracking

approach is now compared to the standard ILC framework.

As is shown in Theorem 1, in the absence of plant model

mismatch this method converges to the minimum energy

solution to the problem, and hence the most appropriate

comparison is to use standard NOILC with r(t) calculated

in advance using the nominal plant model to achieve the

intermediate point and spatial tracking tasks whilst also

requiring minimum input energy. This signal is shown in

Fig. 3 where it is labeled r̃(t). Using this predefined refer-

ence, standard NOILC corresponds to removing the inter-

mediate points and using M̂ = 1, t̂1 = T , P = I .

Results in Table 2 show that standard NOILC requires

a significantly larger control effort norm to obtain similar

levels of error, while requiring a greater number of trials.
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Fig. 3 Output angles, y1,k(t), y2,k(t) and corresponding control inputs u1,k(t), u2,k(t) over 200 trials, using Qj = 50I, Q̂ = 2. The

minimum energy solution, calculated using the nominal plant model, is shown for comparison and labeled r̃(t)

Table 2 Standard NOILC using a reference r(t) equal to the

minimum energy solution

Q̂j ||ee
k∗ || ||Pek∗ || IP norm ‖uk∗‖ k∗

1 0.074 5 0.048 0 0.026 5 15.463 52

2 0.050 9 0.034 3 0.016 6 15.774 27

10 0.017 7 0.014 8 0.002 9 16.315 11

20 0.010 5 0.009 0 0.001 5 16.369 10

Fig. 4 Error norms (combined intermediate point tracking and

spatial tracking) and input norms over 200 trials, for a variety of

Qj and Q̂j

5 Conclusions

A well-defined NOILC problem which places specific em-

phasis on two objectives, namely, simultaneous fast accu-

rate tracking at a finite number of intermediate points of

time within the interval [0, T ] plus tracking of defined linear

combinations of outputs on sub-intervals of [0, T ], can be

approached and solved using the operator methods under-

pinning those of NOILC in [16]. The resultant algorithm in-

herits the original convergence properties and monotonicity

properties that makes NOILC so attractive. The formula-

tion is quite general for linear time invariant state space

systems and can be represented in a feedforward struc-

ture (when Q(t) ≡ 0), but more generally, has the form

of familiar current trial Riccati state feedback and predic-

tive/feedforward terms generated from off-line, reverse-time

simulations of differential equations with defined jump con-

ditions at the intermediate points selected. An analysis of

the effect of the choice of weighting matrices provides guide-

lines to their selection in terms of convergence rates and the

effect of removing intermediate points from the problem.

Experimental results indicate that the predictions of er-

ror monotonicity and rapid convergence can apply in prac-

tice with great accuracy and with robustness to modelling

errors. Further research is needed to address more general

issues of parameter choice, a formal characterization of the

algorithm robustness to modelling errors and the effects of

varying initial condition.

Appendix (Computation of the adjoint

operator G∗
eG∗
eG∗
e)

At the centre of NOILC is the characterization[16] of

the adjoint operator mapping inputs into defined outputs.

Therefore, purpose of this section, is to compute the rel-

evant adjoint operator G∗
e of Ge given the Hilbert space

topology defined above. By definition,

〈(w1, · · · , wM , v1, · · · , vM̂ ), Geu〉[Q] =

〈G∗
e(w1, · · · , wM , v1, · · · , vM̂ ), u〉R (35)

then the adjoint is computed from adjoints of Gj , 1 ≤ j ≤
M and (PG).

1) Adjoint operator of Gj : First look at Gj via

wT
j QjFj

∫ tj

0

CeA(tj−t)Bu(t)dt =

∫ tj

0

(R−1BTeAT(tj−t)CTFT
j Qjwj)

TRu(t)dt (36)
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and hence deduce that

(G∗
j wj)(t) =

{
R−1BTeAT(tj−t)CTFT

j Qjwj , 0 ≤ t ≤ tj

0, t > tj

(37)

which can be written in the form

(G∗
ewj)(t) = R−1BTpj(t) (38)

where on [0, tj),

ṗj(t) = −ATpj(t)

pj(tj−) = CTFT
j Qjwj (39)

and pj(t) = 0 on (tj , T ].

2) Adjoint operator of PG: Suppose the Hilbert topology

in the range of G is defined (with Q arbitrary as it plays no

role in the final algorithm) by the inner product

〈y,w〉 =

∫ T

0

yT(t)Qw(t)dt

Q = QT > 0. (40)

Firstly, the adjoint of G is computed as the map w = G∗v
as

w(t) = R−1BTpM+1(t)

ṗM+1(t) = −ATpM+1(t) − CTQv(t)

pM+1(T ) = 0. (41)

Note now that (PG)j is simply the composite map G :

L�
2[0, T ] → Lm

2 [0, T ] and the map

y(t) → Pjy(t), t ∈ [tj−1, tj ] (42)

which has adjoint

vj(t) →
[

Q−1PT
j Q̂jvj(t), t ∈ [t̂j−1, t̂j ]

0, otherwise

]
∈ Lm

2 [0, T ].

(43)

It follows directly that the adjoint operator P ∗ is defined by

the relation P ∗(v1, · · · , vM̂ ) = ŵ, where ŵ can be identified

almost everywhere with the function

ŵ(t) = Q−1PT
j Q̂jvj(t), t ∈ [t̂j−1, t̂j), t ∈ [0, T ]. (44)

Hence, (PG)∗ = G∗P ∗ is defined by a relation of the form

w = (PG)∗(v1, · · · , vM̂ ) as the continuous solution of the

costate equation

w(t) = R−1BTpM+1(t)

ṗM+1(t) = −ATpM+1(t) − CTPT
j Q̂jvj(t), t ∈ [t̂j−1, t̂j)

pM+1(T ) = 0. (45)

3) Adjoint operator of Ge: Using these represen-

tations, the adjoint operator G∗
e of Ge is the map

(w1, · · · , wM , v1, · · · , vM̂ ) �→ u defined by

u(t) =

M∑
j=1

(G∗
jwj)(t) + (G∗P ∗(v1, · · · , vM̂ ))(t) =

R−1BT
M+1∑
j=1

pj(t) = R−1BTp(t) (46)

where

p(t) =

M+1∑
j=1

pj(t) ∈ Rn. (47)

Using linearity, these can be brought together as

u(t) = R−1BTp(t)

ṗ(t)=−ATp(t) − CTPT
j Q̂jvj(t), t ∈ (t̂j−1, t̂j), 1≤j≤M̂

p(T ) = CTFT
MQMwM

p(tj−) = p(tj+) + CTFT
j Qjwj , 1 ≤ j < M. (48)

This is a familiar equation similar to the costate equations

of optimal control. It is computed by backwards integration

from the terminal boundary condition at t = T with defined

discontinuities (or “jumps”) at times t = tj , 1 ≤ j < M and

the specified terminal boundary condition. Note that

1) The case created by putting all Pj = 0 can be included

in the above as it is equivalent to omitting the term in the

inner products and norms and redefining the extended out-

put ye to omit the term Py(·). The output space is then

Rf1×, · · · , RfM which is finite dimensional of dimension

[f ] =
∑M

j=1 fj . The input space remains infinite dimen-

sional so Ge is not invertible.

2) It is easily seen that the above theory also works with

time varying A,B, C, Q̂j , R simply by replacing these ma-

trices by time varying versions. The details are omitted for

brevity.

Substituting the operator form (48) into (17) leads di-

rectly to the TPBVP of (27).
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