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Abstract: It is common for wind turbines to be installed in remote locations on land or offshore, leading to difficulties in routine

inspection and maintenance. Further, wind turbines in these locations are often subject to harsh operating conditions. These challenges

mean there is a requirement for a high degree of maintenance. The data generated by monitoring systems can be used to obtain models of

wind turbines operating under different conditions, and hence predict output signals based on known inputs. A model-based condition

monitoring system can be implemented by comparing output data obtained from operational turbines with those predicted by the

models, so as to detect changes that could be due to the presence of faults. This paper discusses several techniques for model-based

condition monitoring systems: linear models, artificial neural networks, and state dependent parameter “pseudo” transfer functions.

The models are identified using supervisory control and data acquisition (SCADA) data acquired from an operational wind firm. It

is found that the multiple-input single-output state dependent parameter method outperforms both multivariate linear and artificial

neural network-based approaches. Subsequently, state dependent parameter models are used to develop adaptive thresholds for critical

output signals. In order to provide an early warning of a developing fault, it is necessary to interpret the amount by which the threshold

is exceeded, together with the period of time over which this occurs. In this regard, a fuzzy logic-based inference system is proposed

and demonstrated to be practically feasible.
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1 Introduction

Wind farms are being constructed increasingly offshore to

take advantage of stronger and more reliable winds, and re-

duced visual and noise impacts[1]. However, routine inspec-

tion and maintenance is more difficult. Over an operating

life of 20 years, maintenance costs for an onshore wind farm

are estimated to be 10–15 % of the total income[2]. And for

an offshore wind turbine over the same period, these costs

are estimated to be up to 30 % of the total income[3]. Conse-

quently, condition monitoring (CM) systems play an impor-

tant role in the operation of wind farms, providing informa-

tion about the past and current conditions of the turbines

and enabling optimal scheduling of maintenance activities,

while minimising the risk of unexpected failure[4]. The data

generated by these monitoring systems can be used to ob-

tain models of a process operating under different condi-

tions, e.g., these data can be acquired from a supervisory

control and data acquisition (SCADA) system[5]. SCADA

systems are used to monitor and control devices in many

industrial applications, such as communications, water and

waste control, energy, oil and gas refining, and transporta-

tion. The system comprises an interface to sensors, local

control switchboxes, actuators, a communication network
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to transfer data to the SCADA central host, and the asso-

ciated software.

The output signals of a process can be predicted from

known inputs using models obtained from the data gener-

ated by these monitoring systems, and a CM system can be

implemented by comparing actual output data with those

predicted by the model for given input signals. Differences

between the output signals are caused by changes in the

process, possibly due to the occurrence of faults[6]. The

model-based method is illustrated in Fig. 1, in which the

residual signal can reveal potential component failures.

Fig. 1 Model-based condition monitoring system

Clearly, an accurate model is essential for such a system,

and previous research in this area has employed a range

of techniques, based upon both mechanistic models derived

from physical laws[7] and data-based models obtained from

measured input and output signals[8]. The former require

a thorough understanding of the process, and may result in

a complex or over-parameterised model not suitable for on-

line implementation as a CM system due to an excessive re-

sponse time. In contrast, data-based models do not require

knowledge of the process or specific parameters. Models

are identified from input and output signals collected either

during planned experiments or by monitoring the process
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during normal operation. However, similar to mechanis-

tic models, it is essential to identify a low-order model for

on-line implementation.

Many processes associated with wind turbines are non-

linear, and techniques such as artificial neural networks

(ANNs)[9] and fuzzy logic[10] have been utilised by many

researchers for model-based CM systems. These techniques

are particularly suitable for this application, being robust

to noisy, incomplete, and uncertain data.

This paper extends the previous research into model-

based methods for wind turbine condition monitoring[11],

and discusses linear, ANN-based, and state dependent pa-

rameter (SDP)[12] modelling techniques. These methods are

used to model the relationships between critical measured

parameters identified with SCADA data acquired from an

operational wind farm. It is found that multivariate SDP

models outperform both linear and ANN-based models.

Further, in contrast to ANN-based models, SDP models

are a parametrically efficient representation of non-linear

processes, and are particularly suitable for forecasting[13]

and providing the basis for automatic controller design[14].

Subsequently, in this paper, multivariate SDP models are

used to identify adaptive thresholds for selected critical out-

put signals. In turn, these thresholds form the basis of a

CM system incorporating fuzzy logic that provides an early

warning of component failure and an indication of its sever-

ity.

2 Wind farm data

Many commercial wind farms employ a SCADA system

to provide online information regarding various measure-

ments and signals. These systems allow data to be ac-

quired without the need to install additional instrumenta-

tion. Therefore, SCADA data have been employed widely

by researchers as the basis for CM systems[8, 9].

For this research, the SCADA data have been acquired

from a wind farm comprising 26 turbines and representing

16 months′ operation. These data have been collected by

the SCADA system at a sample rate of two seconds, then

processed and stored at ten minute intervals. They con-

sist of 128 readings for various temperatures and pressures,

power output, vibration, wind speed, and digital control

signals. For the work presented here, the data selected rep-

resent ten minute averages for each parameter. Examples of

the SCADA data are illustrated in Fig. 2, in which the wind

speed and the corresponding active power output for three

months′ operation for a single wind turbine are shown.

Gaps in SCADA data exist due to occasions when the tur-

bine is inactive during periods of low and high wind speeds.

Additional gaps occur due to the occurrence of scheduled

maintenance and faults. Prior to model identification, it

is necessary to remove these gaps. Fig. 3 shows the data

after processing. After removal of the gaps in the data, a

power curve for the turbine can be plotted, showing the re-

lationship between wind speed and active power output, as

illustrated in Fig. 4.

Fig. 2 Example of SCADA data

Fig. 3 Example of processed data

Fig. 4 Example of a power curve for a wind turbine showing the

active power output as a function of wind speed

3 System identification

A model of a dynamic system can be obtained from

the measured input and output data collected from either

planned experiments or by monitoring the system during

normal operation. These data can be utilised to identify

the appropriate model structure and parameters using sys-

tem identification, or to form the training set for an ANN.
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3.1 Linear models

A dynamic linear system can be represented as a time

invariant transfer function model. In addition, the small

perturbation behavior about an equilibrium point of many

non-linear systems can be approximated by a linear trans-

fer function model. Considering a single-input single-output

process sampled at a uniform interval Δt, beginning at time

t = 0, the resulting discrete-time system can be represented

by the following difference equation, describing the output

variable at sample k in terms of a combination of its past

values and the current and past values of the input variable:

yk = − a1yk−1 − a2yk−2 − · · · − anyk−n + b0uk+

b1uk−1 + · · · + bmuk−m (1)

where yk and uk are the k-th sampled output and input

variables, respectively. By defining the “backward shift op-

erator” as z−iy = yk−i, where i is a delay in number of

samples, the difference equation can be represented by the

discrete transfer function model as

yk =
B(z−1)

A(z−1)
uk (2)

in which A(z−1) and B(z−1) are appropriately defined poly-

nomials in the backward shift operator:

A(z−1) = 1 + a1z
−1 + · · · + anz−n

B(z−1) = b0 + b1z
−1 + · · · + bmz−m. (3)

A time delay of δ samples can be incorporated into the

model by setting the leading δ coefficients of the B(z−1)

polynomial to zero.

This research employs the simplified refined instrumental

variable (SRIV) algorithm for discrete-time transfer func-

tion model identification[15]. This algorithm employs an

iterative procedure in which each step allows for a linear-

like computation of recursive estimates. After the initial

estimate of the model polynomials, an estimate of the noise

signal is obtained by least squares. Pre-filtered input and

“noisy” output signals, together with a pre-filtered estimate

of the noise-free system output, are derived from the esti-

mates obtained in the previous step. These are then used to

obtain estimates of the model polynomials and the process

is repeated with these updated estimates. Although the

above describes the identification of a single-input single-

output system, it is straightforward to extend the method-

ology to multiple-input single-output systems.

3.2 Artificial neural networks

Many processes associated with wind turbines are non-

linear. Although linear models can predict the output of

many non-linear processes over a small operating range,

this may be inadequate for model-based CM systems. In

this regard, non-linear models based upon artificial neu-

ral networks have been utilised by many researchers[9]. An

ANN is a mathematical model inspired by the structure of

biological neural networks, consisting of an interconnected

group of “neurons” arranged in a series of layers. These

layers comprise input and output layers, and one or more

“hidden” layers.

ANNs are “trained” to perform a particular task by

changing the weights associated with the connections be-

tween the neurons[16]. During the training process, the

weightings are adjusted until the output data from the ANN

match the target output data using a supervised learning

technique. In this research, a back-propagation algorithm is

employed, in which the input data are mapped to the target

output data by minimising the error between these outputs

and the predicted outputs using a damped least squares

method. The network is validated using the input data not

used for training. These data are entered into the trained

network to see how well the corresponding output values are

predicted and the weightings between neurons are changed

if necessary. Finally, the network is tested with a further

set of input data not used for either training or validation.

ANNs are categorised as static networks and dynamic

networks. The former have no feedback elements and con-

tain no delays. In contrast, the output of a dynamic ANN

depends on the current input to the network and the pre-

vious inputs, outputs or states of the network. A dynamic

ANN can be used to model the relationship between input

and output data for a non-linear system. Such a system can

be described by a non-linear autoregressive function with

exogenous inputs, in which the output signal is regressed

on its delayed values together with the current and delayed

values of the input signal[17] , i.e.,

yk = f(yk−1, yk−2, · · · , yk−n, uk, uk−1, · · · , uk−m) (4)

where yk and uk are defined as in (1). The function f can be

approximated using a dynamic ANN, in which the connec-

tions between the neurons form a directed cycle, and feed-

back connections enclose several layers of the network, cre-

ating an internal state for the network. It has been shown

that one hidden layer of neurons is sufficient to approximate

any continuous function[18], and the number of neurons in

the hidden layer is selected by considering the training time

with respect to model fit.

3.3 State dependent parameter models

Since an ANN is purely “black box”, it is difficult to

interpret the identified models in a physically meaningful

way. Therefore, modelling techniques have been developed

to combine both linear and non-linear components, e.g., hy-

brid linear and non-linear autoregressive moving average[19]

and quasi-auto-regressive moving average with exogenous

variables[20] methods. In this paper, non-linear systems

are modelled using a quasi-linear state dependent parame-

ter model structure, in which parameters vary as functions

of the state variables. Although the following describes a

single-input single-output system, the methodology can be

extended to multivariate systems.

A single-input single-output SDP system can be repre-
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sented by the “pseudo” transfer function as

yk =
Bk(z−1)

Ak(z−1)
uk (5)

where yk and uk are defined as in (1); and Ak(z−1) and

Bk(z−1) are appropriately defined state dependent polyno-

mials in the backward shift operator as

Ak(z−1) = 1 + a1,kz−1 + · · · + an,kz−n

Bk(z−1) = b0,k + b1,kz−1 + · · · + bm,kz−m. (6)

The state dependent coefficients, ai,k and bj,k (i =

1, 2, · · · , n; j = 0, 1, · · · , m), are derived from the input and

output signals, but can be functions of measured state vari-

able. Although SDP models cannot represent every type of

non-linear behavior, they are applicable to a wide range of

systems. The coefficients, ai,k and bj,k are direct functions

of the state of the system. Subsequently, the parameters

can change rapidly, and they will vary chaotically in the

case of a chaotic system.

The SDP model structure and parameters are identified

directly from the input and output data of the process, and

the method of model identification employed here comprises

three stages[21] . In the first stage, the most appropriate

model structure and the state variables are identified by

estimating a discrete-time linear transfer function model

using any suitable method, such as the SRIV algorithm de-

scribed above. The progression of the state vector associ-

ated with the state dependent coefficients can be described

by a generalised random walk. This is a statistical mecha-

nism allowing the change in the parameters to be estimated.

During the second stage of model identification, a

stochastic time-varying parameter (TVP) model is esti-

mated using a forward pass recursive Kalman filter[22] and a

backward pass fixed-interval smoothing (FIS) algorithm[23] .

The backward pass FIS is required because the parame-

ter estimates generated from the forward pass filtering are

lagged. Since the variations in the SDPs are functions of

the state variables, the process may display severely non-

linear or chaotic behavior. Subsequently, these standard

recursive estimation algorithms will not work satisfactorily.

However, by sorting the data in a non-temporal order, e.g.,

in ascending order so that the variations in the SDPs are

slower and smoother, the standard methods can be used.

This recursive process continues until the forward pass esti-

mates of the TVPs no longer change significantly. In order

to apply this algorithm, it is necessary to specify the ele-

ments of the covariance matrix associated with the TVP

model and the parameters of the random walk model. As

these are not known a priori, they must be estimated using

numerical optimisation. A straightforward maximum like-

lihood approach is not possible due to the non-stationary

nature of the model, and therefore it must be used together

with prediction error decomposition[24].

For the final identification stage, the resulting non-

parametric estimates of each parameter are unsorted and

plotted as a function of the variable upon which it depends,

providing an indication of the location of any significant

non-linearities. The non-parametrical estimates are then

parameterised in terms of their associated dependent vari-

ables. In this paper, this is achieved by defining the para-

metric model as a polynomial function of the state variables,

and the associated coefficients are obtained using standard

numerical optimisation to minimise the error between the

polynomial function and the non-parametric graph. The

resulting model provides a parametrically efficient represen-

tation of the system, suitable for on-line implementation. It

is necessary only to store the current input signal and the

delayed state variables, together with the arithmetic expres-

sions required to calculate the dependent parameters.

3.4 Coefficient of determination

The coefficient of determination[25] is employed in this

paper as a measure of how well a model explains the actual

output data, and is defined as

R2
T = 1 − σ2

e

σ2
y

(7)

where σ2
e is the sample variance of the model residuals, and

σ2
y is the variance of the actual output. If the variance of

the model residuals is low compared with the variance of

the actual output, R2
T tends to unity, indicating the model

provides a good fit. If the variances are similar in magni-

tude, R2
T tends to zero, indicating a poor fit. And if the

model fit is very poor, the variance of the model residu-

als will be high compared with the variance of the actual

output, generating a negative value for R2
T .

4 System identification results

Models describing the relationship between wind speed

and active power output, the temperature of the gearbox

bearing, and the temperature of the generator winding have

been identified from SCADA data obtained from a fault-free

turbine. These relationships have been selected since they

provide an early indication of generator, bearing, and gear-

box faults.

4.1 Linear model results

After removal of baseline data, the SRIV algorithm is

employed to identify the most appropriate model structure

and associated parameters for the linear transfer function.

For the relationship between wind speed and active power

output, the best performing model is a second-order trans-

fer function with one time delay:

yk =
b1z

−1

a1z−1 + a2z−2
uk (8)

in which yk and uk are defined as in (1), a1, b1, and b2 are

the model parameters.

Fig. 5 shows the fit of this model to a section of the vali-

dation data. It can be seen that the model fit deteriorates

at the upper and lower extents of this relationship. The
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residual between the model prediction and the actual ac-

tive power output is also shown in Fig. 5.

Fig. 5 Linear model response compared to SCADA data. Up-

per plot: wind speed – model input. Middle plot: active power

(thin trace) and model output (dots). Lower plot: residual signal

between SCADA data and model prediction.

4.2 Artificial neural network results

In order to identify ANN-based models, it has been as-

sumed that the output signal is dependent upon the delayed

output and input signals and the current value of the in-

put signal. The number of neurons in the hidden layer is

selected by considering training time with respect to model

fit.

Fig. 6 shows the ANN-based model fit to a section of the

validation data set for the relationship between wind speed

and active power output. The residual between the model

prediction and the actual active power output is shown in

the lower plot of Fig. 6. It can be seen that the model is

able to estimate successfully the output signal.

4.3 State dependent parameter model re-
sults

It has been assumed that the time varying model param-

eters for each relationship are dependent upon the delayed

output and input signals, together with the current value

of the input signal. The structure for each SDP model has

been obtained from the equivalent linear transfer function

model.

The parameterisation of the relationships between the

state variables and the associated dependent parameters

in the identified models has been achieved by defining the

parametric models as polynomial functions of the state vari-

ables, and the associated coefficients are obtained using

standard numerical optimisation.

The following “pseudo” transfer function has been ob-

tained for the relationship between wind speed and active

power output.

yk =
b1,kz−1

a1,kz−1 + a2,kz−2
uk. (9)

The state dependent parameter b1,k is defined by a poly-

nomial function of the input signal uk, and the state de-

pendent parameters a1,k and a2,k are defined by polynomial

functions of the output signal yk.

Fig. 6 ANN model response compared to SCADA data. Up-

per plot: wind speed – model input. Middle plot: active power

(thin trace) and model output (dots). Lower plot: residual signal

between SCADA data and model prediction.

Fig. 7 shows the fit of the SDP model to a section of the

validation data. The residual between the model prediction

and the actual active power output is shown in the lower

plot in Fig. 7. It is clear that the SDP model is better able

to predict the whole range of the output signal in compar-

ison to the linear model. However, several peaks in the

signal are over estimated.

Fig. 7 SDP model response compared to SCADA data. Upper

plot: wind speed – model input. Middle plot: active power (thin

trace) and model output (dots). Lower plot: residual signal be-

tween SCADA data and model prediction.

4.4 Summary of single input model results

The linear transfer function models relating wind speed

to the gearbox bearing temperature, the generator wind-

ing temperature and active power output obtained using

the SRIV method are second-order, first-order and second-

order, respectively, each with one numerator parameter and

one time delay. The structures of the SDP models are the

same as the linear models with the parametric models de-
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scribed by second-order polynomial functions of the associ-

ated state variables. The ANN consists of a hidden layer of

ten neurons, each represented by a sigmoidal transfer func-

tion and an output layer of one neuron represented by a

linear transfer function. The coefficients of determination

for these models are summarised in Table 1.

It is clear that the ANN-based models outperform both

the linear and SDP methods for single-input single-output

models.

Table 1 R2
T values for single-input models

Model output Linear SDP ANN

Gearbox bearing temperature 0.657 0.992 0.999

Generator winding temperature 0.580 0.908 0.989

Active power output 0.786 0.961 0.995

4.5 Multivariate model results

The temperatures of the gearbox bearing and generator

winding depend not only upon the wind speed, but also

upon the power demand from the grid. Consequently, this

subsection considers the temperature of the gearbox bear-

ing as a function of wind speed and active power output,

together with the temperature of the generator winding as

a function of wind speed and active power.

As with the single-input single-output relationships ob-

tained in the previous subsection, the data are pre-

processed by removing the gaps that occur when the turbine

is inactive. The multivariate versions of the identification

methods are then used to obtain models for these relation-

ships.

For the linear model, the temperature of the gearbox

bearing as a function of wind speed and active power out-

put is represented by two second-order transfer functions,

each with one numerator parameter and one time delay and

the same denominator parameters. The liner model for the

generator winding temperature as a function of wind speed

and active power output consists of two first-order transfer

functions, each with one numerator parameter and one time

delay and the same denominator parameters.

The structures of the SDP models are the same as the

linear models with the parametric models again defined as

second-order polynomial functions. As with the single input

models, the ANN consists of a hidden layer of ten neurons

represented by a sigmoidal transfer function as no improve-

ment in model fit is obtained by increasing the number of

neurons on the hidden layer. The output layer consists of

one neuron, represented by a linear transfer function. The

corresponding coefficients of determination are summarised

in Table 2.

Table 2 R2
T values for multivariate models

Model output Linear SDP ANN

Gearbox bearing temperature 0.710 0.997 0.992

Generator winding temperature 0.833 0.983 0.977

It can be seen that the fit of the linear and SDP mod-

els improves with the addition of the second input variable.

In contrast, the fit of the ANN-based models appears to

decrease. The relatively poor performance of the multiple-

input ANN-based models is probably caused by “over fit-

ting” of the models during the training period, due to a

high correlation between the input parameters.

Fig. 8 illustrates the relationship between the SDP model

prediction for bearing temperature as a function of wind

speed and active power output. The relationship between

the generator winding temperature, wind speed and active

power output as obtained from the SDP model is shown in

Fig. 9.

Fig. 8. Plot of gearbox bearing temperature as a function of

wind speed and active power output, obtained from SDP model

Fig. 9 Plot of winding temperature as a function of wind speed

and active power output, obtained from SDP model

5 Fault detection using fuzzy logic

Power curves obtained from two turbines operating on

the same wind farm are shown in Fig. 10. The upper sub-

plot illustrates the power curve for a fault-free turbine. The

lower subplot shows the power curve for the second turbine

that operated with a reduced power output following a gear-

box fault at some points.

In order to investigate whether the identified SDP model

is able to detect changes due to the onset of the fault, the

SCADA data leading up to the occurrence of the fault are

acquired. The fault is identified from the event logs for the

turbine and the corresponding data are shown in Fig. 11,

with the fault occurring at 2900 minutes and the turbine

being shut down immediately. The gearbox bearing tem-

perature signal obtained from the SCADA data has been

compared with the corresponding SDP model prediction

obtained using active power output and wind speed as the
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input signals, as shown in the lower plot of Fig. 11.

Fig. 10 Examples of power curves for turbines. Upper plot:

curve for fault-free turbine. Lower plot: power curve for faulty

turbine.

Fig. 11 Detection of gearbox bearing fault using SDP models.

Upper plot: active power – model input 1. Middle plot: wind

speed – model input 2. Lower plot: Gearbox bearing tempera-

ture from SCADA data (thin trace) and model output (dots).

Fig. 12 illustrates the residual signal, i.e., the difference

between the SCADA data and model prediction. It can be

seen from the plot that there are three large spikes in the

residual signal, with deviations from the model prediction

by more than 4 ◦C at 800, 1200, and 1800 minutes. Imme-

diately before the fault occurring, there are two more large

deviations of approximately 7 ◦C from the model predic-

tion. It can be concluded that a warning system activated

by the spikes in the model residual can be used to provide

an early indication of the onset of the bearing fault.

5.1 Adaptive thresholds

The data illustrated in Fig. 11 are presented in the form of

a three-dimensional graph in Fig. 13. A three-dimensional

surface, defined by the upper limit of the bearing temper-

ature as predicted by the SDP model, is also shown. This

has been obtained using a threshold function written in

Matlab together with a curve-fitting toolbox. The surface

represents an adaptive threshold level for the bearing tem-

perature. This multivariate method provides a more sen-

sitive threshold in comparison to a conventional approach,

which would derive the threshold for the bearing tempera-

ture based purely on a single input parameter. By monitor-

ing the residual signal between the SCADA data and the

adaptive threshold, it can be determined if there is poten-

tial for a fault to develop. The period of time over which

the threshold is exceeded is also monitored in order to avoid

false alarms caused by small fluctuations in the bearing tem-

perature during normal operation, but not predicted by the

model. This “trend analysis” is undertaken using a fuzzy

logic-based inference system.

Fig. 12 Residual signal between SCADA data and model pre-

diction

Fig. 13 Plot of gearbox bearing temperature as a function of

wind speed and active power output

5.2 Fuzzy inference of thresholds

Fuzzy logic is a form of probabilistic logic that maps

an input space to an output space using a set of if-then

statements[26]. A membership function (MF) defines how

each point in the input space is mapped to a fuzzy mem-

bership value that lies between 0 and 1. This is referred to

as “fuzzification”.

The MFs used for the fuzzification of the first input, rep-

resenting the residual signal between the SCADA data and

the adaptive threshold, are shown in Fig. 14. Each of the

three MFs refers to the amount by which the threshold is

exceeded: MF 1 corresponds to situations when the thresh-

old is exceeded by a small amount (less than 3 ◦C); MF 2

corresponds to when the threshold is exceeded by a medium

amount (between 1.5 ◦C and 6.5 ◦C); and MF 3 corresponds
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to the threshold being exceeded by a large amount (more

than 5 ◦C).

Fig. 14 Membership functions for input 1: residual signal be-

tween SCADA data and adaptive threshold

Fig. 15 shows the MFs used for the fuzzification of the

second input, representing the period of time over which

the threshold temperature is exceeded. In a similar fashion

to the method employed for the fuzzification of the residual

signal, each MF refers to the length of time the thresh-

old is exceeded: MF 1 corresponds to the threshold be-

ing exceeded for a short period (less than 100 minutes);

MF 2 corresponds to the threshold which is exceeded for a

medium period (between 50 and 200 minutes); and MF 3

corresponds to the occasion when the threshold is exceeded

for a long period of time (more than 150 minutes).

Fig. 15 Membership functions for input 2: period of time over

which threshold temperature is exceeded

In order to define suitable levels of fault severity (i.e. no

fault, low severity, medium severity, and critical), four MFs

have been chosen for the fuzzy output signal. This out-

put signal is obtained using the following Mamdani fuzzy

rules[27]:

if (input 1 is MF 1) and (input 2 is MF 1) then (output

is MF 1)

if (input 1 is MF 1) and (input 2 is MF 2) then (output

is MF 1)

if (input 1 is MF 1) and (input 2 is MF 3) then (output

is MF 2)

if (input 1 is MF 2) and (input 2 is MF 1) then (output

is MF 1)

if (input 1 is MF 2) and (input 2 is MF 2) then (output

is MF 2)

if (input 1 is MF 2) and (input 2 is MF 3) then (output

is MF 3)

if (input 1 is MF 3) and (input 2 is MF 1) then (output

is MF 2)

if (input 1 is MF 3) and (input 2 is MF 2) then (output

is MF 3)

if (input 1 is MF 3) and (input 2 is MF 3) then (output

is MF 4).

The MFs for the fuzzy output are shown in Fig. 16. An

aggregate output fuzzy set is obtained by combining the

outputs of the rules using a fuzzy “and” function.

Fig. 16. Membership functions for fuzzy output

Finally, the aggregate output fuzzy set is “defuzzified” to

obtain a single output value. Here, the “last-of-maximum”

method is employed for the defuzzification process[28] . This

method finds the last point of the maximum value described

by the aggregate output fuzzy set.

Considering the residual signal shown in Fig. 12, the sig-

nals corresponding to the amount the threshold temper-

ature is exceeded and the period of time over which the

threshold temperature is exceeded are illustrated in Fig. 17.

This figure also shows the defuzzified output obtained using

the inference system.

Clearly, it is necessary for the output of the fuzzy infer-

ence system to correspond to distinct warning levels. In

this case, a “traffic light” system is chosen to represent the

severity of a fault, i.e., level 0 represents no fault, level 1

represents a low fault severity, level 2 represents medium

severity, and level 3 represents a critical situation. The

warning level is obtained from the defuzzified output using

the following rules:

if (output ≤ 0.25) then (warning is level 0)

else if (0.25 < output ≤ 0.5) then (warning is level 1)

else if (0.5 < output ≤ 0.75) then (warning is level 2)

else (warning is level 3).

The corresponding warning output generated by the

fuzzy inference system is shown in Fig. 18. It can be seen

that a critical warning is generated 20 hours (i.e., 1200 min-

utes) prior to the fault. Indeed, the conditions for a critical

warning are met twice during the period investigated. Fur-
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ther, a level 1 warning is triggered four times and a level 2

warning is triggered once.

Fig. 17 Fuzzy inference system input and output signals. Up-

per plot: amount by which threshold is exceeded. Middle plot:

elapsed time over which threshold is exceeded. Lower plot: de-

fuzzified output signal.

Fig. 18 “Traffic light” warning output signal

6 Conclusions

This paper has presented several methods for obtaining

models for a condition monitoring system, and these have

been demonstrated with SCADA data acquired from oper-

ational wind turbines.

It has been shown that the single-input models based

upon artificial neural networks outperform both linear mod-

els and non-linear state dependent parameter models for the

relationships between the input and output signals consid-

ered.

However, the temperatures of the gearbox bearing and

generator winding depend not only upon the wind speed,

but also upon the power demand from the grid. Con-

sequently, multiple-input systems have been investigated.

The goodness-of-fit of both linear models and state de-

pendent parameter models is improved by increasing the

number of input parameters. However, the correspond-

ing multiple-input artificial neural network-based models

perform relatively poorly in comparison. This is probably

caused by “over fitting” of the models, due to a high corre-

lation between the input parameters.

A multivariate adaptive threshold for gearbox bearing

temperature has been obtained from the associated SDP

model. In order to provide early warning of a developing

fault, it is necessary to interpret the amount by which the

adaptive threshold is exceeded together with the period over

which this occurs. In this regard, a fuzzy logic method has

been proposed. Clearly, the fuzzification of the input and

output signals, the fuzzy rules, the defuzzification method,

and the rules defining the warning levels may be adjusted

in order to control the sensitivity of the system and hence

tailor the response of the warning output.

In contrast to artificial neural network-based models, the

SDP method employed in this paper provides a parametri-

cally efficient representation of non-linear processes. When

implemented on-line, it will be necessary only to store the

current input signal and the delayed state variables, to-

gether with the arithmetic expressions required to calculate

the dependent parameters. Other data-driven condition

monitoring methodologies, such as multivariate statistical

process control[29], rely on a large amount of historical data

to be stored as charts. However, a condition monitoring

scheme based upon the state dependent parameter method-

ology can be realised with a relatively low-powered, low-cost

processor, and integrated into an existing monitoring sys-

tem. In this regard, the current research is focusing upon

a hardware implementation of the SDP model-based con-

dition monitoring scheme employing a field programmable

gate array (FPGA).
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