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Abstract: In this paper, a novel real time non-linear model predictive controller (NMPC) for a multi-variable coupled tank system

(CTS) is designed. CTSs are highly non-linear and can be found in many industrial process applications. The involvement of multi-input

multi-output (MIMO) system makes the design of an effective controller a challenging task. MIMO systems have inherent couplings,

interactions in-between the process input-output variables and generally have an complex internal structure. The aim of this paper is

to design, simulate, and implement a novel real time constrained NMPC for a multi-variable CTS with the aid of intelligent system

techniques. There are two major formidable challenges hindering the success of the implementation of a NMPC strategy in the MIMO

case. The first is the difficulty of obtaining a good non-linear model by training a non-convex complex network to avoid being trapped

in a local minimum solution. The second is the online real time optimisation (RTO) of the manipulated variable at every sampling time.

A novel wavelet neural network (WNN) with high predicting precision and time-frequency localisation characteristic was selected for

an MIMO model and a fast stochastic wavelet gradient algorithm was used for initial training of the network. Furthermore, a genetic

algorithm was used to obtain the optimised parameters of the WNN as well as the RTO during the NMPC strategy. The proposed

strategy performed well in both simulation and real time on an MIMO CTS. The results indicated that WNN provided better trajectory

regulation with less mean-squared-error and average control energy compared to an artificial neural network. It is also shown that the

WNN is more robust during abnormal operating conditions.

Keywords: Wavelet neural network (WNN), non-linear model predictive control (NMPC), real time practical implementation,

multi-input multi-output (MIMO), modelling, system identification, genetic algorithms (GA), non-linear optimisation, coupled tank

system (CTS).

1 Introduction

Process optimisation is a subject area that deals with

the control of processes so as to optimise some stipulated

set of parameters and constraints while still maintaining

the overall goals and objectives of the plants[1, 2]. A typical

process industry consists of many control loops responsible

for controlling parts of the important complex processes

such as maintaining level, flow, or temperature. Liquid

level control is probably the most common control prob-

lem in practical process systems[3]. Complex activities in

industries can be comprehended easily by the understand-

ing of the basic working principles of some process such as

the laboratory coupled tank system (CTS)[4]. The diverse

utilisations of CTS usages can be found in flow and level

controls, temperature controls, chemical blending, reactions

vessels, hot-water inputs, storage tanks, and temperature

stabilisations[4, 5]. The usefulness of CTS equipment has

also provided many scientists an environment for many re-
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search studies[4, 6−13]. The coupled tank apparatus is used

to analyse and examine the basic and advanced engineering

principles which include the study of static and dynamic

systems[4, 14]. A CTS is highly non-linear due to the fea-

ture characteristics of the valves and the fundamental dy-

namic equation which is time variant[3]. In the majority of

cases, fluids are expected to be pumped and mixed under

varying conditions. In all these processes, fluid level, flow

and reactants rates must be controlled and regulated[5, 15].

Real process plants are usually large scale, non-linear, time

variant, multi-objective and are very complex[16] and con-

trolling such a multi-input multi-output (MIMO) system

poses a very challenging task in the process industries[17].

The control of the MIMO processes is more difficult than

the single-input single-output (SISO) processes because of

the couplings between the process variables. Therefore, the

design procedures for SISO systems cannot be used effec-

tively for MIMO systems[18]. Many of these processes are

complex in nature and exhibit non-linearity and the design

of a non-linear MIMO model for the plant is an extremely

arduous task[15]. Another major design hurdle in the pro-

cess industries is an improper and an inefficient controller

that makes the process runs below its optimum level. A

huge economical advantage can be achieved with a design

of an optimal control strategy for the process industries[4].
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Classical control strategies such as proportional-integral-

derivative (PID) have been well established in the pro-

cess industries[8, 10, 12, 19], but they are not suitable for non-

linear and complex plants. Researchers are always looking

for new control methods and approaches for greater and

increased efficiency[4]. Today, most effective process oper-

ations demand operating ranges closer to the boundary of

the allowable operating region[1, 4] and hence linear models

are mostly deficient to sufficiently represent the non-linear

dynamics of the plant[4, 20]. In addition, MIMO control sys-

tems are more difficult to design as they integrate multiple

sensors data to coordinate multiple actuators. Some re-

searchers used multiple models and combined different con-

trollers for MIMO systems[16, 21−22] . An accurate non-linear

model with an efficient control strategy is thus required to

increase efficiency and higher production in the process in-

dustries. The model predictive control (MPC) strategy can

control and optimise complex processes with constraints[23].

Model predictive controllers rely mainly on dynamic models

of the process and therefore can either use a linear or non-

linear model representation of the plant for prediction pur-

pose. As already mentioned, process industrial plants are

implicitly non-linear in composition[20, 24−25] and the pre-

diction performance of MPC becomes complex in the pres-

ence of higher degree of non-linearity[25]. A reliable and effi-

cient non-linear model is thus required to predict accurately

the behaviour of the plant in an MPC strategy. Non-linear

model gives a more accurate prediction for a wider operat-

ing range of control[4]. The couple tank system considered

in this study is a typical example of the plant with a high

degree of non-linearity[26, 27]. The non-linearity in the CTS

is mainly due to the basic dynamic equations of the CTS,

the characteristics of the valves and as a result of the non-

linear flow characteristics in the tank system[4]. Most of the

literature concerned with CTSs deals with the non-linearity

of the SISO system case only[8, 28, 29] and to the best of the

authors knowledge no work has been reported in the lit-

erature indicating real-time control of the MIMO system

which is recognised as being difficult to achieve. This paper

uses a novel approach based on an efficient wavelet neu-

ral network (WNN) based model for an MIMO system and

the design a non-linear model predictive control (NMPC)

strategy for the CTS. This study primarily builds on previ-

ous works where a backpropagation artificial neural network

(ANN) was used to design NMPC strategies using SISO[4],

MIMO[15] and non-linear CTS models to control the height

of the fluid in a second tank. One of the major advantages

of using a wavelet for training of a neural network (NN)

is the inherent capability of both time and frequency sig-

nal localisation, which ultimately helps in achieving a global

minimum solution. Wavelets are one of the most exciting re-

search areas in signal processing today and researchers have

increasingly seized the opportunity to employ wavelet func-

tions with its choice of different mother wavelet in various

modelling disciplines[30−39] . The main focus of this work

is to use time-frequency localisation feature of the wavelet

to design an efficient non-linear MIMO model for a CTS

which can operate in nearly all regions of operating points

and then design an optimised NMPC for a CTS based on a

WNN model. The proposed strategy was tested first in sim-

ulation and then in a real time implementation. The results

were benchmarked against the NN model in the NMPC and

showed that better control actions and accurate control of

the CTS were achieved both in terms of mean-squared error

(MSE) and in terms of average controller energy (ACE). As

no work is recorded yet in the area of robust RTO NMPC on

CTS using a single MIMO WNN non-linear model instead

of an adaptive model, this paper shows a WNN model to be

more robust than an ANN does in the NMPC strategy. The

rest of the sections are described as follows: Section 2 de-

scribes the CTS while Section 3 contains the modelling de-

tails and results of WNN modelling. Section 4 presents the

NMPC strategy and a genetic algorithm (GA) real time op-

timisation (RTO) process. The NMPC strategy results are

shown in Section 5 while conclusions are given in Section 6.

2 MIMO coupled tank system

Fig. 1 (a) shows the picture of the multi-variable coupled

tank apparatus from TQ TecQuipment CE105MV at Ply-

mouth University while its schematic diagram, which rep-

resents a fragment of a typical complex process industry

operation, is shown in Fig. 1 (b). A data acquisition (DAQ)

device (NI 6009) from National Instrument with LabView

software driver is configured to acquire real time sensor data

and used to send the multi-variable input to control the fluid

levels in both tanks. The algorithms were implemented on

a PC with IntelR©. core i5-2410 M central processing unit

(CPU) and 3.0 GB of random-access memory (RAM). The

CE105MV unit comprises of two variable speed pumps, two

tanks connected by a variable area channel and drain valves

to a sump located in the base of the equipment. There

are two calibrated piezo-resistive silicon pressure type depth

transducers (level sensors), an electronic flow meter and a

variable area gap flow meter to provide visual indication

of flow rate. The control strategy is designed in a way

that the rate of change of the control input is controlled in

small steps to avoid major fluctuations. The equipment can

be configured as MIMO, SISO, single-input, multi-output

(SIMO) or multi-input, single-output (MISO) by the ma-

nipulation of pumps inputs and by varying the sectional

area of rotary valves A and C as shown in Fig. 1 (b). The

physical parameters of the TQ CE105MV coupled tank ap-

paratus are given in Table 1. The MIMO configuration

adopted in this work involves both pump 1 and pump 2

receiving voltages and pumping fluid into both tanks with

valve A fully opened so that there can be interaction be-

tween both tanks. In addition, valves B and C are opened

in midway position with their parameters given in Table 1.

The input voltages are also referred to as manipulated vari-

ables while the outputs, which are the height or level of the

fluid in both tanks, are known as the controlled variables.

At any given time, the heights of the fluid in both tanks

are related to the fluid inlet rates of both pumps and the

outlet rates of both tanks.
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Fig. 1 Coupled tank system setup. (a) Picture of CTS at Plymouth University; (b) Schematic diagram of CTS

Table 1 Physical parameters of the coupled apparatus

Symbol Quantity Value

Tank 1 and Tank 2 Tank cross sectional area 9.35 × 10−3 m2

Valves A (α12), B (α1), C(α2) Valve orifice cross sectional area 7.85 × 10−5 m2

β12 Discharge coefficient of 10mm valve A orifice between tank 1 and tank 2 0.25

β1 and β2 Discharge coefficient of valve B and C orifice 0.25

g Gravitational constant 9.80ms−2

Liquid level sensors 0 to 10V DC output (0 to 250 mm height)

Pump flow sensors 0 to 10V DC output (0 to 4 400 cm3/min)

3 System identification and modelling

The non-linear dynamic equations of the CTS in Fig. 1

are determined by relating the flow Qi into the tank to the

flow Qo leaving through the tank valves. Applying the mass

balance of flow equation of the tank, it is possible to write[3]

Qi − Qo = A
dh

dt
(1)

where A is the cross-sectional area of the tank, and h is

the height of the fluid in the tank. The unit of (1) is ex-

pressed in m3 · s−1. The flow through the valve can also be

expressed as[3]

Qo = δxβxαx

√
2ghx (2)

where αx is the cross sectional area of the orifice, and δx

is the discharge coefficient of the valve. Note that δx takes

into account all fluid characteristics, losses and irregulari-

ties in the system such that the two sides of the equation

balance. In addition, βx is the valve opening expressed as

ratio. At any given time, the heights of fluid in tank 1 and

tank 2 relate to the fluid inlet rates and fluid outlet rates.

Therefore, (1) and (2) can be combined together and apply

to tank 1 and tank 2 in order to respectively derive

A1
dh1

dt
= K1V1(t) − β1α1

√
2gh1±

β12α12

√
(2g(h1(t) − h2(t))) (3)

A2
dh2

dt
= K2V2(t) − β2α2

√
2gh2±

β12α12

√
(2g(h1(t) − h2(t))) (4)

where A1 and A2 are the cross sectional areas of tanks, h1

and h2 are the fluid levels of the tanks. K1 and K2 are re-

spective constants of the pumps and the units are expressed

in m3s−1V−1. Subscripts 1 and 2 refer to tanks 1 and 2, re-

spectively. The discharge coefficient of the valve takes into

account the fluid characteristics, losses and irregularities in

the system such that the two sides of the equation balance

and cancel out. The rest of the parameters are given in

Table 1. Fig. 2 shows the Simulink representation of the

MIMO coupled tank equations, where input 1 is u1, input

2 is u2, output 1 is h1 and output 2 is h2. This represen-

tation of the plant will be used in simulation to test the

NMPC algorithm.

System identification techniques are used to predict the

behaviour of the CTS using the raw measured input out-

put data. Three sets of different input-output data of 2 445

sample each were collected from real open loop practical ex-

periments on the MIMO coupled tank system with a sam-

pling rate Ts of 0.2 s. Figs. 3 (a)–(c) show the three data

sets collected for analysis. These are crucial plant details

for system identification stage. These samples of data were

collected and obtained in such a way as to show the clear

differences in the two output variables, the fluid filling up

and draining processes of the two output variables.
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Fig. 2 MIMO coupled tank system in SimulinkR© design

Fig. 3 Data collected for analysis

3.1 Wavelet neural network (WNN) for
modelling of the CTS

The WNN has wavelets functions in the hidden layer

which is also referred to as a wavelet layer. Training of

a WNN involves finding the unknown weights between in-

put to hidden layer (WIji), hidden to output layer (WOkj),

translation factor (bj) and dilation (expansion) factor (aj).

For further details of WNN, the intended reader is referred

to [40]. In this work, a Morlet wavelet ϕx is selected as a

mother wavelet. The wavelet ϕx is expressed in (5) and is

used as the activation function for the neurons in the hidden

layers of the WNN.

ϕ(x) = cos(1.75x) × e−
x2
2 (5)

where 1.75 is the modulation factor and x is expressed as

x =

L∑

i=1

(WIjiX
n
i − bj)

aj
. (6)

A wavelet transform allows exceptional localisation in the

time domain via translation (a shifting process) and also in



160 International Journal of Automation and Computing 12(2), April 2015

the frequency domain via dilation (a scaling process) of the

mother wavelet. The effect of this shifting and scaling pro-

cess is to produce a time-frequency representation of the

signal. The wavelet basis functions are shifted in time do-

main to maintain the same number of oscillations and its

frequency scaled in amplitude to maintain energy. Owing to

their capability to localise in time, wavelet transforms read-

ily lend themselves to non-stationary signal analysis. The

architecture of an MIMO WNN is shown in Fig. 4, where

the inclusion of wavelet activation functions in the hidden

layer increases the number of unknown in WNN training

compared to a traditional ANN. An initial heuristics study

was conducted to ascertain the optimal number of param-

eters of the WNN, which is represented in a non-linear

auto-regression with exogeneous, inputs (NARX) form of

ymodel = f(h2(t−1), h2(t−2), h1(t−1), h1(t−2), u1(t), u1(t−
1), u2(t), u2(t−1)), where f(·) is an unknown complex non-

linear function. Here, 2 hidden neurons with two input and

two output delays, which give a total of 24 unknown param-

eters in the WNN structure, were chosen after many initial

trials of different values and configurations. The training

data set consists of two sequences of vectors, which is the

total number of samples of input sequences u1 and u2 and

measured process outputs h1 and h2. These are arranged

in a regressed form of the specified number of two-input

two-output delay feedback. The aim here is to create a

WNN model by finding the optimised unknown parameters

as expressed in (7), where the WNN model output is ymodel.

ymodel(t) =

N∑

j=1

P∏

i=1

wiϕi +

S∑

i=1

Q∏

o=1

netiwo (7)

where neti is the net value of each of the hidden neurons i.

The term δϕx
δx

in (8) is the derivative of (5). This will be

used as part of the terms for calculating the partial deriva-

tives of the error ε functions in (9).

∂ϕ(x)

∂x
= −{

xcos(1.75x) + 1.75sin(1.75x)
} × e

x2
2 . (8)

The partial derivatives of the unknown weights WIji,

WOkj , bj and aj are calculated in (9) by using a conjugate

stochastic gradient method:

∂ξ

∂WIji
=

1

N

N∑

n=1

S∑

k=1

{
(Dn

k − Y n
k ) × WOkJ × ∂ϕ(x)

∂x

Xn
i

aj

}

∂ξ

∂WOkj
=

1

N

N∑

n=1

(Dn
k − Y n

k ) × ϕ

{∑L
i=1(WIjiX

n
i − bj)

aj

}

∂ξ

∂bj
=

1

N

N∑

n=1

S∑

k=1

(Dn
k − Y n

k ) × WOkJ × ∂ϕ(x)

∂x
× 1

aj

∂ξ

∂aj
=

1

N

N∑

n=1

S∑

k=1

(Dn
k − Y n

k ) × WOkJ×

∂ϕ(x)

∂x
×

{∑L
i=1(WIjiX

n
i − bj)

a2
j

}

(9)

where ξ is the partial derivative of the error, N is the num-

ber of samples to be trained, S is the number of outputs,

L is the number of regressed inputs in the WNN structure.

In addition, D in (9) refers to ymodel while Y is used to

represent ytarget. The partial derivatives are subsequently

used to update the unknown weights using the formulae:

WIii+1
ji = WIii

ji − ηjj × ∂ξ

∂WIii
ji

WOii+1
kj = WOii

kj − ηjj × ∂ξ

∂WOii
kj

bii+1
j = bii

j − ηjj × ∂ξ

∂bii
j

aii+1
j = aii

j − ηjj × ∂ξ

∂aii
j

. (10)

Fig. 4 Structure of a conventional MIMO WNN
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The training of the feed forward WNN is based on the

minimisation of the error between the model and the target

as shown below:

MSE =
N∑

n=1

S∑

k=1

(ymodel
n
k − ytarget

n
k )2

N
=

N∑

n=1

en2

N
. (11)

During the training process, the validation process is con-

stantly carried out. The WNN is initially trained using the

stochastic conjugate gradient method and the training stops

immediately when the validation model error value starts

to increase. The optimal weight derived from this stage is

used to generate an initial 100 population for a GA, which

was run for 500 generations to obtain the optimal values

of the unknown parameters of the WNN. This is a case of

non-linear MIMO system, which is more challenging than

most recently reported SISO in literature[8, 18, 28, 41], and

the training approach was adopted for the following rea-

sons in order to avoid the problem of being trapped in a

local minimum solution. Moreover, it was shown after some

heuristic study that the proposed is a faster approach. The

ANN model is also obtained in a similar manner for bench-

marking purpose.

3.2 Modelling results

The results of the modelling are given in Table 2. The

mean square errors (MSE) for both ANN and WNN are

calculated using (11). The MSEs were calculated for the

training, validation and the test data. WNN gave lower

MSEs as compared to ANN in all the three data collected.

The means and the variances of the two-input signals for

the three data samples used to excite the real plant are

also given in Table 2. Figs. 5 and 6 give the characteristics

and performance modelling results of ANN and WNN, re-

spectively. Figs. 5 (a) and 6 (a) are the plots of both real

plant output and the model output for the first output and

their prediction errors while Figs. 5 (b) and 6 (b) are sim-

ilarly the plots of both real plant output and the model

output for the second output and their prediction errors.

These are the one step ahead prediction generated by both

derived models. Their MSEs values are already given in

Table 2. Furthermore, Figs. 5 (c), 5 (d), 6 (c), and 6 (d) are

the plots of the auto-correlation and the cross-correlation

model results. Figs. 5 (c) and 6 (c) represent the first output

while Figs. 5 (d) and 6 (d) show the second output results

for the ANN and WNN models, respectively. For the auto-

correlation results, the ANN model results in Figs. 5 (c) and

5 (d) are the auto-correlation coefficients graphs of the pre-

diction errors for both outputs 1 and 2, respectively. They

do not have any value close to zero or within 10% confi-

dence intervals. However, the auto-correlation coefficient

of the WNN prediction errors in Fig. 6 (c) (outputs 1) and

Fig. 6 (d) (output 2) have 50% more zero values in the 10%

confidence intervals than the ANN model. This is a measure

of the validation of the network performance and it gives the

indication of how the prediction errors are related in time.

For a perfect prediction model using the auto-correlation

function, there should only be one non-zero value which

should occur at the zero lag. This would mean that the

prediction errors were completely uncorrelated with each

other.

For the cross-correlation results, both the ANN and

WNN cases have their cross-correlation coefficients inputs

fall with the confidence intervals. Also, for a perfect pre-

diction model using the cross-correlation function, all of the

correlations should be zero. Some initials heuristics trials

were carried out which indicated that the model results will

be admissible if the error correlations fall within the 10%

confidence interval boundaries around zero. Therefore in

this paper, the derived models that fall within the speci-

fied confidence intervals range performed excellently in the

NMPC strategy. The aim of the correlation results is to

make sure that the model is so good for prediction purpose

that there would not be correlation within the prediction

errors.

4 Non-linear control strategy for the

CTS

NMPC is an advanced control strategy in which the cur-

rently manipulated control input applies to the real plant.

A finite prediction horizon (PH) open-loop optimal control

problem is derived by obtaining a real time solution online

at each sampling instant using a non-linear MIMO model

for prediction. The optimisation yields an optimal control

sequence and the first control in this sequence is applied to

the plant. A schematic picture of the whole control strat-

egy is shown in Fig. 7. The predictor task is to predict the

plant output based on the regressed inputs at every instant.

This is done for different control moves within a prediction

range. The value of the control horizon (CH) should always

be less than the PH. The model predictive control strategy

was implemented by using a GA in real time to solve and

minimise the complex optimisation cost function (12) at ev-

ery sampling time. This is used to determine the best or

optimum control inputs that give the least error between

Table 2 Modelling results for both ANN and WNN

Performance function (outputs) Data one (training) Data two (validation) Data three (testing)

ANN-MSE (m2)[15] 1.6395×10−6 7.0135×10−6 2.8588×10−5

WNN-MSE (m2) [Proposed] 9.1331×10−8 9.1679×10−8 1.7239×10−7

Inputs Input 1 Input 2 Input 1 Input 2 Input 1 Input 2

Mean (V) 4.0851 5.0091 4.8336 4.9532 4.5705 5.3594

Variance (V) 9.1842 6.9189 11.5329 14.3033 11.0491 14.5067
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the predicted output and the trajectory reference signals

and minimise the controller efforts while the predictor is

the non-linear WNN model.

J(θ) =

P∑

i=1

P∑

j=1

|wy
i+1(yj(k + i + 1|k) − rj(k + i + 1))|2+

nu∑

j=1

|wΔ
i,juΔuj(k + i|k)|2). (12)

The value J(θ) on the left-hand side (LHS) of (12) is a

one dimensional vector result of the solution of optimisation

problem using a GA. The length of vector J is equivalent

to the population size (PS) in the GA algorithm. The task

is to select the particular population chromosomes from the

optimised vectors (PS × (number of outputs × CH)) that

corresponds to the entry that has the least error value in

vector J(θ) at every sampling instant. The first value in

the control horizon of each output is then applied to the

plant. In addition, the first summation on the right-hand

side (RHS) of (12) represents the error in prediction value

and the reference valve while the second summation term

denotes the change in the controller actions which are the

previous and current manipulated variables (uj+1 − uj).

These are then calculated from the GA optimised manip-

ulated variables. These parameters are the bounded ran-

domly generated population in the GA. The values rj and

yj stand for the reference value and plant output, respec-

tively while, wi stands for the weight value. The parameters

in (12) that represent the randomly generated population in

the GA are the manipulated variables in vector form, which

represents the controller actions from pump 1, and pump

2, respectively. In order to deal with real-time implemen-

tation constraints, termination measures were implemented

to abort the optimisation once a defined sampling time is

passed. This invariably leads to convergence to some sub-

optimal/optimal solution within the sampling time period.

Fig. 5 ANN model results



K. Owa et al. / A Wavelet Neural Network Based Non-linear Model Predictive Controller for a Multi-variable · · · 163

Fig. 6 WNN model results

Fig. 7 Structure of the NMPC strategy with GA optimisation
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4.1 Genetic algorithm

The GA is a stochastic global search method that op-

erates on a population of potential solutions applying the

principle of survival of the fittest to evolve a better candi-

date to a solution. Here a GA is used to obtain a sequence

of optimal manipulated variable control signals that oper-

ate the plant. The flowchart for the process involved in

the genetic algorithm is shown in Fig. 8. In this work, real-

valued genes are used to represent population chromosomes

as they provide faster optimisation as real-valued genes use

less memory and there is no need to convert chromosomes

to phenotypes before each function evaluation. Initial pop-

ulations are generated randomly between the range of 0 and

10V. This population is created so that the difference be-

tween consecutive CHs is not more than a prescribed value

of 1.5 V. These are constraints limiting the range of control

signal whereas the difference between the individual con-

trol inputs into the plant limits the gradient of the control

signal. In the case of a minimisation problem, the best

individuals will have the lowest numerical value of the as-

sociated objective function. Individuals are assigned fitness

values according to their ranks in the population in each

generation before selections are made. The fitness value is

calculated using

fitness =
1

J + 1
. (13)

Fig. 8 Flowchart of a genetic algorithm procedure

Mutation brings variations, diversities and changes in the

genetic structures of the overall population while crossover

process interchanges the genetic structure of two or more

chromosomes.

The modified NMPC algorithm is written in such a way

that during the constrained optimisation process, the best

pairs of CH vector (population) is constantly retained so

that the best population is not destroyed. The best pop-

ulation is constantly preserved from one generation to the

other. After some heuristic trials, 0.5 and 0.05 were respec-

tively chosen for crossover and mutation ratios. The GA

optimisation parameters (PS = 10, PH = 5, CH = 2 and a

generation = 20) and model (neurons=2, and delays=2)

parameters are carefully chosen in order to guarantee sub-

optimal/optimal solution at every sampling instant during

the NMPC strategy.

5 Results and discussion

The result of the design of an ANN model in previous

work[15] and the proposed WNN model are given in Table

2. The MSE is used as the performance criteria. Two per-

formance indexes are considered here to evaluate the per-

formance of the NMPC strategy: the MSE in (14) and the

average control energy (ACE) in (15). The MSE is the ad-

dition of all the squares of the error differences between the

reference and the plant output for the two outputs divided

by the total number of samples.

MSE =

N∑

j=1

(y1
r
j − y1

p
j )

2 +
N∑

j=1

(y2
r
j − y2

p
j )

2

N
. (14)

In (14), superscripts r and p stand for the reference value

and plant output, respectively, while N stands for the total

number of samples. The average control energy is defined

as the addition of the squares of all the manipulated vari-

able inputs (U1 and U2) to the plant divided by the total

number of samples and expressed as

ACE =

N∑

j=1

U1
2
j +

N∑

j=1

U2
2
j

N
. (15)

The performance of the NMPC strategy are analysed in

simulation with Simulink model as plant. All the NMPC

strategy results are given in Table 3.

Table 3 NMPC strategy results for both ANN and WNN

Simulation Real time

Scenarios ANN WNN ANN WNN

All heights (Figs. 9 and 10)
MSE (m2) 0.0049 0.0046 0.0036 0.0022

ACE (V2) 82.41 78.26 55.01 65.92

Abnormal condition at lower height (Figs. 11 and 12)
MSE (m2) 0.0123 0.0122 0.004 0.0037

ACE (V2) 10.45 9.96 135.41 127.88

Abnormal condition at upper height (Figs. 13 and 14)
MSE (m2) 3.1×10−4 8.2×10−5 0.0048 1.4×10−4

ACE (V2) 67.53 90.72 76.13 84.46
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Fig. 9 gives the response and the comparisons of the

NMPC strategies for the simulation of both ANN and

WNN, respectively. These show the ability to track all dif-

ferent heights up to the maximum of 0.25 m. The MSE

obtained for Fig. 9 (a) is 0.0049 m2 (ANN) and Fig. 9 (b) is

0.0046 m2 (WNN) while their ACE values are 82.41 V2 and

78.26 V2, respectively.

The WNN-NMPC strategy has a better energy usage and

less MSE as compared to that of ANN-NMPC. In addi-

tion, the WNN-NMPC strategy is able to track precisely

the maximum height without tank spillage unlike the ANN-

NMPC strategy. These results show that the WNN-NMPC

requires lower average control energy in order to pump and

control different heights. The same experiment is performed

in real time and the response result is shown in Fig. 10. The

real time result for the WNN-NMPC strategy is also bet-

ter as in the simulation case. The WNN has lower MSE

of 0.0046 m2 as compared to 0.0049 m2 for ANN. It can

be seen from Table 3 that ANN has a lower ACE value

of 55.01 V2 than 65.92 V2 for WNN. The rational reason

for this ACE result is that ANN-NMPC strategy required

lower work to be expended in order to carry out the inef-

ficient and imprecise trajectory tracking unlike in the case

of the WNN-NMPC strategy.

The plant is further subjected to two different abnor-

mal scenarios by increasing the interaction between the

two tanks and the opening of both outlet valves for the

two tanks. This creates a different scenario as compared

with the data obtained for system identification. In the

first scenario, fluid is first pumped to the levels 0.25 m and

0.20 m for tanks 1 and 2, respectively. From the start

of the experiment, three valves A, B and C are all left

fully opened to the maximum and the NMPC strategy

was used to control the lower heights of the fluid in both

tanks. Figs. 11–12 ((a) and (b)) show the performances of

the NMPC strategies for both simulation and real time im-

plementation. It can be observed that the NMPC strategy

was able to control the low heights with both models. In this

case, WNN also has lower values for both MSE (0.0122 m2)

and ACE (9.96 V2) than ANN with MSE (0.0123 m2) and

ACE (10.45 V2).

In the second scenario, the tanks contain initial pumped

fluid as done previously. From the start of the experiment,

three valves A, B and C are all left fully closed and the

NMPC strategy was used to control the same high height

of the fluid in each tank. Precisely, after 40 s of operation,

valves B and C are fully opened to create abnormal situ-

ation of valves failure. Four seconds later valve A is also

fully opened to give a maximum interaction, which also cre-

ates different dynamics from the previously trained data.

Figs. 13 (a) and (b) show the simulation performances of

the the NMPC strategy with both ANN and WNN mod-

els in the abnormal situation of tracking high height. WNN

has MSE value of 8.2×10−5 m2 and ACE of 90.72 V2 with a

better performance than ANN. WNN-NMPC strategy was

able to maintain the same initial height with WNN but

ANN model has a steady state. In this case, it can be ob-

served from Table 3 that ANN however has a lower ACE of

67.53 V2 than WNN. This is because ANN-NMPC com-

pletely failed to control the level of fluid at the desired

heights. It shows further that the WNN-NMPC strategy

is reliable and robust. This is useful in abnormal situations

like valve malfunctions or total valve failure.

Fig. 9 Simulation of NMPC strategy tracking different heights
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Fig. 10 Real time NMPC strategy tracking different heights

Fig. 11 Abnormal NMPC Strategy scenarios tracking low level in simulation

This same above scenario is implemented in real time.

Figs. 14 (a) and (b) show the real time performances of

NMPC with both ANN and WNN models in the abnor-

mal situation of tracking high height. Just as in the sim-

ulation case, the ANN model could not maintain both the

levels while WNN is able to track the 0.2 m. Both levels are

the same here because of the applied maximum interaction.

The MSE obtained for WNN is 1.4 × 10−4 m2 while ANN

is 0.0048 m2. The ACE obtained for ANN is less because it

is doing lesser useful work as explained already in the sim-

ulation case. This also shows that WNN performed better

than ANN in both simulation and real time case.

Moreover, the results indicate that the WNN model not

only perform better than the ANN model but also can op-

erate effectively in abnormal situations which can arise at

any time because of plant degradations, valve malfunctions

and equipment wear and tear. This is one of the benefits

of using non-linear models even though the NMPC strat-

egy is not working adaptively. The results given in the

abnormal scenarios show that the non-linear model predic-

tive controller can adapt easily as it takes action based on

the present situation. The NMPC can adopt easily as the

real system is not a 100% match to the simulated system

but results confirm that robust control is achieved in this
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Fig. 12 Abnormal NMPC strategy scenarios tracking low level in real time

Fig. 13 Abnormal NMPC strategy scenarios tracking high level in simulation

Fig. 14 Abnormal NMPC strategy scenarios tracking high level in real time



168 International Journal of Automation and Computing 12(2), April 2015

case as well. The paper considers different scenarios to take

into account of abnormal situations. Real time application

of GA helps to achieve optimised controller parameters in

the non-linear case, which is difficult to obtain by other

means.

6 Conclusions

This paper has demonstrated a novel model based WNN-

NMPC strategy for an MIMO CTS and implemented both

in simulation and in real time. A system identification ap-

proach was employed by training raw input-output data ob-

tained from open loop experiment. In order to handle the

difficulties in network training, a global search stochastic

wavelet conjugate algorithm is employed for initial network

training to give a good initial starting weight for training

a GA. This is a case of non-linear MIMO system, which is

more challenging than most recently reported SISO in the

literature, and this training approach was deployed in order

to avoid the problem of being trapped in a local minimum

solution. Initial heuristic results showed that the proposed

two-stage training is a faster approach. The obtained reli-

able non-linear model of the CTS showed the effectiveness of

the system identification procedure which allows for a wide

range of prediction capabilities. Results further showed that

the single WNN model is well suitable to perform in all op-

erating regions of control and the capabilities of handling

disturbance rejection. It was also shown that WNN model

could perform even at abnormal conditions especially in

cases of plant degradation, valve malfunctions, and equip-

ment wear. This shows the strength of the WNN non-linear

model in tackling difficult MIMO problems especially when

properly trained without the use of adaptive models. Fur-

thermore, the whole NMPC strategy is able to overcome

the challenges of using GA for RTO and real time applica-

tions for real-time set point tracking. This is also evident

in that the sampling time of 0.2 s is smaller compared to

most reports in cited literature. The whole strategy is well

suited for chemical processes with varying interaction rates.
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