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Abstract: This paper presents a hierarchical simultaneous localization and mapping (SLAM) system for a small unmanned aerial

vehicle (UAV) using the output of an inertial measurement unit (IMU) and the bearing-only observations from an onboard monocular

camera. A homography based approach is used to calculate the motion of the vehicle in 6 degrees of freedom by image feature match.

This visual measurement is fused with the inertial outputs by an indirect extended Kalman filter (EKF) for attitude and velocity

estimation. Then, another EKF is employed to estimate the position of the vehicle and the locations of the features in the map. Both

simulations and experiments are carried out to test the performance of the proposed system. The result of the comparison with the

referential global positioning system/inertial navigation system (GPS/INS) navigation indicates that the proposed SLAM can provide

reliable and stable state estimation for small UAVs in GPS-denied environments.

Keywords: Visual simultaneous localization and mapping (SLAM), bearing-only observation, inertial measurement unit, small un-
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1 Introduction

The navigation system for small unmanned aerial vehi-
cles (UAVs) is typically composed of low-cost inertial sen-
sors and a global positioning system (GPS) receiver due to
the limited onboard computational capability and payload
capacity[1]. The GPS can bound the accumulated error of
the inertial sensors by estimating the absolute velocity and
position of the vehicle. However, in many aerial applica-
tions, the UAV is required to perform a task within the
GPS-defined environment, such as indoors, urban canyons.
GPS is also easy to be disturbed by the weather during the
flight. For the autonomy of small UAVs in GPS-denied en-
vironments, other sensors are required to be fused with the
inertial measurement unit (IMU) for determination of the
vehicle state without any priori information of the flight en-
vironment. This is known as the simultaneous localization
and mapping (SLAM) system, with which the vehicle can
build an online map and estimate its location in 6 degrees
of freedom in that map.

Vision seems a good alternative to the GPS for the au-
tonomous navigation of small UAVs in terms of weight, cost
and information. Visual sensors have been used in surveil-
lance tasks of UAVs for years[2]. They have also played
an important role in autonomous navigation and control of
small UAVs[3]. Performing the SLAM with the visual mea-
surement has received a lot of attention over the past few
years[4, 5]. A visual 3-D SLAM was developed for UAVs
in partially structured environments[6]. In this algorithm,
the vehicle is modeled as a rigid body with uniform mo-
tion and the acceleration is considered as the system noise.
Another proposed visual SLAM system takes only natural
landmarks as observations[7]. In this system, a homography
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based approach is used to estimate the motion of the UAV
and a novel landmark initialization method is developed.

The fusion of IMU and visual sensors is usually used in
autonomous robots[8−10]. In these implementations, the in-
ertial measurement is usually used as the input of the pro-
cess model in the filter. A robust inertial SLAM algorithm
using bearing-only observations was developed[11,12]. This
extended Kalman filter (EKF) based SLAM is able to esti-
mate the location of the vehicle in 6 degrees of freedom and
3-D positions of the features in the environment. Monocu-
lar vision is usually taken as the visual sensor for the SLAM
of small UAVs. For these bearing-only sensors, the initial-
ization of features in 3 dimensions is considered as a difficult
problem. Davison et al.[13] showed a delayed initialization
method for bearing-only SLAM. It waits until the observa-
tions have enough parallax to determine the 3-D position of
a feature and include it into the filter. An undelayed initial-
ization method using the inverse depth of features relative
to the camera locations from which they are first viewed was
proposed[14]. In this algorithm, once the depth estimation
of a feature is sufficiently accurate, the inverse depth form
can be converted into the Euclidean form safely. The abso-
lute scale of the monocular SLAM can also be estimated by
fusion of inertial and visual measurements[15]. Besides, the
observability and consistency of the EKF based SLAM were
analyzed[16−18]. The research of the airborne visual SLAM
also involves the multi-UAV SLAM[19] and visual SLAM for
indoor aerial vehicle[20].

In this paper, we will provide a monocular visual SLAM
for a small UAV in GPS-denied environments. A hierar-
chical structure is employed in this system. A homography
based method is adopted to estimate the motion of the ve-
hicle by a single onboard camera. Then, the velocity and
the attitude are estimated by the fusion of the inertial and
visual measurements. Another EKF takes the velocity as
the input and estimates the positions of the UAV and land-
marks. Since the monocular vision is a bearing-only sensor,
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an inverse depth algorithm is applied in the undelayed fea-
ture initialization. The main contribution of this paper
is the derivation of the hierarchical SLAM system with
bearing-only observations for small UAVs. The perfor-
mance of this system will be tested by both simulations
and experiments. The preliminary work can be found in
[21].

2 Feature detection and match

In image processing, a scale invariant feature transform
(SIFT) algorithm[22] is used for feature detection. The fea-
tures are described with normalized descriptors, which are
invariant to scale, rotation and translation. A fuzzy-based
threshold adjustment method[23] is proposed to stabilize
the number of the features in one image regardless of the
change of the scene. This method can reduce the compu-
tational complexity without any decrease of the accuracy.
The feature match is implemented by the calculation of
the Euclidean distance between descriptors. A fast nearest-
neighbor algorithm is applied to the match. A matched pair
is accepted if and only if the distance of the two descriptors
is the shortest, less than a threshold and shorter than 0.8
times the distance of the second nearest neighbor. The bi-
directional match approach is also adopted to improve the
robustness of the match.

The features are used to calculate the motion of the vehi-
cle for attitude and velocity estimations. A contrast thresh-
old is applied to the SIFT algorithm to eliminate feature
candidates with low contrast, because they are easy to be
disturbed by the image noise. The remaining features are
used in the homography calculation. On this basis, parts of
the features whose contrasts are higher than another thresh-
old (usually at least twice than the contrast threshold in
our experiments) are considered as landmarks in the SLAM
system and used in the position estimation and mapping.
Fig. 1 illustrates the SIFT features of an aerial image. It
can be seen that the features for the position estimation
and mapping compose a part of the whole feature set for
the homography calculation and motion estimation. Simi-
larly, the feature match is also used in two items in this sys-
tem: The homography calculation (attitude and velocity es-
timation) and the data association (position estimation and
mapping). The main difference is that the homography cal-
culation requires feature match in consecutive frames, while
the data association is the match between the features in
the map and observations. Besides, all the features in our
algorithm are supposed to be stationary during the whole
experiment. Moving features will be eliminated by random
sample consensus (RANSAC) algorithm in the homography
calculation and data association in the SLAM.

3 Attitude and velocity estimations

The attitude and velocity estimations of the SLAM are
described in this section. A homography based method is
used to calculate the motion of the vehicle in 6 degrees
of freedom by the corresponding features in consecutive
frames. Then, the visual measurement is fused with the
output of the inertial sensors by an indirect EKF. State

update is propagated by the output of the IMU at 50Hz.
The measurement update starts each time when the visual
computer finishes the motion estimation. The flowchart of
the whole process is shown in Fig. 2.

(a) For the motion estimation

(b) Landmark candidates in the SLAM

Fig. 1 SIFT features

Fig. 2 The flowchart of the motion estimation

3.1 State description and propagation

The system state for the attitude and velocity estima-
tions is defined as

Xa = (vn, q, ba, bω)T (1)
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where vn is the velocity of the vehicle in the world coor-
dinates, q is the attitude of the vehicle in quaternions, ba

and bω are the bias of the three-axis accelerometers and the
three-axis gyroscopes, respectively. The bias in the state
can provide continuous estimation of the current drift of
the IMU to compensate the time-varying bias effect. In
this paper, the navigation coordinates are the same as the
world coordinates. Suppose that the installation of IMU
and GPS antenna has been compensated, the inertial pro-
cess model in the continuous state-space form is expressed
as

Ẋa(t) = fa(Xa(t), U(t), t) + G(Xa(t), t)wa(t) (2)

where

G =




−Cn
b (q) O3×3 O3×3 O3×3

O4×3 −1

2
Z(q) O4×3 O4×3

O3×3 O3×3 I3×3 O3×3

O3×3 O3×3 O3×3 I3×3




fa =




Cn
b (q)āb + gn

1

2
Ω(ω̄b)q

O3×1

O3×1




wa =




na

nω

nba

nbω




āb = ab
m − ba

ω̄b = ωb
m − bω.

Cn
b is the direction cosine matrix (DCM) from the body

coordinates to the world coordinates, gn is the gravity vec-
tor in the world coordinates, as the system control vector,
U(t) = (ab

m, ωb
m) are the outputs of the accelerometers and

gyroscopes, and wa(t) ∼ N (0, W ) represents the process
noise of the system. The attitude equality in the form of
quaternion is written as

q̇ =
1

2
Ω(ω)q =

1

2
Z(q)ω (3)

where

Ω(ω) =




0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0




Z(q) =




−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0




Ω = (ω1, ω2, ω3)
T

q = (q0, q1, q2, q3)
T.

The error state vector is applied in this filter. The state
model is linearized and discretized as

δXa
k = Xa

k − X̂a
k = Φk,k−1δX

a
k−1 + W a

k−1. (4)

In (4), X̂a
k is the estimation of the state, Φk,k−1 ' I +

∇fx∆t, where ∇fx is the Jacobian of the state transition
function with respect to the state, and ∆t is the sampling
time interval of the IMU. The covariance matrix of the
equivalent white noise sequence W a

k is derived as

Qa
k ' (Q̄ + ΦQ̄ΦT)∆t

2
(5)

where Q̄ = GWGT. Then, the state propagation is written
as

X̂a
k,k−1 = X̂a

k−1 + fa(X̂a
k−1)∆t (6)

P a
k,k−1 = Φk,k−1P

a
k−1Φ

T
k,k−1 + Qa

k−1. (7)

3.2 Homography based motion estimation

Homography is used to indicate the transformation be-
tween two images, including scale, rotation and translation.
It is defined as

λm̃2 = Hm̃1 (8)

where m̃1 and m̃2 are homogeneous positions for the cor-
responding features of two consecutive frames in the pixel
coordinates, H is the homography matrix, and λ is a scale
factor. The random sample consensus approach[24] is em-
ployed to eliminate the erroneous feature matches. The
homography is calculated by a singular value decomposi-
tion (SVD) method with the feature pairs that pass the
RANSAC test. An M -estimator algorithm is used to im-
prove the robustness of the homography estimation.

Suppose that a small UAV with an onboard downward-
looking camera is flying, and m1 and m2 are the two projec-
tions in the camera coordinates of a fixed point P in plane
Π, as shown in Fig. 3. R12 and t12 are defined as the rota-
tion matrix and the translation vector, respectively, which
are both described in the camera coordinates of position 1
to express the motion of the vehicle. The relationship of
the two projections is expressed as

m2 = R12(m1 + t12) = R12

(
I +

t12n
T

d

)
m1 (9)

where d is the Euclidean distance between position 1 and
the plane Π, and n is the unit normal vector of the plane.
The calibrated homography is defined as

Hc = A−1HA = R12

(
I +

t12n
T

d

)
(10)

where A is the camera intrinsic matrix which can be cali-
brated accurately. Equality (10) indicates the relationship
between the homography and the motion of the camera.
R12 and t12 can be obtained by the SVD of the calibrated
homography Hc

[25]. Since the transformation between the
camera coordinates and the body coordinates is known ac-
curately before the flight, the motion of the camera esti-
mated by homography calculation can be converted to the
motion of the UAV.
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Fig. 3 Two views of the same fixed point in a plane

3.3 Measurement update

The DCM from the body coordinates at position 2 in
Fig. 3 to the navigation coordinates is derived as

Cn
b2 = Cn

b1C
b
cRT

12C
c
b (11)

where Cn
b1 is the DCM from the body coordinates at posi-

tion 1 to the navigation coordinates, which can be calcu-
lated from the state of this filter at that moment, Cb

c and
Cc

b are transformation matrixes between the camera coordi-
nates and the body coordinates. The attitude of the vehicle
is calculated from Cn

b2 and used as a measurement of the
filter. The measurement model is written as

Z1,k = H1X
a
k + V1,k (12)

where
H1 = [O4×3 I4×4 O4×3 O4×3]

Z1 = q

V1 ∼ N (0, R1).

Then, the attitude measurement update is derived as

K1,k = P a
k,k−1H

T
1 (H1P

a
k,k−1H

T
1 + R1)

−1 (13)

X̂a
k = X̂a

k,k−1 + K1,k(Z1,k −H1X̂
a
k,k−1) (14)

P a
k = (I −K1,kH1)P

a
k,k−1. (15)

Suppose that two consecutive images are taken and cal-
culated at time k−m and k, respectively. The time interval
between these two calculations is about m steps of the state
propagation. The average velocity of the vehicle in the nav-
igation coordinates during the time interval is derived as

v̄n
k−m,k =

Cn
b1C

b
cR12t12

m∆t
. (16)

Since the velocity in the filter state is the instantaneous ve-
locity, the above average velocity cannot be introduced into
the filter directly. An assumption is made that during a
short time interval in the flight, the velocity of the vehicle
does not fluctuate remarkably. Then, the average velocity
during time k −m and time k can be approximated as the
instantaneous velocity at time k − m

2
as

vn
k−m

2
≈ v̄n

k−m,k. (17)

An example of the relationship between the average ve-
locity and the instantaneous velocity is shown in Fig. 4. It
can be observed that the above assumption is reasonable if
the velocity is smooth. We suppose that the small UAV is in
a stable flight and the above assumption is always tenable.

It is noteworthy that the velocity measurement at time
k− m

2
is obtained at time k under the above assumption. A

delay-based measurement update approach is proposed for
the velocity measurement update. The delay-based mea-
surement model for the velocity estimation is defined as

Z2,k = H2X
a
k + V2,k (18)

Fig. 4 Relationship between the average velocity and the in-

stantaneous velocity

H2 = [I3×3 O3×4 O3×3 O3×3]

Z2 = vn

V2 ∼ N (0, R2).

The velocity measurement update is derived as

K2,k = P a
k,k−1H

T
2 (H2P

a
k,k−1H

T
2 + R2)

−1 (19)

X̂a
k = X̂a

k,k−1 + K2,k(Z2,k −H2X̂
a
k−m

2
) (20)

P a
k = (I −K2,kH2)P

a
k,k−1. (21)

4 Position estimation and mapping

This section presents the position estimation and map-
ping of the SLAM. No prior information of the scene is
required in this EKF based filter, which takes the obser-
vation of the features as the measurement. The velocity
estimated in Section 3 is used as the input of the process
model, and the attitude estimation provides the DCMs be-
tween the navigation coordinates and the body coordinates.

4.1 Process model

The vehicle position and a map with the feature locations
of the environment are estimated using relative information
between the vehicle and each feature. The state vector is
defined as

Xb = (pn, Y1, · · · , Yn)T (22)

where pn is the vehicle position in the navigation coordi-
nates and Yi, i = 1, · · · , n is the location of the i-th feature



C. L. Wang et al. / Bearing-only Visual SLAM for Small Unmanned Aerial Vehicles in GPS-denied Environments 391

in the navigation coordinates. The dynamic evolution of
the position is given as

pn
k = fb(Xa

k−1, p
n
k−1) + wb

k−1 =

pn
k−1 + vn

k−1∆t + wb
k−1

(23)

where vn is the velocity estimated in Section 3 and wb is
the Gaussian noise as wb ∼ N (0, Pv). Feature locations are
considered to be stationary and the process model of the
i-th feature is given as

Yi,k = Yi,k−1. (24)

It can be seen from (23) and (24) that the state transition
function is linear. This is favorable for the computational
complexity and stability of the filter.

4.2 Observation model

The onboard camera is able to produce relative bearing-
only observations to the features in the map. As multiple
features might be observed at the same time, the observa-
tion is defined as

Z3 = (zi, · · · , zj)
T (25)

where zi is the observation of the i-th feature in the pixel
coordinates, which is expressed as

zi,k = hi(X
b
k, k) + vi,k (26)

hi =

[
u

v

]
=




fuxc

zc
+ u0

fvyc

zc
+ v0


 (27)

where (u, v)T is the location of the feature in the pixel co-
ordinates, vi is the measurement noise as vi ∼ N (0, Ri),
fu, fv, u0 and v0 are the intrinsic parameters of the camera,
and pc = (xc, yc, zc)T is the location of the feature in the
camera coordinates. If the installation error of the camera
to the vehicle has been compensated, then pc can be written
as

pc = Cc
bCb

n(pn
i − pn) (28)

where Cb
n is calculated from the attitude estimation in Sec-

tion 3, pn and pn
i are the positions of the vehicle and the

i-th landmark in the map in the navigation coordinates,
respectively.

4.3 Estimation process

The vehicle position is predicted using (23). The state
covariance is propagated as

P b
k,k−1 =[

F b
pnPv,k−1(F

b
pn)

T
+ F b

xaP a
k−1(F

b
xa)

T
Pvf,k−1

Pfv,k−1 Pf,k−1

]

(29)
where F b

pn and F b
xa are the Jacobians of (23) with respect

to pn and Xa, Pv and Pf are the variances of the vehicle
and the feature set, Pvf and Pfv are their covariances.

Suppose at time k, there are n features in the state and
that the i-th and j -th features are observed by the camera.
The measurement update is derived as

K3,k = P b
k,k−1H

T
3 (H3P

b
k,k−1H

T
3 + R3)

−1 (30)

X̂b
k = X̂b

k,k−1 + K3,k(Z3,k −H3X̂
b
k,k−1) (31)

P b
k = (I −K3,kH3)P

b
k,k−1 (32)

where

R3 =

[
Ri 0

0 Rj

]

H3 =




∂hi

∂pn

∂hi

∂Y1
· · · ∂hi

∂Yn

∂hj

∂pn

∂hj

∂Y1
· · · ∂hj

∂Yn


 .

Ri and Rj are the measurement covariances of the i-th and
j -th features in the pixel coordinates, ∂h

∂pn and ∂h
∂Y

are the
Jacobians of the measurement function with respect to the
vehicle position and the feature locations, respectively.

4.4 Feature initialization

In the monocular visual system, one bearing-only ob-
servation is insufficient to initialize a position of a fea-
ture in 3 dimensions for the SLAM filter with Gaussian
uncertainty[11]. An inverse depth method is applied to the
undelayed feature initialization[14]. This parameterization
defines the position of a feature by 6 parameters as

Yi = (x0, y0, z0, θ, φ, ρ)T (33)

where p0 = (x0, y0, z0)
T is the position of the camera op-

tical center from which the feature is first observed, θ and
φ are the azimuth and elevation used to define a ray going
from p0 to the feature, and ρ is the inverse distance from
p0 to the feature along the ray. This parameterization is
shown in Fig. 5. (x, y, z)T represents the navigation coordi-
nates with the origin o. The location of this landmark in
the Euclidean coordinates is derived as

pi = p0 +
m(θ, φ)

ρ
(34)

m(θ, φ) =




cos θ cos φ

sin θ cos φ

sin φ


 . (35)

Fig. 5 Inverse depth parameterization
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4.5 Data association

Data association is very important to any SLAM appli-
cation. The association between observations and features
in the map affects the stability of the system directly. Erro-
neous association can decrease the accuracy or even lead to
system collapse. A Mahalanobis distance approach is used
in the data association, which is defined as

r = V TS−1V (36)

where

V = Z3 −H3X̂
b (37)

S = HT
3 P bH3 + R3. (38)

Besides, the descriptor of the SIFT feature is also used to
improve the robustness of the data association. Each SIFT
feature has a unique 128-dimensional normalized descrip-
tor, which is invariant to scale, rotation and translation.
Thus, the descriptor of a new observation is compared with
those of the features in the map. The fast nearest-neighbor
algorithm, described in Section 2, is also used in this sec-
tion.

In our SLAM framework, observation zi is considered as
the correspondence to the j -th landmark in the map if the
following equation is satisfied:

di,j =
√

r2 + d2
SIFT < threshold (39)

where dSIFT is the Euclidean distance between the SIFT de-
scriptor vectors of the observation and the landmark. Only
the observation that passes the above test is considered as
a right association. Although this double check algorithm
might reject correct matches that only pass one test, the
system robustness is improved with erroneous associations
eliminated remarkably.

5 Simulations

5.1 Simulation environment setup

An image-in-loop simulation system is set up to verify
the proposed SLAM, as shown in Fig. 6. A satellite image
taken from Google Earth is loaded as the terrain map of the
flight. The aerial image is simulated by the pixel interpola-
tion with a resolution of 300× 300 in the pixel coordinates.
The sensor data of the gyroscopes and accelerometers are
simulated with white noises and bias. The intrinsic matrix
of the “onboard camera” is designed according to the pa-
rameters of the real one in experiments. The features in the
map are described with their uncertainties in 3 dimensions.
Feature labels are also shown together with the “real-time”
aerial images.

5.2 3D feature initialization

The feature initialization method is analyzed in this sec-
tion. Fig. 7 shows the position errors of a feature during
the first 15 observations and the expected 1-σ uncertain-
ties. When the feature is first observed, the uncertainty is
rather large due to the initial selection of the inverse depth.
The uncertainty converges rapidly after other observations

are obtained. The position error lies within the 1-σ bound
from the beginning to the end and converges with the in-
crease of the observations. After 10 observations, the po-
sition estimation of the feature is stable and the inverse
depth is accurate enough. Then, the feature parameters
are converted from the inverse depth form to the Euclidean
form. No obvious changes can be observed in the feature
position estimation and the uncertainty calculation during
this conversion.

Fig. 6 Image-in-loop simulation system

Fig. 7 The position errors of the feature initialization

5.3 Trajectory test with loop closure

A circle trajectory with a radius of 100m is designed to
test the SLAM system. The UAV flies two laps along the
trajectory with the velocity of 10m/s in the body coordi-
nates, so that there is a loop closure during the flight. The
processing time of this algorithm is about 120 s.

Figs. 8 and 9 are about the attitude and velocity errors
with 1-σ uncertainties, respectively. Both the attitude and
velocity errors are limited within the uncertainty bound
during the whole experiment.

Fig. 10 illustrates the position errors with 1-σ uncertain-
ties. The estimations in the z direction seem to be better
than those in x−y directions in this simulation. It could be
attributed to the unchanged altitude in the designed trajec-
tory, which makes the motion in the z direction much tiny
compared to the motion in x − y directions. The position
errors are small during the first 20 s. Then the estimations
suffer from an accumulated error which is generated by the
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velocity error. The error might drift unboundedly in a few
seconds without the observation of the features. But in the
SLAM system, it is approximately bounded within the 1-σ
uncertainties. Only the error in the x direction from 40 s
to 60 s is outside the bound. The loop closure takes place
at about 60 s. It can be seen that both the errors in the
x and y directions decrease sharply. From this time, the
UAV is in the second lap and a lot of features which are
initialized in the first lap are observed again. Thus, after
the loop closure, the errors keep smaller and stable within
the boundaries. The uncertainty is also convergent.

Fig. 8 The attitude errors in the simulation

Fig. 9 The velocity errors in the simulation

6 Experiments

6.1 System description

The experimental testbed is a radio-controlled model he-
licopter, as shown in Fig. 11. It carries a set of sensors, in-
cluding an Rt 20 differential GPS receiver, an MS5540 baro-
metric altimeter, an ADIS16355 IMU, a three-axis magne-
tometer composed of HMC1052 and HMC1041, and a color

industrial digital camera MV-1300UC mounted vertically
downward at the bottom of the helicopter.

Fig. 10 The position errors in the simulation

Fig. 11 The experimental helicopter testbed

There are four onboard computers in the onboard avion-
ics. DSP TI28335 runs an extended Kalman filter to fuse
the measurement of GPS and inertial sensors to build a
GPS/INS (inertial navigation system) for the helicopter.
ARM LPC1766 is used to guide and output the control
signals to the helicopter, as well as communicate with the
ground station. FPGA EP2C is the data logger and in
charge of the control switching between human pilot and the
autopilot. PC-104 PCM3362 is the vision computer. Dur-
ing the real experiment, the sensor data and the GPS/INS
navigation output are logged by the FPGA and transferred
to the vision computer. The vision computer receives the
above data and records the aerial images simultaneously.
The ground station is used to send the high-level control
commands and differential GPS correction to the helicopter
and receive the flight state of the helicopter, including atti-
tude, velocity and position. The onboard avionics is shown
in Fig. 12.

6.2 Real flight experiment

An experiment is carried out to test the performance of
the proposed SLAM system. During the experiment, the
inertial sensor data is acquired at a rate of 50Hz and the
visual calculation is about 3–4Hz.The improvement of the
visual sampling frequency is able to reduce the error intro-
duced by the assumption in (17). But now the sampling
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frequency of the visual system is limited by the computa-
tional load of the visual algorithm. The SLAM system runs
in an offline mode in this paper. The performance of the
proposed bearing-only inertial SLAM is evaluated by com-
paring with the referential GPS/INS navigation.

Fig. 12 The onboard avionics endcenter

The attitude comparison of the whole flight is shown in
Fig. 13. It can be seen from the yaw estimations of the
vehicle that the small UAV flies about 4 loops in the exper-
iment. The visual measurement does not work during the
takeoff and landing, in which the visual estimation is not
accurate enough due to the rapid change of the aerial im-
ages. The visual measurement takes effect from 60 s to 240 s
in this experiment. During this period, GPS signal is cutoff
in our SLAM system and the output of the barometric sen-
sor is used to provide a relative height for the visual motion
estimation. Fig.13 shows that there is a strong agreement
of the attitude estimations between the proposed SLAM
system and the referential GPS/INS navigation. Fig. 14 is
about the comparison of the velocity estimations. It shows
that our system also has a high accuracy in the velocity
estimation compared with the referential.

Fig. 13 The attitude comparison in the experiment

The position estimated by the direct velocity integration,
which is known as visual odometry (VO), is also introduced
into the position comparison as shown in Fig. 15. Despite
the accurate velocity estimation shown in Fig. 14, errors

accumulate in the position estimation through direct inte-
gration. After the landing, deviations between the VO es-
timation and the GPS/INS system are quite obvious. The
correction of the SLAM on the position estimation can be
seen in the comparison. Taking the velocity estimation as
the input, the proposed system is able to correct the posi-
tion estimation by consecutive observations of the features
in the map. The position estimated by the SLAM has a
higher accuracy than the VO, and the deviations are elim-
inated remarkably.

Fig. 14 The velocity comparison in the experiment

Fig. 15 The position comparison in the experiment

7 Conclusions and future work

This paper describes a bearing-only visual SLAM for
small UAVs in GPS-denied environments. An indirect EKF
is used to estimate the attitude and velocity by the fusion
of the IMU and the visual motion measurement of the ve-
hicle, which is calculated by a homography based method.
Then, these attitude and velocity estimations are input into
another EKF based filter for position estimation and map
building. An inverse depth method is applied to the un-
delayed feature initialization. A method that combines the
Mahalanobis distance and the descriptor match of the SIFT
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features is used to improve the robustness of the data as-
sociation. Simulations and real experiments have been car-
ried out to test the performance of the system. The SLAM
system developed in this paper has a high estimation ac-
curacy of the UAV state by comparing with the referential
GPS/INS navigation. In conclusion, our bearing-only vi-
sual SLAM system can provide stable estimations of small
UAVs while building a 3D feature map in GPS-denied en-
vironments.

Future work will focus on the further improvement of the
SLAM on computational complexity. In the EKF based al-
gorithm, the state is always augmented with the observa-
tions of new features in the map. The computational com-
plexity grows quadratically with the number of the features.
This is an unavoidable problem for the implementation of
the real-time SLAM for small UAVs. In the future, a Rao-
Blackwellized based FastSLAM will be developed based on
this research for a real-time SLAM that can reduce the com-
putation to a linear complexity.
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