Skip to main content
Log in

MILD combustion for hydrogen and syngas at elevated pressures

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

As gas recirculation constitutes a fundamental condition for the realization of MILD combustion, it is necessary to determine gas recirculation ratio before designing MILD combustor. MILD combustion model with gas recirculation was used in this simulation work to evaluate the effect of fuel type and pressure on threshold gas recirculation ratio of MILD mode. Ignition delay time is also an important design parameter for gas turbine combustor, this parameter is kinetically studied to analyze the effect of pressure on MILD mixture ignition. Threshold gas recirculation ratio of hydrogen MILD combustion changes slightly and is nearly equal to that of 10 MJ/Nm3 syngas in the pressure range of 1–19 atm, under the conditions of 298 K fresh reactant temperature and 1373 K exhaust gas temperature, indicating that MILD regime is fuel flexible. Ignition delay calculation results show that pressure has a negative effect on ignition delay time of 10 MJ/Nm3 syngas MILD mixture, because OH mole fraction in MILD mixture drops down as pressure increases, resulting in the delay of the oxidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wünning, J. A., Wünning, J. G., Flameless oxidation to reduce thermal NO-formation, Prog. Energy Combust. Sci, 23 (1997), pp. 81–94

    Article  Google Scholar 

  2. Dally B. B., Riesmeier E., Peters N., Effect of fuel mixture on moderate and intense low oxygen dilution combustion, Combust. Flame, 137 (2004), pp. 418–431

    Article  Google Scholar 

  3. Galletti C., et al., Numerical and experimental analysis of NO emissions from a lab-scale burner fed with hydrogen-enriched fuels and operating in MILD combustion, Int. J. Hydrogen Energy, 34 (2009), pp. 8339–8351

    Article  Google Scholar 

  4. Dally B. B., Karpetis A. N., Barlow R. S., Structure of turbulent non-premixed jet flames in a diluted hot coflow, Proc. Combust. Inst, 29 (2002), pp. 1147–1154

    Article  Google Scholar 

  5. Colorada A. F., Herrera B. A., Amell A. A., Performance of a flameless combustion furnace using biogas and natural gas, Bio. Technol, 101 (2010), pp. 2443–2449

    Article  Google Scholar 

  6. Sabia P., et al., Hydrogen-enriched methane MILD combustion in well stirred reactor, Exp. Therm. Fluid Sci, 31 (2007), pp. 469–475

    Article  Google Scholar 

  7. Mardani A., Tabejamaat S., Effect of hydrogen on hydrogen-methane turbulent non-premixed flame under MILD condition, Int. J. Hydrogen Energy, 35 (2010), pp. 11324–11331

    Article  Google Scholar 

  8. Yu Y., et al., Flameless combustion for hydrogen containing fuels, Int. J. Hydrogen energy, 35 (2010), pp. 2694–2697

    Article  Google Scholar 

  9. Weiland N.T., Strakey P. A.. NOx reduction by air-side versus fuel-side dilution in hydrogen diffusion flame combustors, Journal of Engineering for Gas Turbines and Power, 132(2010), pp. 0715041–0715049

    Article  Google Scholar 

  10. Szegö G. G., Dally B. B., Nathan G. J.. Operational char acteristics of a parallel jet MILD combustion burner system, Combust. Flame, 156 (2009), pp. 429–438

    Article  Google Scholar 

  11. Joannon M. D., Saponaro A., Cavaliere A., Zero-dimensional analysis of diluted oxidation of methane in rich conditions, Proc. Combust. Ins, 28 (2000), pp. 1639–1646

    Article  Google Scholar 

  12. Derudi M., Villani A., Rota R., Sustainability of MILD combustion of hydrogen-containing hybrid fuels, Proc. Combust. Ins, 31 (2007), pp. 3393–3400

    Article  Google Scholar 

  13. Cavaliere A., Joannon M. D., MILD Combustion, Prog. Energy Combust. Sci, 30 (2004), pp. 329–366

    Article  Google Scholar 

  14. Davis S. G., et al., An optimized kinetic model of H2/CO combustion, Proc. Combust. In,. 30 (2005), pp. 1283–1292

    Article  Google Scholar 

  15. Smith G. P., et al., GRI-Mech 3.0, Available at: http://www.me.berkeley.edu/grimech/, accessed September 30, 2011.

    Google Scholar 

  16. Sun H. Y., et al., High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion, Proc. Combust. Inst, 31 (2007), pp. 439–446

    Article  Google Scholar 

  17. Burke M. P., et al., Comprehensive H2/O2 kinetic model for high-pressure combustion, Int. J. Chem. Kinet. (2011)

    Google Scholar 

  18. Hong Z. K., Davidson D. F., Hanson R. K., An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements, Combust. Flame, (2010)

    Google Scholar 

  19. You X. Q., Packard A., Frenklach M., Process informatics tools for predictive modeling: Hydrogen combustion, Int. J. Chem. Kinet., 44(2012), pp. 101–116.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research is supported by National Natural Science Foundation of China (Project No.51006104) and National Key Basic Research Program of China (No. 2014CB247500).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, M., Zhang, Z., Shao, W. et al. MILD combustion for hydrogen and syngas at elevated pressures. J. Therm. Sci. 23, 96–102 (2014). https://doi.org/10.1007/s11630-014-0682-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-014-0682-x

Keywords

Navigation