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Abstract In this paper, we apply particle swarm opti-

mization (PSO), an artificial intelligence technique, to

velocity calibration in microseismic monitoring. We ran

simulations with four 1-D layered velocity models and

three different initial model ranges. The results using the

basic PSO algorithm were reliable and accurate for simple

models, but unsuccessful for complex models. We propose

the staged shrinkage strategy (SSS) for the PSO algorithm.

The SSS-PSO algorithm produced robust inversion results

and had a fast convergence rate. We investigated the

effects of PSO’s velocity clamping factor in terms of the

algorithm reliability and computational efficiency. The

velocity clamping factor had little impact on the reliability

and efficiency of basic PSO, whereas it had a large effect

on the efficiency of SSS-PSO. Reassuringly, SSS-PSO

exhibits marginal reliability fluctuations, which suggests

that it can be confidently implemented.

Keywords Particle swarm optimization � Staged
shrinkage strategy (SSS) � Global optimization (GO) �
Geophysical inversion � Microseismic velocity calibration

1 Introduction

Inversion problems are basic issues in geophysics. Solu-

tions to these problems can be classified into deterministic

or probabilistic methods, or into local or global optimiza-

tion methods. Most local optimization algorithms are

deterministic, whereas global optimization algorithms are

stochastic (Sen and Stoffa 2013).

With careful initialization, local optimizations tech-

niques, such as the Newton, quasi-Newton (e.g., the BFGS),

and conjugate-gradient (CG) methods, can obtain stable

results based on gradient information after several iterations

(Gill et al. 1981; Tarantola 2005). However, because the

initializationmay be unreliable, we cannot be certain that the

iterations converge to the global minima. Compared with

local optimization methods, global optimization (GO)

methods, such as Simulated Annealing (SA) and genetic

algorithms (GAs), typically need a huge amount of forward

calculations to obtain a global optima. The crucial issues for

GO methods are the convergence speed and computational

efficiency (Kiranyaz et al. 2013).

Particle swarm optimization (PSO) (Russ et al. (1996)) is

an efficient global optimization method. PSO has similar

characteristics to evolution algorithms (EAs). These meth-

ods are stochastic (e.g., the SA) and are population-based

evolutionary algorithms (e.g., the GAs) (Banks et al. 2007;

Kiranyaz et al. 2013). PSO has been shown to outperform the

GA methods (Angeline 1998). It has been extensively

applied because of its fast convergence rate and simple

implementation (Poli 2008). However, PSO is significantly

slower to converge in certain circumstances, because it can

converge prematurely and get trapped in local optima.

Therefore, it is important to improve PSO so that it can be

applied to the seismic inversion.

Y. Yang (&) � J. Wen � X. Chen
School of Earth and Space Sciences, University of Science and

Technology of China, Hefei 230026, China

e-mail: yyzf@mail.ustc.edu.cn

Y. Yang � J. Wen � X. Chen
Laboratory of Seismology and Physics of Earth’s Interior,

University of Science and Technology of China,

Hefei 230026, Anhui, China

Y. Yang � J. Wen � X. Chen
Mengcheng National Geophysical Observatory,

Hefei 230026, Anhui, China

123

Earthq Sci (2015) 28(4):263–273

DOI 10.1007/s11589-015-0127-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s11589-015-0127-y&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11589-015-0127-y&amp;domain=pdf


PSO improvements can be categorized into two sets:

improvements to parameters and modifications to evolution

rules. Inertia weight (Shi and Eberhart 1998) and con-

striction factors (Clerc 1999) have been introduced to the

original PSO formulation to better control a particles’

velocity. Carlisle and Dozier (2001) attempted to deter-

mine explicit and implicit off-the-shelf parameters for

PSO. However, rather than offering a panacea for the

parameter selection process, their work raised awareness

regarding the importance of appropriate parameter values

(Xu and Rahmat-Samii 2007; Zhang et al. 2005a, b). Other

PSO improvements modified the particle learning rules, or

were hybrids with other GO methods (Liang et al. 2006;

Mendes et al. 2004; Ratnaweera et al. 2004).

In this paper, we first briefly introduce the principles of

the PSO algorithm using the examples of synthetic inver-

sion for velocity calibration in microseismic monitoring.

We explore the inevitable limitations tackling with com-

plex models. Then, we describe the staged shrinkage

strategy (SSS) for improving the PSO algorithm, which

avoids premature and speeds up the convergence rate.

Finally, we present simulation results to demonstrate the

superiority of our proposed SSS-PSO algorithm. We also

investigated the influence of the built-in velocity clamping

factor on the reliability and efficiency for the PSO and

SSS-PSO algorithms.

2 PSO algorithm and its limitations

2.1 Fundamentals of the PSO algorithm

PSO was proposed by Eberhart and Kennedy (1995). It

maintains a population of particles that represent potential

solutions in the search space. These particles have two

physical characteristics: location and velocity. The loca-

tions represent potential solutions. The velocities represent

a kinetic property of the particles. The optimization rules

follow mathematical formulas. A flow diagram for PSO is

shown in Fig. 1. In a d-dimension model space, the particle

swarm size is N, with xid and vid denoting the position and

velocity of particle i(i = 1, 2, 3, …, N). pid and pgd are the

personal best and global best positions for particle i. The

rules to update a particle’s velocity and position are

vidðk þ 1Þ ¼ vidðkÞ þ c1r1½pidðkÞ � xidðkÞ� þ c2r2½pgdðkÞ � xidðkÞ�

xidðk þ 1Þ ¼ xidðkÞ þ vidðk þ 1Þ

(
;

ð1Þ

where r1 and r2 are randomnumbers in the range [0, 1], and c1
and c2 are acceleration constants (typically c1 = c2 = 2).

The first part of the velocity update equation is called the

‘‘velocity inertia’’ term, the second is the ‘‘cognition’’ term

(indicating that the particles are influenced by their own

past), and the third is the ‘‘social’’ term (indicating that the

particles learn from swarm intelligence) (Eberhart and

Kennedy 1995; Shi and Eberhart 1998).

The algorithm for updating the personal best is

P
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ð2Þ

where P
*

i is the personal best memory of x
*

i: F is the

objective function defined in Eq. 7.

To restrict the maximum step at each iteration and

prevent overflow, the maximum velocity (vmax,d) should be

a proportion of the range of the particle search space. This

proportion is called the velocity clamping factor (d).
According to Russ et al. (1996) and Clerc (1999), the

mathematical relationship between these parameter is

Fig. 1 Flow chart of the basic PSO implementation
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vmax;d ¼ d bmax;d � bmin;d

� �
; for d 2 ð0; 1�; ð3Þ

where vmax,d is the allowed maximum velocity of particles,

d is the velocity clamping factor, and bmax,d and bmin,d are

the maximum and minimum location values of particles at

d-th dimension.

So if the velocity update results in a step that is too

large, the maximum velocity limits the velocities as

follows:

vid ¼
vmax;d when vid [ vmax;d

vid when vidj j � vmax;d

�vmax;d when vid\� vmax;d

8<
: : ð4Þ

Obviously, unlike acceleration constants that balance

the local and global search, the velocity clamping factor

controls the convergence speed. A larger velocity clamping

factor allows big steps and contributes to a fast conver-

gence rate, but increases the probability that the method

will get trapped in local optima. A smaller velocity

clamping factor constrains the particle step size, slows

down the optimization process, and increases the particles

diversity (Poli et al. 2007). Essentially, the acceleration

constants and velocity clamping factor have corporative

roles in the convergence of the PSO algorithm.

Inertia weights (Shi and Eberhart 1998) have been

introduced to original PSO velocity update formula.

vidðk þ 1Þ ¼ wvidðkÞ þ c1r1 pidðkÞ � xidðkÞ½ �
þ c2r2 pgdðkÞ � xidðkÞ

� �
: ð5Þ

Here, w is the inertia weight. The inertia weight can take

various values (Rezaee Jordehi and Jasni 2013). It works

with velocity clamping factor to have a better control on

velocity.

Then, constriction factors (Clerc 1999) were introduced

to the original PSO formula as follows:

vidðk þ 1Þ ¼ j vidðkÞ þ c1r1 pidðkÞ � xidðkÞ½ �f
þ c2r2 pgdðkÞ � xidðkÞ

� �
g

j ¼ 2

2� u�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4u

p��� ��� ; u ¼ c1 þ c2 ; u[ 4: ð6Þ

where K is the constriction factor. Typically, the constric-

tion factor is set to be K = 4.1, and c1 = c2 = 2.05.

Although the constriction factors were designed to control

particles velocity without velocity clamping process, but

simulation tests have shown that constriction-based PSO

performance is better using velocity clamping (Eberhart

and Shi (2000)).

The boundary conditions can also affect the perfor-

mance of the algorithm (Xu and Rahmat-Samii 2007;

Zhang et al. 2005b). In this study, we used the ‘‘damping-

wall’’ boundary condition as follows:

(xid, vid) ¼
ðbmax;d;�rvidÞ; if xid [ bmin;d

ðbmin;d;�rvidÞ; if xid [ bmin;d
;

�
ð7Þ

where bmax,d and bmin,d are the boundaries of the particles’

values in thed-th dimension; and r is a randomnumber in [0, 1].

2.2 Numerical examples of the PSO algorithm applied

to velocity calibration

Velocity calibration is an indispensable data processing

step in microseismic monitoring, which obtains reliable

initial models for microseismic data analysis (Cipolla et al.

2012; Maxwell et al. 2010). Various methods have been

applied to this problem (Pei et al. 2009; Warpinski et al.

2005; Warpinski and Du 2013). Velocity calibration is a

nonlinear optimization with limited data because there is a

lack of string shots and receivers. There is no accepted

approach for reliably and effectively solving this problem

without a priori information (log data or other resources).

In this section, we present some numerical examples that

applied the PSO algorithm to velocity calibration in

microseismic monitoring with synthetic data.

To apply the PSO method to this problem, we chose four

1-D layered velocity models as presented in Pei et al. (2009).

The models are shown in Fig. 2. We generated synthetic

travel time data using the accurate two-point ray tracing

method (Tian and Chen 2005). The objective function is

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

tobsvp; i � tcalvp; i

	 
2

s
; ð8Þ

where F is the objective function, n is the number of sensor

shot direct wave picks, and tobsvp; i and tcalvp; i are forward and

inversion calculations of the direct wave travel times.

When applying the basic PSO algorithm to recover the 1-D

layered velocity models with synthetic travel time data, we

used a constriction factor-based formula, the velocity

clamping factor d = 0.1, and the population of particles

N = 30 (Carlisle andDozier 2001). Themaximum number of

iterations for outer loopwas set to tmax = 1000, andwe set the

maximum for the objective function to F B 10-6s. The PSO

algorithm terminated when either of these conditions was

exceeded. Four test models are shown in Fig. 2. For each test

model, we ran 300 inversions with random initial models.

These 300 random initial models were generated from three

different initial model ranges. There were 100 random initial

models for each given range. We set three different initial

model ranges to test algorithm behavior, which are shown in

Fig. 3 in the cyan linewith two dots at both ends at each layer.

The inversion results are shown in Fig. 3. The sub-fig-

ures in row 1 to 4 (from top to bottom) are the inversion

results for models 1 to 4; the sub-figures in each row (from

left to right) correspond to the inversion results of 300
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simulations with three initial model ranges. For simplicity,

we denote the sub-figure in row i and column j as sub-figure

(i, j). Obviously, each sub-figure shows the results of 100

inversions with random initial models within a certain given

model range. We can see that the inversion results for the

relatively simple models (models 1 and 2) are very good,

even when the initial models are quite different from the true

models in sub-figs. (1, 3) and (2, 3). However, the inversion

results for models 3 and 4 (relatively complicated models)

are not good. Sub-figs. (3, 1) to (3, 3) show that the inversion

results for model 3 are quite good in general, except for the

top layer. Note that no geophones are deployed in the top

layer, so there is no ray path constraint. The inversion results

for model 4 are shown in sub-figs. (4, 1) to (4, 3). Although

the inversion results were more accurate when the initial

model ranges were narrow, they did not generally converge

to the true model. In particular, the second layer (low velocity

layer) was the least accurate for any of the initial model

ranges. Note that we cannot guarantee that the PSO inversion

convergence for this model within 1000 iterations achieves

the terminal objective function F = 10-6.

2.3 Limitations of basic PSO

In four-layer models, basic PSO iterated less than 100

times to reach the terminal objective function value. In

each layer, the velocity deviations were\0.0001 km/s. The

successful inversion results for models 1 and 2 indicate that

basic PSO algorithm is insensitive to the initial models and

stable in repeated simulations. However, the results for

model 4 show that the objective function values may stop

decreasing sometimes in repeated inversions. This problem

could not be alleviated by increasing the maximum number

of iterations from 1000 to 5000 (Fig. 4).

3 Algorithm modifications

3.1 Modifications of basic PSO

In the geophysical inversion problem, the inversion

parameters have different sensitivities to the objective

function. The difference is significant in some situations, as

Fig. 2 Forward models and schematic geometry showing receiver arrays and perforation shot locations
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revealed in model 4. The inversion results for the second

layer (from the surface) in model 4 were the most scattered

around the true value. The inversion parameter cannot be

accurately calculated. The objective function because

trapped in local optima, and stopped decreasing before

satisfying the termination criteria. So modifying the search

space according to the dimension and the evolutionary

stage of the particles is feasible and reasonable. With this

in mind, we propose SSS, which encourages the process to

escape from local optima.

This modified PSO algorithm is abbreviated to SSS-

PSO, and its flow chart is shown in Fig. 5. Firstly, we

Fig. 3 PSO inversion results with 1000 maximum iterations. In each sub-plot, the plot on the left displays 100 repeated inversion results in red,

which are occasionally overlapped by the black lines that represent the forward model. In each layer, the cyan line with two dots at both ends

shows the initial model range. The plot in the middle gives histograms of each layers inversion results. The plot on the right depicts the objective

function values, with the iterations represented by red lines. The black line is the average of the best values from 100 repeated inversions
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initialize the global best memory (gmemo
h; d ) and update it with

each iteration. h is the global best change times. Then, we

calculate the maximum, minimum, and average values of

the particles and their personal best positions (xmax,d,

xmin,d, xave,d and ymax,d, ymin,d, yave,d). The maximal and

minimal global best positions are acquired from the global

best memory (gmemo
h; d )

gmemo
max;d ¼

max gmemo
1:h;d

	 

; when h\ hblock

max gmemo
hblock :h;d

	 

; when h � hblock

8<
:

gmemo
min;d ¼

min gmemo
1:h;d

	 

; when h\ hblock

min gmemo
hblock : h;d

	 

; when h � hblock

8<
:

; ð9Þ

where hblock is 30 here which used to calculate g
memo
h; d . In the

early evolution stage, the particles’ global best positions

may not be local minimums, and should be excluded.

Otherwise, the global best positions will undermine the

efficiency of the boundary shrinkage. If we use a fixed

length that results in gmemo
max; d and g

memo
min; d through blocking, we

may fail to achieve the global best position. Admittedly,

Fig. 4 PSO inversion results with 5000 maximum iterations. The plot

on the left displays 100 repeated inversion results in red, which are

occasionally overlapped by the black lines that represent the forward

model. In each layer, the cyan line with two dots at both ends shows

the initial model range. The plot in themiddle gives histograms of each

layers inversion results. The plot on the right depicts the objective

function values, with the iterations represented by red lines. The black

line is the average of the best values from 100 repeated inversions

Fig. 5 Flow chart of the SSS modified PSO implementation
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more detailed work is required. However, our work suggests

that hblock = 30 and the other following parameters for SSS

implementations work well in velocity calibration tests.

Secondly, each inversion parameter dimension is sorted

into a specified stage according to the positions of the

particles. If the boundary space shrinks to 20 % of the

initial space range, we defined the evolutionary situation as

stage 2. If the boundary space shrinks to 4 % of the initial

range, we define the situation as stage 3. Otherwise, the

boundary space is 20 %–100 % of the initial range, and is

in stage 1. Then, we update the boundary range according

to the following rules:

Fig. 6 SSS-PSO inversion results with 5000 maximum iterations. In each sub-plot, the plot on the left displays 100 repeated inversion results in

blue, which are occasionally overlapped by the black lines that represent the forward model. In each layer, the cyan line with two dots at both

ends shows the initial model range. The plot in the middle gives histograms of each layers inversion results. The plot on the right depicts the

objective function values, with the iterations represented by blue lines. The black line is the average of the best values from 100 repeated

inversions
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bd¼bmax;d�bmin;d

bmax1;d¼max gmemo
max;dþs4rbd;xmax;dþs4rbd; ymax;dþ s4rbd

	 

bmax2;d¼max xave;dþðs2þs3rÞbd; yave;dþðs2þs3rÞbd

� �
8<
:
bmax;d¼min binimax; d; xmax;dþ s1rbd;max bmax1;d;bmax2;d

� �	 


8>>>><
>>>>:

bmax1;d¼min gmemo
min;d �s4rbd;xmin;d�s4rbd; ymin;d�s4rbd

	 

bmin2;d¼min xave; d�ðs2þs3rÞbd; yave;d�ðs2þ s3rÞbd

� �
8<
:
bmin;d¼max binimin; d xmin;d� s1rbd; min bmin1;d;bmin2;d

� �	 


8>>>><
>>>>:

;

ð10Þ

where bmax,d, bmin,d, and bd are the maximum, minimum,

and range values of the particles’ positions, binimax;d and

binimin;d represent the initial range, r is a random number

independently generated in [0,1], and s1, s2, s3 and s4 are

SSS parameters. Each inversion parameter dimension

exhibits a fast convergence rate in stage 1 because the

parameters are set to s1 = 0.4, s2 = 0.3, s3 = 0.1, and

s4=0.2. The convergence slows in stage 2 (s1 = 0.5,

s2 = 0.1, s3 = 0.6, and s4 = 0.3) with the randomness

boundary extension, and increases again in stage 3

(s1 = 0.3, s2 = 0.3, s3 = 0.3, and s4 = 0.2). Then, the

boundary of the dimension shrinks to a very small range

that includes the global optima.

Finally, we update the boundary conditions and maxi-

mum velocity.

3.2 Numerical experiments using the SSS-PSO

algorithm

As shown in Sect. 2.2, basic PSO fails to retrieve the

model parameters for model 4. We applied the SSS-PSO

to this problem to determine its inversion performance.

The inversion results are shown in Fig. 6. The fast and

robust convergence of the objective function demon-

strates the algorithm’s performance. In repeated inver-

sions, the objective function converged to the termination

Fig. 7 Reliabilities of different models with varying velocity clamping factors. The triangle and circles represent the basic and SSS-PSO results,

respectively. The plots from left to right are the results for three different initial ranges. The plots from top to bottom are the inversions for four

different models. In each plot, the velocity clamping factor changed from 0.1 to 0.9
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criteria within the maximum number of iterations. It can

be seen that although without requiring a prior informa-

tion, the performance of the SSS-PSO is stable in repe-

ated runs. These merits mean that SSS-PSO can be

applied to velocity calibration application cases in com-

plex models.

4 Sensitivity of PSO and SSS-PSO to velocity clamping

factor

The velocity clamping factor (d) is important to the per-

formance of PSO and SSS-PSO. To investigate how d
affects the reliability and efficiency of PSO and SSS-PSO,

we ran PSO and SSS-PSO inversions for nine d values,

ranging from 0.1 to 0.9. The inversion results are shown in

Figs. 7 and 8.

We define the reliability of the inversion performance as

follows:

reliability(d; Succ) =
Succd

Total
� 100% ð11Þ

where Succd is the number of successful inversions in

Total = 100 repeated runs. Success is defined as reaching

the objective function value (F = 10-6) within the maxi-

mum number of iterations (tmax = 5000). Figure 7 shows

the statistical reliabilities of the four models and three

initial ranges. The reliabilities for all these cases were

mainly insensitive to d, although there were some small

variations for model 3. Thus, the reliabilities were almost

independent of d, regardless of the high or low reliabilities.

Another important feature of these results is that the SSS-

PSO reliabilities were almost 100 % in all cases, whereas

the basic PSO reliability was 100 % for models 1 and 2, a

little above 0 % for model 4, and approximately 50 % for

model 3. This indicates that the SSS-PSO inversion was

systematically superior to the basic PSO inversion, and

may guarantee convergence. Moreover, the reliabilities of

the SSS-PSO inversion for models 3 and 4 decreased

slightly as d increased, which suggests that we should use

small d values.

Computational efficiency is another important measure

for assessing an inversion algorithm. In the basic PSO and

Fig. 8 Error bars of forward evaluations of different models with varying velocity clamping factors. The triangle and circles represent the basic

and SSS-PSO results, respectively. The plots from left to right are the results for three different initial ranges. The plots from top to bottom are the

inversions for four different models. In each plot, the velocity clamping factor changed from 0.1 to 0.9
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SSS-PSO algorithms, we only need forward calculations

after updating each particle position. So the time taken by

forward evaluations is equal to the number of iterations

multiplied by the size of the population (N = 30). Forward

evaluations represent the most computational time, so they

correlate strongly with algorithm efficiency. Therefore, it is

important to determine the sensitivity of d to the forward

evaluations.

In Fig. 8, in terms of the time taken by forward simula-

tions, the velocity clamping factor has a marginal influence

on the basic PSO efficiency, but is very important to the SSS-

PSO efficiency. In the basic PSO results for simple cases

(Models 1 and 2), the forward simulations are stable to the

changes in the velocity clamping factor and the parameter

range of initial model. In models 3 and 4, on most occasions,

the method used the maximum number of forward simula-

tions, because the statistical reliability was approximately

50 % for model 3 and 0 % for model 4. For the SSS-PSO

algorithm, small values of the velocity clamping factor

(d & 1) can significantly reduce the number of forward

simulations, thus the small value of d is a preferable.

5 Conclusions

In this study, we improved the inversion performance of

the basic PSO algorithm by incorporating the SSS, and

applied our method to velocity calibration in miscroseismic

monitoring. We demonstrated that the SSS-PSO algorithm

is robust and efficient. The SSS-PSO algorithm steadily

and speedily converged to the solution, regardless of the

complexity of the target models and the randomness of the

initial models. Furthermore, we investigated the influence

of choices of the velocity clamping factor (d) on the reli-

ability and efficiency of the basic and SSS-PSO algorithms.

We found that basic PSO is insensitive to d, whereas SSS-
PSO is not (especially the searching efficiency of). The

SSS-PSO algorithm was robust to all the tested values of d.
Moreover, our simulations suggest that a small velocity

clamping factor (d = 0.1) is preferred for SSS-PSO, in

these microseismic velocity calibration problems.

We validated the performance of the algorithms by

running 100 repeated inversions with random initial mod-

els, to differentiate the discrepancies caused by the intrinsic

uncertainties of geophysical inversion problems from arti-

facts and errors produced by the inversion strategies.

Additionally, because there is no panacea for GO problems

according to the ‘‘no free lunch’’ theorems (Wolpert and

Macready 1997), we need an inversion strategy that is

aimed at specific geophysical inversion problem. Any such

strategies should be tested before being applied. We cannot

guarantee that the SSS-PSO will converge to global optima

for any given problem, which is the same for all other GO

methods. We have proposed and validated this method for

microseismic velocity calibration models. The tests in this

paper are limited, and further investigation is needed with

noisy data, which will be proceeded in our future work.
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