Skip to main content
Log in

A facile and convenient approach to fill carbon nanotubes with various nanoparticles

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A facile and convenient approach was proposed to highly fill carbon nanotubes with various nanoparticles, such as Fe3O4 and CoO. Furthermore, in the case of Fe3O4 and CoO nanoparticles, the effect of reaction conditions on the filling quality and confinement of CNTs on the size and morphology of NPs were explored. The encapsulation procedure in our work can provide a valuable guidance for filling a variety of NPs into hollow structure apart from CNTs. In addition, as a proof-of-concept demonstration, the magnetic properties of Fe3O4 in the absence and presence of CNTs were measured to indicate that magnetization and the blocking temperature of superparamagnetic Fe3O4 can be adjusted, which is due to the confinement effect of CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Kay B, Kay HA, Won KS, Young PS, Jeong MM, Dong BJ, Seong LC (2001) Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater 11:387–392

    Article  Google Scholar 

  3. Heer WA, Chatelain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270:1179–1180

    Article  Google Scholar 

  4. Kim P, Lieber CM (1999) Nanotube nanotweezers. Science 286:2148–2150

    Article  CAS  PubMed  Google Scholar 

  5. Singh R, Torti SV (2013) Carbon nanotubes in hyperthermia therapy. Adv Drug Deliv Rev 65:2045–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Deng Z, Jiang H, Hu Y, Liu Y, Zhang L, Liu H, Li C (2017) 3D ordered macroporous MoS2@C nanostructure for flexible Li-ion batteries. Adv Mater 29:1603020

    Article  CAS  Google Scholar 

  7. Lim WQ, Gao Z (2016) Plasmonic nanoparticles in biomedicine. Nano Today 11(2):168–188

    Article  CAS  Google Scholar 

  8. Li HH, Fu QQ, Xu L, Ma SY, Zheng YR, Liu XJ, Yu SH (2017) Highly crystalline PtCu nanotubes with three dimensional molecular accessible and restructured surface for efficient catalysis. Energy Environ Sci 10:1751–1756

    Article  CAS  Google Scholar 

  9. Kong C, Du H, Chen L, Chen B (2017) Nanoscale MOF/organosilica membranes on tubular ceramic substrates for highly selective gas separation. Energy Environ Sci 10:1812–1819

    Article  CAS  Google Scholar 

  10. Yu WJ, Hou PX, Zhang LL, Li F, Liu C, Cheng HM (2010) High coercivity of iron-filled carbon nanotubes synthesized on austenitic stainless steel. Chem Commun 46:8576–8578

    Article  CAS  Google Scholar 

  11. Camilli L, Scarselli M, Gobbo SD, Castrucci P, Lamastra FR, Nanni F, Gautron E, Lefrant S, D’Orazio F, Lucari F, Crescenzi MD (2012) High coercivity of iron-filled carbon nanotubes synthesized on austenitic stainless steel. Carbon 50:718–721

    Article  CAS  Google Scholar 

  12. Elías AL, Rodríguez-Manzo JA, McCartney MR, Golberg D, Zamudio A, Baltazar SE, López-Urías F, Muñoz-Sandoval E, Gu L, Tang CC, Smith DJ, Bando Y, Terrones H, Terrones D (2005) Production and characterization of single-crystal FeCo nanowires inside carbon nanotubes. Nano Lett 5:467–472

    Article  CAS  PubMed  Google Scholar 

  13. Wang D, Yang G, Ma Q, Wu M, Tan Y, Yoneyama Y, Tsubaki N (2012) Confinement effect of carbon nanotubes : copper nanoparticles filled carbon nanotubes for hydrogenation of methyl acetate. ACS Catal 2:1958–1966

    Article  CAS  Google Scholar 

  14. Corio P, Santos AP, Santos PS, Temperini MLA, Brar VW, Pimenta MA, Dresselhaus MS (2004) Characterization of single wall carbon nanotubes filled with silver and with chromium compounds. Chem Phys Lett 383:475–480

    Article  CAS  Google Scholar 

  15. Ugarte D, Chatelain A, Heer WA (1996) Nanocapillarity and chemistry in carbon nanotubes. Science 274:1897–1899

    Article  CAS  PubMed  Google Scholar 

  16. Zhang H, Song H, Chen X, Zhou J, Zhang H (2012) Preparation and electrochemical performance of SnO2@carbon nanotube core-shell structure composites as anode material for lithium-ion batteries. Electrochim Acta 59:160–167

    Article  CAS  Google Scholar 

  17. Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X (2007) Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat Mater 6:507–511

    Article  CAS  Google Scholar 

  18. Yang Z, Guo S, Pan X, Wang J, Bao X (2011) FeN nanoparticles confined in carbon nanotubes for CO hydrogenation. Energy Environ Sci 4:4500–4503

    Article  CAS  Google Scholar 

  19. Ding Q, Liu D, Guo D, Yang F, Pang X, Che R, Zhou N, Xie J, Sun J, Huang Z, Gu N (2017) Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia. Biomaterials 124:35–46

    Article  CAS  PubMed  Google Scholar 

  20. Revia RA, Zhang M (2016) Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today 19:157–168

    Article  CAS  Google Scholar 

  21. Wu L, Wu M, Lin X, Zhang X, Liu X, Liu J (2017) Magnetite nanocluster and paclitaxel-loaded charge-switchable nanohybrids for MR imaging and chemotherapy. J Mater Chem B 5:849–857

    Article  CAS  Google Scholar 

  22. Tsang SC, Chen YK, Harris PJF, Green MLH (1994) A simple chemical method of opening and filling carbon nanotubes. Nature 372:159–162

    Article  CAS  Google Scholar 

  23. Yu WJ, Hou PX, Li F, Liu C (2012) Improved electrochemical performance of Fe2O3 nanoparticles confined in carbon nanotubes. J Mater Chem 22:13756–13763

    Article  CAS  Google Scholar 

  24. Costa PPMFJ, Sloan J, Rutherford T, Green MLH (2005) Encapsulation of RexOy clusters within single-walled carbon nanotubes and their in tubulo reduction and sintering to Re metal. Chem Mater 17:6579–6582

    Article  CAS  Google Scholar 

  25. Dujardin BE, Ebbesen TW, Krishnan K, Treacy MMJ (1998) Wetting of single shell carbon nanotubes. Adv Mater 10:1472–1475

    Article  CAS  Google Scholar 

  26. Ebbesen W (1996) Wetting, filling and decorating carbon nanotubes. J Phys Chem Solids 57:951–955

    Article  CAS  Google Scholar 

  27. Seo WS, Shim JH, Oh SJ, Lee EK, Hur NH, Park JT (2005) Phase- and size-controlled synthesis of hexagonal and cubic CoO nanocrystals. J Am Chem Soc 127:6188–6189

    Article  CAS  PubMed  Google Scholar 

  28. An K, Lee N, Park J, Kim SC, Wang H, Park JG, Kim JY, Park JH, Han MJ, Yu J, Hyeon T (2006) Synthesis, characterization, and self-assembly of pencil-shaped CoO nanorods. J Am Chem Soc 128:9753–9760

    Article  CAS  PubMed  Google Scholar 

  29. Chen S, Wu G, Sha M, Huang S (2007) Transition of ionic liquid [bmim][PF6] from liquid to high-melting-point crystal when confined in multiwalled carbon nanotubes. J Am Chem Soc 129:2416–2417

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We acknowledge financial support from by the financial supports of the National Natural Science Foundation of China (No. 21601144), Xi’an science and technology project-Engineering program of University and Institute talents servicing Enterprise (2017085CG/RC048(XBDX006)) and the Natural Science Foundation of Shaanxi Province (No. 2017JM2025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shenghua Ma or Xiaojie Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 28360 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, J., Wang, G., Ma, S. et al. A facile and convenient approach to fill carbon nanotubes with various nanoparticles. Ionics 25, 3079–3085 (2019). https://doi.org/10.1007/s11581-019-02841-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02841-9

Keywords

Navigation