Skip to main content
Log in

Backward nonlinear expectation equations

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

Building on an abstract framework for dynamic nonlinear expectations that comprises g-, G- and random G-expectations, we develop a theory of backward nonlinear expectation equations of the form

$$\begin{aligned} X_t = {\mathcal {E}}_t \Bigl [{\textstyle \int _t^T} g(s,X) \mu ({\mathrm {d}}s) + \xi \Bigr ], \quad t \in [0,T]. \end{aligned}$$

We provide existence, uniqueness, and stability results and establish convergence of the associated discrete-time nonlinear aggregations. As an application, we construct continuous-time recursive utilities under ambiguity and identify the corresponding utility processes as limits of discrete-time recursive utilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For sub-additive operators the converse is also true, i.e. (PC) implies (SI) and (N).

  2. Here and in the following, \({\mathcal {B}}(S)\) denotes the Borel \(\sigma \)-algebra on the topological space S.

  3. Note that \(X^\varDelta \) is defined on the continuous-time uncertainty framework; in particular, the following analysis is not of Donsker type.

  4. See Remarks 2.2 and 2.3 in Nutz [27] for a discussion of this assumption.

  5. In the notation of Nutz [27], our value function is given by \(V_t^x(\xi ,\omega )\). Note that \(V_t(\xi ,\omega )=V_t(\xi ,\tilde{\omega })\) whenever \(\omega -\tilde{\omega }\) is constant.

  6. See, e.g., Kraft and Seifried [24].

  7. Here \(\varDelta ^n: 0=t_0^n<t_1^n<\cdots <t_{N_n}^n = T\) and \(\varDelta _k^n \triangleq t^n_{k+1}-t^n_{k}\), \(k=0,\ldots ,N_n-1\).

  8. See Theorem 52 in Denis et al. [11]. Note that Denis et al. [11] focus on bounded functions. However, by weak compactness of \({\mathcal {Q}}\) every continuous function can be approximated by compactly supported ones. Further note that \({\mathrm {L}}_T\) is separable by the Stone–Weierstrass theorem.

  9. Every \(\xi \in {\mathcal {H}}_T\) admits a representation \(\varphi ^{\xi }_{\mathrm {min}}\) with a minimal number of time points. An arbitrary representation \(\varphi \) and \(\varphi ^{\xi }_{\mathrm {min}}\) share the same Lipschitz constant.

References

  1. Antonelli, F.: Backward–forward stochastic differential equations. Ann. Appl. Probab. 3(3), 777–793 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antonelli, F.: Stability of backward stochastic differential equations. Stoch. Process. Appl. 62(1), 103–114 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barles, G., Buckdahn, R., Pardoux, E.: Backward stochastic differential equations and integral–partial differential equations. Stoch. Stoch. Rep. 60(1–2), 57–83 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bismut, J.-M.: Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl. 44, 384–404 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bouchard, B., Elie, R.: Discrete-time approximation of decoupled forward-backward SDE with jumps. Stoch. Process. Appl. 118(1), 53–75 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouchard, B., Touzi, N.: Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations. Stoch. Process. Appl. 111(2), 175–206 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Z., Epstein, L.: Ambiguity, risk, and asset returns in continuous time. Econometrica 70(4), 1403–1443 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheridito, P., Stadje, M.: BS\(\Delta \)Es and BSDEs with non-Lipschitz drivers: comparison, convergence and robustness. Bernoulli 19(3), 1047–1085 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheridito, P., Soner, H.M., Touzi, N., Victoir, N.: Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs. Commun. Pure Appl. Math. 60(7), 1081–1110 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Delong, Ł.: Backward Stochastic Differential Equations with Jumps and Their Actuarial and financial applications. European Actuarial Academy (EAA) Series. Springer, London (2013)

    MATH  Google Scholar 

  11. Denis, L., Hu, M., Peng, S.: Function spaces and capacity related to a sublinear expectation: application to \(G\)-Brownian motion paths. Potential Anal. 34(2), 139–161 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duffie, D., Epstein, L.G.: Stochastic differential utility. Econometrica 60(2), 353–394 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dunford, N., Schwartz, J.T.: Linear Operators: I. General Theory. Pure and Applied Mathematics, vol. 7. Interscience Publishers, Inc., New York (1958)

    MATH  Google Scholar 

  14. El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Math. Finance 7(1), 1–71 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Epstein, L.G., Ji, S.: Ambiguous volatility and asset pricing in continuous time. Rev. Financ. Stud. 26(7), 1740–1786 (2013)

    Article  Google Scholar 

  16. Epstein, L.G., Ji, S.: Ambiguous volatility, possibility and utility in continuous time. J. Math. Econ. 50, 269–282 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Epstein, L.G., Schneider, M.: Recursive multiple-priors. J. Econ. Theory 113(1), 1–31 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Epstein, L.G., Wang, T.: Intertemporal asset pricing under knightian uncertainty. Econometrica 62(2), 283–322 (1994)

    Article  MATH  Google Scholar 

  19. Guo, X., Pan, C., Peng, S.: Martingale problem under nonlinear expectations. Preprint (2014). arXiv:1211.2869

  20. Hayashi, T.: Intertemporal substitution, risk aversion and ambiguity aversion. Econ. Theory 25(4), 933–956 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hu, M., Ji, S., Peng, S., Song, Y.: Backward stochastic differential equations driven by \(G\)-Brownian motion. Stoch. Process. Appl. 124(1), 759–784 (2014a)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hu, M., Ji, S., Peng, S., Song, Y.: Comparison theorem, Feynman–Kac formula and Girsanov transformation for BSDEs driven by \(G\)-Brownian motion. Stoch. Process. Appl. 124(2), 1170–1195 (2014b)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, New York (2002)

    Book  MATH  Google Scholar 

  24. Kraft, H., Seifried, F.T.: Stochastic differential utility as the continuous-time limit of recursive utility. J. Econ. Theory 151, 528–550 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kreps, D.M., Porteus, E.L.: Temporal resolution of uncertainty and dynamic choice theory. Econometrica 46(1), 185–200 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lin, Q., Riedel, F.: Optimal consumption and portfolio choice with ambiguity. Preprint (2014). https://ssrn.com/abstract=2377452

  27. Nutz, M.: A quasi-sure approach to the control of non-Markovian stochastic differential equations. Electron. J. Probab. 17(23), 1–23 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Nutz, M.: Random \(G\)-expectations. Ann. Appl. Probab. 23(5), 1755–1777 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nutz, M., Soner, H.M.: Superhedging and dynamic risk measures under volatility uncertainty. SIAM J. Control Optim. 50(4), 2065–2089 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nutz, M., van Handel, R.: Constructing sublinear expectations on path space. Stoch. Process. Appl. 123(8), 3100–3121 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14(1), 55–61 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. Peng, S.: Backward SDE and related \(g\)-expectation. In: Backward Stochastic Differential Equations (Paris, 1995–1996), Volume 364 of Pitman Res. Notes Math. Ser., pp. 141–159. Longman, Harlow (1997)

  33. Peng, S.: Nonlinear expectations, nonlinear evaluations and risk measures. In: Stochastic Methods in Finance, Volume 1856 of Lecture Notes in Math., pp. 165–253. Springer, Berlin (2004)

  34. Peng, S.: Dynamically consistent nonlinear evaluations and expectations. Preprint (2005). arXiv:math/0501415

  35. Peng, S.: \(G\)-expectation, \(G\)-Brownian motion and related stochastic calculus of Itô type. In: Stochastic Analysis and Applications, Volume 2 of Abel Symp., pp. 541–567. Springer, Berlin (2007)

  36. Peng, S.: Multi-dimensional \(G\)-Brownian motion and related stochastic calculus under \(G\)-expectation. Stoch. Process. Appl. 118(12), 2223–2253 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Peng, S.: Nonlinear expectations and stochastic calculus under uncertainty. Preprint (2010). arXiv:1002.4546

  38. Penner, I., Réveillac, A.: Risk measures for processes and BSDEs. Finance Stoch. 19(1), 23–66 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Quenez, M.-C., Sulem, A.: BSDEs with jumps, optimization and applications to dynamic risk measures. Stoch. Process. Appl. 123(8), 3328–3357 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Riedel, F.: Dynamic coherent risk measures. Stoch. Process. Appl. 112(2), 185–200 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Royer, M.: Backward stochastic differential equations with jumps and related non-linear expectations. Stoch. Process. Appl. 116(10), 1358–1376 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Seiferling, T.: Recursive utility and stochastic differential utility: from discrete to continuous time. Ph.D. Thesis, University of Kaiserslautern (2016)

  43. Soner, H.M., Touzi, N., Zhang, J.: Martingale representation theorem for the \(G\)-expectation. Stoch. Process. Appl. 121(2), 265–287 (2011a)

    Article  MathSciNet  MATH  Google Scholar 

  44. Soner, H.M., Touzi, N., Zhang, J.: Quasi-sure stochastic analysis through aggregation. Electron. J. Probab. 16(67), 1844–1879 (2011b)

    Article  MathSciNet  MATH  Google Scholar 

  45. Soner, H.M., Touzi, N., Zhang, J.: Wellposedness of second order backward SDEs. Probab. Theory Related Fields 153(1–2), 149–190 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Soner, H.M., Touzi, N., Zhang, J.: Dual formulation of second order target problems. Ann. Appl. Probab. 23(1), 308–347 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tang, S.J., Li, X.J.: Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim. 32(5), 1447–1475 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, J.: A numerical scheme for BSDEs. Ann. Appl. Probab. 14(1), 459–488 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We wish to thank Mete Soner, Holger Kraft, Rama Cont, Yuri Kabanov, and Keita Owari for comments and suggestions. Thomas Seiferling gratefully acknowledges financial support from Studienstiftung des Deutschen Volkes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Thomas Seifried.

Appendices

Auxiliary results

This appendix gathers some auxiliary results required in the main body of this article.

Lemma A.1

The space \(({\mathrm {P}},\Vert {\cdot }\Vert _{{\mathrm {P}}})\) is a Banach space.

Proof

Since \({\mathrm {L}}_T\) is a Banach space, so is the space \({\mathbb {L}}^1(\mu ;{\mathrm {L}}_T)\) of \({\mathrm {L}}_T\)-valued \(\mu \)-integrable functions by Theorem III.6.6 in Dunford and Schwartz [13]. Hence if \(\{X^n\}_{n\in {\mathbb {N}}}\) is a Cauchy sequence in \({\mathcal {P}}\subset {\mathbb {L}}^1(\mu ;{\mathrm {L}}_T)\), there is \(Y\in {\mathbb {L}}^1(\mu ;{\mathrm {L}}_T)\) such that \(\Vert X^n-Y\Vert _{{\mathrm {P}}} = \int _{[0,T]}\Vert X^n_t-Y_t\Vert _{{\mathrm {L}}}\,\mu ({\mathrm {d}}t)\rightarrow 0\). Hence there are a subsequence \(\{n_k\}_{k\in {\mathbb {N}}}\) and a \(\mu \)-null set N such that \(X_t^{n_k}\rightarrow Y_t\) in \({\mathrm {L}}_T\) as \(k\rightarrow \infty \) for all \(t\in [0,T]{\setminus } N\). It follows that \(X\triangleq 1_{[0,T]{\setminus } N}Y\) satisfies \(\Vert X^n-X\Vert _{{\mathrm {P}}}\rightarrow 0\), and since \(X^{n_k}_t\in {\mathrm {L}}_t\) for all \(k\in {\mathbb {N}}\) and \({\mathrm {L}}_t\) is itself a Banach space, we have \(X_t\in {\mathrm {L}}_t\) for all \(t\in [0,T]\). \(\square \)

Lemma A.2

The integral

$$\begin{aligned} I : {\mathrm {P}}\rightarrow {\mathrm {D}}, \quad X \mapsto IX, \quad \text {where } (IX)_t \triangleq {\textstyle \int _0^t} X_s \, \mu ({\mathrm {d}}s),\ t \in [0,T], \end{aligned}$$

is a continuous linear operator.

Proof

By (2.6), IX is an adapted \({\mathscr {L}}\)-process and \(\sup _{t\in [0,T]}\Vert IX_t\Vert _{{\mathrm {L}}}\le \Vert X\Vert _{{\mathrm {P}}}\). Moreover, \(\Vert (IX)_s - (IX)_t\Vert _{{\mathrm {L}}} \le \int _t^s \Vert X_u\Vert _{{\mathrm {L}}}\, \mu ({\mathrm {d}}u)\) implies that IX is càdlàg. \(\square \)

Lemma A.3

For each \(\xi \in {\mathrm {L}}_T\) let \(X^\xi : [0,T] \rightarrow {\mathrm {L}}_T, \ t \mapsto {\mathcal {E}}_t [\xi ]\). Then \(\{{\mathcal {E}}_t\}_{t\in [0,T]}\) is regular (measurable) if and only if there exists a dense subset \(M\subset {\mathrm {L}}_T\) such that \(X^\xi \) is càdlàg (measurable) for each \(\xi \in M\).

Proof

The operator satisfies

$$\begin{aligned} {\textstyle \sup _{t \in [0,T]}} \Vert X^\xi (t) - X^\eta (t)\Vert _{{\mathrm {L}}} \le \Vert \xi - \eta \Vert _{{\mathrm {L}}} \quad \text {for all } \xi , \eta \in {\mathrm {L}}_T \end{aligned}$$

by the projection property, so the claim follows from a density argument. \(\square \)

Lemma A.4

For each \(n \in {\mathbb {N}}\), let \(g^n:[0,T]\times {\mathrm {S}}\rightarrow {\mathrm {L}}_T\) be defined as in (3.10) and let \(\xi ^n\in {\mathrm {L}}_T\). Then the pair \((g^n,\xi ^n)\) is a BNEE parameter, and, with the constant \(L>0\) from (3.7), we have for all \(n \in {\mathbb {N}}\)

$$\begin{aligned} \Vert g^n(t,U) - g^n(t,V)\Vert _{{\mathrm {L}}} \le L \Vert U^t - V^t\Vert _{{\mathrm {S}}} \quad \text { for all }U,V\in {\mathrm {S}},\ t \in [0,T]. \end{aligned}$$

Proof

From (3.10) it is immediate that \(g^n({\cdot },U)\) is a measurable and adapted \({\mathscr {L}}\)-step process, so \(g^n(\cdot , U) \in {\mathrm {D}}\) for all \(U \in {\mathrm {S}}\). In particular \(g^n(\cdot ,0)\in {\mathrm {P}}\) and \(g^n(\cdot ,U)\in \mathcal X\) for all \(U \in {\mathrm {S}}\). Moreover, for an arbitrary \(t \in [t_{k}^n,t_{k+1}^n)\), the definition of \(g^n\), (3.7) and the projection property (2.3) imply

$$\begin{aligned} \Vert g^n(t, U) - g^n(t,V)\Vert _{{\mathrm {L}}} \le L \Vert U_{t_{k+1}^n}- V_{t_{k+1}^n} \Vert _{{\mathrm {L}}} \le L \Vert U^t - V^t \Vert _{{\mathrm {S}}}, \end{aligned}$$

thus finishing the proof. \(\square \)

Lemma A.5

For each \(n\in {\mathbb {N}}\) the \({\mathscr {L}}\)-process \(X^n\) given by (3.9) is a member of \({\mathrm {D}}\) and satisfies the BNEE

$$\begin{aligned} X_t^n = {\mathcal {E}}_t \Bigl [{\textstyle \int _t^T} g^n(s, X^n) \,\mu ({\mathrm {d}}s) + \xi ^n \Bigr ], \quad t \in [0,T], \end{aligned}$$

where \(g^n:[0,T]\times {\mathrm {S}}\rightarrow {\mathrm {L}}_T\) is the generator defined in (3.10).

Proof

Let \(n\in {\mathbb {N}}\) and \(k\in \{0, \ldots ,N_n-1\}\). By (3.10) we have

$$\begin{aligned} f^n(t_k^n, {\mathcal {E}}_{t_k^n}[X^n_{t_{k+1}^n}]) =g^n(t, X^n) \quad \text {for all }t \in [t_k^n,t_{k+1}^n), \end{aligned}$$

and hence (3.9) yields

$$\begin{aligned} X_t^n = {\mathcal {E}}_{t} \Bigl [ \textstyle {\int _t^{t_{k+1}^n}} g^n(s, X^n) \,\mu ({\mathrm {d}}s) + X^n_{t^n_{k+1}} \Bigr ],\quad t \in [t_k^n, t_{k+1}^n),\ k= 0, \ldots N_n-1. \end{aligned}$$

Iterating this and using (TC) we obtain

$$\begin{aligned} X_t^n = {\mathcal {E}}_{t} \Bigl [ \textstyle {\int _t^{T}} g^n(s, X^n) \,\mu ({\mathrm {d}}s) + \xi ^n \Bigr ],\quad t\in [0,T]. \end{aligned}$$

Now Lemma 3.5 shows that \(X^n \in {\mathrm {D}}\) since \(\{{\mathcal {E}}_t\}_{t \in [0,T]}\) is regular and \((g^n,\xi )\) is a BNEE parameter by Lemma A.4. \(\square \)

Lemma A.6

The family \({\mathcal {Q}}\) defined in (4.1) is uniformly tight.

Proof

Since \(\mu \) and \(\sigma \) are bounded, this is a consequence of the moment criterion for tightness on Wiener space; see Corollary 16.9 in Kallenberg [23]. \(\square \)

Lemma A.7

With \(f^n\) defined in (5.2), \(\{(\varDelta ^n, f^n, \xi )\}_{n \in {\mathbb {N}}}\) is \((f_c,\xi )\)-exhausting.

Proof

By (A2) it follows immediately that the Lipschitz condition (3.7) holds true, and thus it remains to prove (3.8). For any Y in \({\mathrm {S}}\), (A3) implies \(f^n(t,Y_t) \rightarrow f_c(t,Y_t)\) for \({\mathrm {d}}t\)-a.e. \(t \in [0,T]\) since \(c_{t}^n \rightarrow c_t\) for \({\mathrm {d}}t\)-a.e. \(t \in [0,T]\). Note that (A1) and (A2) imply that for all \(\varDelta \ge 0\)

$$\begin{aligned} \Vert f^\varDelta ( c, u)\Vert _{{\mathrm {L}}} \le C_0(1+\Vert c\Vert _{{\mathrm {L}}}+\Vert u\Vert _{{\mathrm {L}}})\quad \text {for all }c,u\in {\mathrm {L}}_T \end{aligned}$$
(A.1)

where \(C_0\triangleq h(T) + L + \Vert f(0,0)\Vert _{{\mathrm {L}}}\). In particular, we have

$$\begin{aligned} \Vert f^n(t, Y_t) - f_c(t, Y_t)\Vert _{\mathrm {L}}\le C_0 (2+ \Vert c_t\Vert _{{\mathrm {L}}} + \Vert c^n_t\Vert _{{\mathrm {L}}} +2 \Vert Y\Vert _{{\mathrm {S}}}). \end{aligned}$$

Hence Vitali’s theorem yields

$$\begin{aligned} {\textstyle \sum _{k=0}^{N_n -1}} {\textstyle \int _{t_k^n}^{t_{k+1}^n}} \Vert f_c(s, Y_s) - f^n(t_k^n, Y_s) \Vert _{{\mathrm {L}}}\, {\mathrm {d}}s \rightarrow 0 \end{aligned}$$

for all \(Y \in {\mathrm {S}}\), establishing (3.8). \(\square \)

Lemma A.8

(A priori estimate) For each \(n\in {\mathbb {N}}\), let \(U^n\) be the discrete-time recursive utility process defined in (5.1). There is a constant \(C_1>0\) such that for all but finitely many \(n\in {\mathbb {N}}\), we have

$$\begin{aligned} \max _{k=0,\ldots ,N_n}\Vert U^n_k\Vert _{{\mathrm {L}}} \le C_1 \bigl (1 + \Vert \xi \Vert _{{\mathrm {L}}} + \Vert c\Vert _{{\mathrm {P}}} \bigr ). \end{aligned}$$

Proof

For every \(k = 0,\ldots ,N_n-1\) we have

$$\begin{aligned} U^n_k = {\mathcal {E}}_{t_k^n} \left[ \varDelta _k^n f^{\varDelta _k^n} (c_{t_k^n }^n, {\mathcal {E}}_{t_k^n} [U^n_{k+1}]) + U_{k+1}^n \right] \end{aligned}$$
(A.2)

by (SI) and therefore

$$\begin{aligned} \Vert U_k^n\Vert _{{\mathrm {L}}} \le (1+C_0 \varDelta ^n_{k})\Vert U_{k+1}^n\Vert _{{\mathrm {L}}} + C_0 \varDelta ^n_{k}\bigl ( 1+ \Vert c_{t_k^n}^n\Vert _{{\mathrm {L}}} \bigr ) \end{aligned}$$

by the projection property (2.3), the triangle inequality and (A.1). Iterating this and using \(1+x\le e^x\) we obtain

$$\begin{aligned} \Vert U_k^n\Vert _{{\mathrm {L}}}&\le e^{C_0T} \Vert \xi \Vert _{{\mathrm {L}}} + C_0 e^{C_0T}{\textstyle \sum _{l=0}^{N_n-1}} \varDelta ^n_{l} (1 + \Vert c_{t_l^n}^n\Vert _{{\mathrm {L}}}). \end{aligned}$$

Since \(\sum _{l=0}^{N_n-1} \varDelta ^n_{l} \Vert c_{t_l^n}^n\Vert _{{\mathrm {L}}} \rightarrow \Vert c\Vert _{{\mathrm {P}}}\) the proof is complete. \(\square \)

Regularity for classical G-expectations

Classical, non-random G-expectations as developed in Peng [35, 36] and Denis et al. [11] are subsumed in the random G-expectation framework of Sect. 4 as the special case where \(\mu =0\) and \(\sigma (r,X,\nu _r)=\nu _r\). Hence classical G-expectations are regular by Theorem 4.4. This appendix provides an alternative, simpler approach to establishing regularity of G-expectations.

We denote by \(B_s(\omega ) = \omega (s)\) the canonical process on \(\varOmega _t\). We write \(C_\text {lLip}({\mathbb {R}}^{d\times n})\) for the space of all functions \(\varphi : {\mathbb {R}}^{d\times n} \rightarrow {\mathbb {R}}\) such that

$$\begin{aligned} |\varphi (x) - \varphi (y)| \le C (1+ |x|^k+ | y|^k) |x - y|\quad \text {for all } x,y \in {\mathbb {R}}^{d\times n} \end{aligned}$$

for some \(k,C>0\). In the following, we outline the construction of G-expectations and the associated appropriate domain \({\mathscr {L}}= \{ ({\mathrm {L}}_t, \Vert {\cdot }\Vert _{{\mathrm {L}}})\}_{t \in [0,T]}\). First, we define the G-expectation for members of the increasing family \(\{{\mathcal {H}}_t\}_{t \in [0,T]}\) of cylindrical random variables

$$\begin{aligned} {\mathcal {H}}_t \triangleq \bigl \{ \varphi (B_{t_1}, \ldots , B_{t_n}) \, :\, n \in {\mathbb {N}},\ t_1, \ldots t_n \in [0,t],\ \varphi \in C_\text {lLip}({\mathbb {R}}^{d\times n}) \bigr \}. \end{aligned}$$

For this, fix a function \(G: {\mathbb {S}}_d \rightarrow {\mathbb {R}}\) of the form

$$\begin{aligned} G(A) = \tfrac{1}{2}\sup _{\gamma \in \varGamma } {{\mathrm{{\mathrm {tr}}}}}[\gamma \gamma ^\top A],\quad A\in {\mathbb {S}}^d, \end{aligned}$$

where \(\varGamma \subset {\mathbb {R}}^{d \times d}\) is bounded, non-empty and closed, and \({\mathbb {S}}_d\) denotes the set of symmetric \(d\times d\) matrices. The sublinear expectation \(\{{\mathcal {E}}^G_t\}_{t\in [0,T]}\) (the G-expectation) is defined on \(\{{\mathcal {H}}_t\}_{t\in [0,T]}\) by the condition that, for each \(\varphi \in C_\text {lLip}({\mathbb {R}}^{d\times n})\) and all \(0 \le t_1 \le \cdots \le t_n \le T\), we have

$$\begin{aligned} {\mathcal {E}}^G_{t_{n-1}} \bigl [\varphi (B_{t_1}, B_{t_2}, \ldots , B_{t_n}- B_{t_{n-1}}) \bigr ] = \psi (B_{t_1}, \ldots , B_{t_{n-1}}), \end{aligned}$$
(B.1)

where \(\psi (x_1, \ldots , x_{n-1}) \triangleq {\mathcal {E}}^G[ \varphi (x_1, x_2, \ldots , \sqrt{t_n -t_{n-1}} B_1)]\). Here \(B_1\) is G-normal, i.e. for each \(\varphi \in C_\text {lLip}({\mathbb {R}}^{d})\) one defines \({\mathcal {E}}^G[\varphi (x+ \sqrt{t} B_1)]\triangleq u(t,x)\) where u is the unique continuous viscosity solution of the G-heat equation

$$\begin{aligned} u_t - G(u'') = 0, \quad u(0,{\cdot }) = \varphi . \end{aligned}$$

Next, for each \(t \in [0,T]\) let \({\mathrm {L}}_t\) denote the closure of \({\mathcal {H}}_t\) with respect to the norm \(\Vert {\cdot }\Vert _{{\mathrm {L}}} = {\mathcal {E}}^G[|{\cdot }|]\). Denis et al. [11] show thatFootnote 8 there exists a weakly compact family \({\mathcal {Q}}\) of \(\sigma \)-additive probability measures on \((\varOmega ,{\mathcal {F}})\) such that

$$\begin{aligned} {\mathcal {E}}^G[X] = \sup _{{\mathbb {Q}}\in {\mathcal {Q}}} {{\mathrm{{\mathrm {E}}}}}^{\mathbb {Q}}[X] \quad \text {for all } X \in {\mathcal {H}}_T \end{aligned}$$

and identify the Banach space \({\mathrm {L}}_T\) as a subspace of the space of measurable functions \(\varOmega \rightarrow {\mathbb {R}}\), modulo equality \({\mathcal {Q}}\)-quasi surely. Thus \({\mathscr {L}}= \{ ({\mathrm {L}}_t, \Vert {\cdot }\Vert _{{\mathrm {L}}})\ : \, t \in [0,T]\}\) is an appropriate domain for \(\{{\mathcal {E}}^G_t\}_{t \in [0,T]}\).

Given the above construction of the appropriate domain \({\mathscr {L}}\), we can now show that G-expectations are regular in the sense of Definition 3.2.

Lemma B.1

Let \(\xi = \varphi (B_{t_1}, \ldots B_{t_n}) \in {\mathcal {H}}_T\) where \(\varphi \) is bounded and Lipschitz continuous. Then there exists a constant \(K>0\) such that

$$\begin{aligned} \bigl \Vert {\mathcal {E}}^G_s[\xi ] - {\mathcal {E}}^G_t[\xi ]\bigr \Vert _{{\mathrm {L}}} \le K |s-t|^{\frac{1}{2}} \quad \text {for all }s,t\in [0,T]. \end{aligned}$$

Proof

Let \(L>0\) denote the Lipschitz constant of \(\varphi \) and let \(0\le t < s \le T\). Without loss of generalityFootnote 9 we may assume that \(t_i = s < t =t_j\) for \(1 \le i < j \le n\). Iterating (B.1) we see that \({\mathcal {E}}^G_{t_k} [\xi ] = \psi ^k (B_{t_1}, \ldots , B_{t_k})\), where \(\psi ^{n} \triangleq \varphi \),

$$\begin{aligned} \psi ^k(x_1, \ldots , x_k) \triangleq {\mathcal {E}}^G\bigl [\psi ^{k+1} (x_1, \ldots , x_k, \sqrt{t_{k+1}- t_k} B_1 + x_k)\bigr ], \quad k= n-1, \ldots , 1, \end{aligned}$$

and each \(\psi ^k\) has the same Lipschitz constant L as \(\varphi \). Thus

$$\begin{aligned} \bigl | {\mathcal {E}}^G_{t_{k}}[\xi ] - {\mathcal {E}}^G_{t_{k-1}}[\xi ] \bigr | \le | B_{t_{k}} - B_{t_{k-1}} | + \sqrt{t_k - t_{k-1}} {\mathcal {E}}^G[|B_1|]. \end{aligned}$$

Hence writing \(j = i+k\) we have

$$\begin{aligned} \bigl |{\mathcal {E}}^G_s[\xi ] - {\mathcal {E}}^G_t[\xi ]\bigr | \le L{\textstyle \sum _{\ell =1}^{k}} \bigl ( | B_{t_{i+ \ell }} - B_{t_{i+\ell -1}}| + \sqrt{t_{i+\ell } - t_{i+\ell -1}} {\mathcal {E}}^G[|B_1|] \bigr ). \end{aligned}$$

Note that \(t_{i+\ell } - t_{i+ \ell -1} \le |s-t|\) so that

$$\begin{aligned} \bigl |{\mathcal {E}}^G_s[\xi ] - {\mathcal {E}}^G_t[\xi ]\bigr | \le L {\textstyle \sum _{\ell =1}^{k}} | B_{t_{i+ \ell }} - B_{t_{i+\ell -1}}| + k L \sqrt{|s-t|} {\mathcal {E}}^G[|B_1|]. \end{aligned}$$

By (B.1) we have \({\mathcal {E}}^G[|B_{u+ \varDelta } - B_u|] = \varDelta ^\frac{1}{2} {\mathcal {E}}^G[|B_1|]\). Since \(|B_1| \in {\mathcal {H}}_T\) we have \(c \triangleq {\mathcal {E}}^G[|B_1|]<\infty \) and therefore

$$\begin{aligned} {\mathcal {E}}^G\bigl [|{\mathcal {E}}^G_s[\xi ] - {\mathcal {E}}^G_t[\xi ]| \bigr ] \le L(k+1) |s-t|^\frac{1}{2} c, \end{aligned}$$

and the proof is complete. \(\square \)

Corollary B.2

(Regularity of classical \(\varvec{G}\)-expectations) The classical G-expectation is a regular nonlinear expectation.

Proof

The collection \(M \subset {\mathrm {L}}_T\) of all \(\xi = \varphi (B_{t_1}, \ldots B_{t_n}) \in {\mathcal {H}}_T\) where \(\varphi \) is bounded and Lipschitz continuous is dense in \({\mathrm {L}}_T\) by weak compactness of \({\mathcal {Q}}\). For every \(\xi \in M\) the map \(t \mapsto {\mathcal {E}}^G_t[\xi ]\) is uniformly continuous by Lemma B.1. Hence Lemma A.3 applies. \(\square \)

Remark B.3

If we are given a continuous and positively homogeneous function \(\tilde{G}:{\mathbb {S}}_d\rightarrow {\mathbb {R}}\) that is dominated by G in the sense that

$$\begin{aligned} \tilde{G}(A) - \tilde{G}(B) \le G(A-B),\qquad A,B\in {\mathbb {S}}_d, \end{aligned}$$

a similar construction as above leads to a fully nonlinear \(\tilde{G}\)-expectation \(\{{\mathcal {E}}^{\tilde{G}}_t\}_{t\in [0,T]}\) on \({\mathscr {L}}\) defined in terms of \(\tilde{G}\). By construction, \(\{{\mathcal {E}}^{\tilde{G}}_t\}_{t\in [0,T]}\) is dominated by \(\{{\mathcal {E}}^{G}_t\}_{t\in [0,T]}\) in the sense of Definition 2.4. Nonlinear expectations of this form have been introduced by Peng [37] and Guo et al. [19]. One can verify as in Lemma B.1 and Corollary B.2 that \(\{{\mathcal {E}}^{\tilde{G}}_t\}_{t\in [0,T]}\) is regular, i.e. our results also apply to \(\tilde{G}\)-expectations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belak, C., Seiferling, T. & Seifried, F.T. Backward nonlinear expectation equations. Math Finan Econ 12, 111–134 (2018). https://doi.org/10.1007/s11579-017-0199-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-017-0199-7

Keywords

Mathematics Subject Classification

JEL Classification

Navigation