Skip to main content
Log in

Mesoscopic neuron population modeling of normal/epileptic brain dynamics

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Simulations of EEG data provide the understanding of how the limbic system exhibits normal and abnormal states of the electrical activity of the brain. While brain activity exhibits a type of homeostasis of excitatory and inhibitory mesoscopic neuron behavior, abnormal neural firings found in the seizure state exhibits brain instability due to runaway oscillatory entrained neural behavior. We utilize a model of mesoscopic brain activity, the KIV model, where each network represents the areas of the limbic system, i.e., hippocampus, sensory cortex, and the amygdala. Our model initially demonstrates oscillatory entrained neural behavior as the epileptogenesis, and then by increasing the external weights that join the three networks that represent the areas of the limbic system, seizure activity entrains the entire system. By introducing an external signal into the model, simulating external electrical titration therapy, the modeled seizure behavior can be ‘rebalanced’ back to its normal state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bertram E (2007) The relevance of kindling for human epilepsy. Epilepsia 48(2):65–74

    Article  PubMed  Google Scholar 

  • Chakravarthy N, Sabesan S, Iasemidis LD, Tsakalis K (2007) Controlling synchronization in a neuron-level population model. Int J Neural Syst IJNS 17(2):123–138

    Article  Google Scholar 

  • Chang HJ, Freeman WJ, Burke BC (1998) Optimization of olfactory model in software to give 1/f power spectra reveals numerical instabilities in solution governed by aperiodic (chaotic) attractor. Neural Netw 11:449–466

    Article  PubMed  Google Scholar 

  • Chavez M, Le Van Quyen M, Navarro V, Baulac M, Martinerie J (2003) Spatio-temporal dynamics prior to neocortical seizures: amplitude versus phase couplings. IEEE Trans Biomed Eng 50(5):571–583

    Article  PubMed  Google Scholar 

  • Faul S, Boylan G (2005) An evaluation of automated neonatal seizure detection methods. Clin Neurophysiol 116(7):1533–1541

    Article  PubMed  Google Scholar 

  • Freeman WJ (1962) Alterations in prepyriform evoked potential in relation to stimulus intensity. Exp Neurol 6:70–84

    Article  CAS  PubMed  Google Scholar 

  • Freeman WJ (1972) Waves, pulses and the theory of neural masses. Progr Theor Biol 2:87–165

    Article  Google Scholar 

  • Freeman WJ (1975) Mass action in the nervous system. Academic Press, New York

    Google Scholar 

  • Freeman WJ (1986) Petit mal seizure spikes in olfactory bulb and cortex caused by runaway inhibition after exhaustion of excitation. Brain Res Rev 11:259–284

    Article  Google Scholar 

  • Freeman WJ (2000) How brains make up their minds. Columbia University Press, New York

    Google Scholar 

  • Freeman WJ (2004) Origin, structure, and role of background EEG activity. Part 2 amplitude. Clin Neurophysiol 115:2089–2107

    Article  PubMed  Google Scholar 

  • Freeman WJ (2006) Origin, structure, and role of background EEG activity. Part 4 neural frame simulation. Neurophysiology 117:572–589

    Article  Google Scholar 

  • Freeman WJ, Zhai J (2009) Simulated power spectral density (PSD) of background electrocorticogram (ECoG). Cognit Neurodyn 3(1):97–103

    Article  Google Scholar 

  • Freeman WJ, Chang H, Burke B, Rose P, Badler J (1997) Taming chaos: stabilizing aperiodic attractors by noise. IEEE Trans Circuits Syst 44:987–996

    Article  Google Scholar 

  • Freeman WJ, Holmes MD, West GA, Vanhatalo S (2006) Dynamics of human neocortex that optimizes its stability and flexibility. Int J Intell Syst 21:1–21

    Article  Google Scholar 

  • Good LB, Sabesan S, Marsh ST, Tsakalis K, Treiman D, Iasemidis L (2009) Control of synchronization of brain dynamics leads to control of epileptic seizures in rodents. Int J Neural Syst 19(3):173–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilin R, Kozma R (2006) Stability of coupled excitatory-inhibitory neural populations & application to control multistable systems. Phys Lett A 360:66–83

    Article  CAS  Google Scholar 

  • Jensen HJ (1998) Self-organized criticality: emergent complex behavior in physical and biological systems. Cambridge University Press, New York

    Book  Google Scholar 

  • Karceski S (2007) Electrical stimulation devices in the treatment of epilepsy. Acta Neurochir Suppl 97(2):247–259

    Article  CAS  PubMed  Google Scholar 

  • Kerrigan JF, Litt B, Fisher RS, Crantoun S, French JA, Blum DE, Dichter M, Shetter A, Baltuch G, Jaggi J, Krone S, Brodie MA, Rise M, Graves N (2004) Electrical stimulation of the anterior nucleus of the thalamus for the treatment of intractable epilepsy. Epilepsia 45(4):346–354

    Article  PubMed  Google Scholar 

  • Kozma R (2003) On the constructive role of noise in stabilizing itinerant trajectories. Chaos Spec Issue Chaotic Itiner 13(3):1078–1090

    Google Scholar 

  • Kozma R, Freeman WJ (2001) Chaotic resonance—method and applications for robust classification of noisy and variable patterns. Int J Bifurc Chaos 11:1607–1629

    Article  Google Scholar 

  • Kozma R, Freeman WJ, Erdi P (2003) The KIV model—nonlinear spatio-temporal dynamics of the primordial vertebrate forebrain. Neurocomputing 52–54:819–826

    Article  Google Scholar 

  • Kozma R, Aghazarian H, Huntsberger T, Tunstel E, Freeman WJ (2007) Computational aspects of cognition and consciousness in intelligent devices. IEEE Comput Intell Mag 2(3):53–64

    Article  Google Scholar 

  • Lesser RP, Lee HW, Webber WR, Prince B, Crone NE, Miglioretti DL (2008) Short-term variations in response distribution to cortical stimulation. Brain 131(6):1528–1539

    Article  PubMed  PubMed Central  Google Scholar 

  • Linster C, Gervais R (1996) Investigation of the role of interneurons and their modulation by centrifugal fibers in a neural model of the olfactory bulb. J Comput Neurosci 3:225–246

    Article  CAS  PubMed  Google Scholar 

  • Liu A, Hahn J, Heldt G, Coen R (1992) Detection of neonatal seizures through computerized EEG analysis. Clin Neurophysiol 82:30–37

    Article  CAS  Google Scholar 

  • Marrosu F, Santoni F, Pulighedda M (2003) Correlaton between GABA(A) receptor density and vagus nerve stimulation in individuals with drug resistant partial epilepsy. Epilepsy Res 55:59–70

    Article  CAS  PubMed  Google Scholar 

  • Myers MH, Kozma R, Freeman WJ (2008) Studies in synchronization in KIV model. In: Wang R et al (eds) Advances in cognitive neurodynamics, ICCN07, vol 2. Springer, Berlin, pp 207–211

    Google Scholar 

  • Osorio I, Frei MG, Sunderam S, Giftakis J, Bhavaraju NC, Schaffner SF, Wilkinson SB (2005) Automated seizure abatement in humans using electrical stimulation. Ann Neurol 57:258–268

    Article  PubMed  Google Scholar 

  • Richardson KA, Gluckman BJ, Weinstein SL, Glosch CE, Moon JB, Gwinn RP, Gale K, Schiff SJ (2003) In vivo modulation of epileptiform activity with radial hippocampal electric fields. Epilepsia 44:768–777

    Article  PubMed  Google Scholar 

  • Sunderam S, Gluckman B, Reato D, Bikson M (2010) Toward rational design of electrical stimulation strategies for epilepsy control. Epilepsy Behav 17(1):6–22

    Article  PubMed  Google Scholar 

  • Takeshita S, Sato YS, Bahar S (2007) Transitions between multistable states as a model of epileptic seizure dynamics. Phys Rev E 75:051925

    Article  Google Scholar 

  • Tsakalis K, Chakravarthy N, Iasemidis L (2005) Control of epileptic seizures: models of chaotic oscillator networks. In: Proceedings of the 44th IEEE conference on decision and control, and the european control conference, Seville, Spain, Dec 2005

  • Varela F, Lachaux J-P, Rodriguez E, Martinerie J (2001) The brain-web: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239

    Article  CAS  PubMed  Google Scholar 

  • Velazquez JL, Cortez MA, Carter Snead O III, Wennberg R (2003) Dynamical regimes underlying epileptiform events: role of instabilities and bifurcations in brain activity. Physica D 186:205–220

    Article  Google Scholar 

  • Yang HJ, Peng KR, Hu SJ, Liu Y (2007) Inhibiting effect of vagal nerve stimulation to seizures in epileptic process of rats. Neurosci Bull 23(6):336–340

    Article  PubMed  Google Scholar 

  • Zagon A, Kemeny AA (2000) Slow hyperpolarization in cortical neurons: a possible mechanism behind vagus nerve stimulation therapy for refractory epilepsy. Epilepsia 41(11):1382–1389

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark H. Myers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myers, M.H., Kozma, R. Mesoscopic neuron population modeling of normal/epileptic brain dynamics. Cogn Neurodyn 12, 211–223 (2018). https://doi.org/10.1007/s11571-017-9468-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-017-9468-7

Keywords

Navigation