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Abstract
Background Brain retraction causes great distortion that
limits the accuracy of an image-guided neurosurgery sys-
tem that uses preoperative images. Therefore, brain retraction
correction is an important intraoperative clinical application.
Methods We used a linear elastic biomechanical model,
which deforms based on the eXtended Finite Element
Method (XFEM) within a framework for brain retraction cor-
rection. In particular, a laser range scanner was introduced
to obtain a surface point cloud of the exposed surgical field
including retractors inserted into the brain. A brain retraction
surface tracking algorithm converted these point clouds into
boundary conditions applied to XFEM modeling that drive
brain deformation. To test the framework, we performed a
brain phantom experiment involving the retraction of tis-
sue. Pairs of the modified Hausdorff distance between Canny
edges extracted from model-updated images, pre-retraction,
and post-retraction CT images were compared to evaluate the
morphological alignment of our framework. Furthermore,
the measured displacements of beads embedded in the brain
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phantom and the predicted ones were compared to evaluate
numerical performance.
Results The modified Hausdorff distance of 19 pairs of
images decreased from 1.10 to 0.76 mm. The forecast error
of 23 stainless steel beads in the phantom was between 0
and 1.73 mm (mean 1.19 mm). The correction accuracy var-
ied between 52.8 and 100 % (mean 81.4 %).
Conclusions The results demonstrate that the brain retrac-
tion compensation can be incorporated intraoperatively into
the model-updating process in image-guided neurosurgery
systems.

Keywords Brain retraction · Extended finite element
method · Laser range scanner · Image-guided neurosurgery
system

Introduction

Image-guided neurosurgery systems (IGNS) are increasingly
being used in the operating room (OR) and have been shown
to improve surgical visualization and navigation as well as
reduce the postoperative tumor residual disease [1–3]. Brain
deformation may cause large inconsistencies between images
and real anatomy, which is a major source of the error in
IGNS [3–5] based on preoperative images. There are three
types of brain deformations classified according to their
causes. The first type is called brain shift, which is the ini-
tial tissue response to changes in the physical or chemical
environment inside the skull after opening the dura mater,
such as a decrease in intracranial pressure and loss of cere-
brospinal fluid (CSF). The second type is retraction, which
happens when neurosurgeons use retractors to stretch brain
tissue to establish a surgical approach [6,7]. When a resec-
tion is performed by a neurosurgeon, neighboring areas may
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collapse as a result of gravity or decreased local intracranial
pressure. So far, most studies to compensate for brain defor-
mation focused on the first type [3,5,8–19], in which the
topology of the brain does not change. However, retraction
and resection involve topological discontinuity, which have
been proven to be more challenging to correct. Thus, related
studies have been limited. Generally speaking, the above two
latter types of deformation followed by surgical operation
usually bring a larger error to IGNS than the first type, and
even make navigation totally unreliable. In addition, it is a
prerequisite of brain resection to first correct brain retraction
because it facilitates tumor access and removal. Therefore,
it is of great importance for positional accuracy of IGNS to
correct brain retraction.

Most strategies to compensate for intraoperative brain
shift fall into two categories: active intraoperative imaging
and preoperative image updating based upon the estimated
displacements derived from biomechanical models. The use
of intraoperative imaging devices, such as intraoperative MR
(iMR) [19,20] and intraoperative ultrasound [11,15], has
been shown to be somewhat costly, cumbersome, and unnec-
essarily time-consuming [21]. In contrast, alternative strate-
gies have been developed that employ biomechanical mod-
els based upon the finite element method (FEM) to warp
the preoperative images to reflect the brain shift. This tech-
nique takes advantage of limited intraoperative information
to create deformed images to compensate for brain shift at a
much lower cost than the approaches involving intraopera-
tive imaging. With regard to brain retraction, the problem of
using FEM is how to deal with tissue discontinuity. Ferrant
et al. [22] used a surface matching algorithm to find the retrac-
tion path from intraoperative iMR images, along which the
elements touched by the blades of a retractor were deleted,
and then updated the preoperative images. Miga et al. [13]
proposed a linear poroelastic model based on a consolida-
tion theory and represented the tissue discontinuity by split-
ting the mesh along existing nonconformal boundary edges
of the intraoperative iMR images to obtain the best jagged
topological discontinuity. The porcine experiments by their
team [23–25] confirmed that this model could recapture 66 %
of average tissue motion and reduce the maximum registra-
tion error by over 80 %. Sun et al. [26] also employed a linear
poroelastic model to correct brain retraction. They tracked
the retractors with two charge coupled device (CCD) cam-
eras mounted on an operating microscope, and then used an
iterative closest point algorithm to acquire the displacement
of the retractor. This model captured approximately 75 % of
the cortical motion during tissue retraction.

Actually, FEM cannot handle discontinuities directly and
requires one to realign the discontinuity with element bound-
aries based on mesh adaptation or a remeshing technique; the
topology of an initial mesh will be changed into a new mesh
that is conformed to the discontinuity [7,13,17,26]. On the

contrary, the eXtended Finite Element Method (XFEM) [27]
reverses this situation by adding a crack to deal with dis-
continuity. It generates a mesh without taking the crack into
account, and then based on the precise geometry of the crack;
it adds extra degrees of freedom (DOFs) to crack-related
nodes to handle a crack, or discontinuity. In this way, arbi-
trarily shaped cracks can be modeled without any remesh-
ing or mesh adaptation. Vigneron et al. [6,7,28,29] first
applied XFEM to a linear elastic model for the correction of
brain retraction. They registered intraoperative images from
iMR to preoperative images with the application of a non-
rigid image registration algorithm to gain boundary condi-
tions (BCs). Although their results showed that the mod-
ified Hausdorff distance from the edges of model-updated
images to images acquired by iMR was decreased, they only
gave a qualitative evaluation. Moreover, iMR scanning is still
required to calculate BCs, so this approach may unneces-
sarily prolong operation time and create extra expenses for
patients, which makes it unlikely to become widely available
in clinical applications.

In the aforementioned biomechanical model-based strate-
gies, cortical surface deformations for model-updated BCs
can be obtained by an intraoperative stereo vision (iSV) sys-
tem [26], a laser range scanner (LRS) [30–32], or an iMR
system [22,33]. The iSV system needs two CCD cameras
attached to the binocular optics of the operating microscope
with approximately 1-mm precision. The method of the iMR
system requires additional MR scanning after brain retrac-
tion. On the other hand, the LRS has been shown to be
a portable, easy-to-use, and cost-effective tool for tracking
brain retraction surfaces, especially for the inner sub-surface
of retractors inserted into the brain.

In this paper, we presented a new framework for the com-
pensation of retraction. A linear elastic biomechanical model
is built based on XFEM for an accurate representation of the
discontinuity. We utilized a LRS to capture sparse surface
point clouds of the surgical field including the outer part
and inner sub-surface of retractors inserted into the brain.
An innovative surface-tracking algorithm was then applied
to register the clouds of the retractors pre- and post-retraction
to calculate the displacement of the brain tissue directly con-
tacting with the retractors, which is used as estimated BCs
applied to XFEM modeling for driving its deformation. A
phantom experiment has shown that the framework we pre-
sented was feasible.

Materials and methods

Brain retraction correction framework

As shown in Fig. 1, the numbers represent the procedure
steps. In Steps 1 and 2, the craniotomy is performed, followed
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Fig. 1 An XFEM-based framework was used to correct brain retraction using a LRS. Steps 1–2 are done before the operation. All the intra-operation
procedures begin from Step 3 when the skull was opened, the dura mater was removed, and the retractors were inserted into the brain

by a brain shift caused by gravitational sag of brain tissue in
response to the craniotomy; the brain shift is assumed to have
been well estimated and is described in [14]. In Step 2, these
images are treated as pre-retraction images from which the
brain tissue can be segmented first in coarse segmentation
and later in fine segmentation. Then, the images are gen-
erated into a uniform hexahedral volumetric mesh. In Step
3, a brain retraction surface-tracking algorithm is used to
acquire the surface displacement of the brain tissue when
two retractors are inserted and stretched out. Step 4 is the
acquisition of BCs; one of the BCs is the surface displace-
ment of brain tissue, which is obtained in Step 3, and the
other is the zero displacement area of brain tissue. In Step
5, a linear elastic XFEM model is built. With BCs and the
biomechanical model available, Step 6 is used to initialize
and solve the XFEM equations to obtain the updated mesh,
which is used to warp the pre-retraction brain images by
a modified back-interpolation algorithm in Step 7 resulting
in the model-updated images. Details of Steps 3–7 will be
described in the following subsections.

Brain retraction surface-tracking algorithm

This brain retraction surface-tracking algorithm is used to
acquire surface movement of brain tissue in the operating

field intra-operatively after two retractors are inserted. The
acquired surface movement will be used as BCs to drive
model updating. The point clouds representing the post-
retraction surface of the retractors need to be registered to
those of pre-retraction so that the displacement of brain nodes
directly in contact with the retractors can be calculated.

Acquisition of retractor point cloud

A plane describing the position and orientation of retractors
and inter-hemispheric fissure was determined by a naviga-
tion probe [14]. The retractors were first inserted into the
brain tissue, vertical to the floor, and parallel to the direc-
tion of falx cerebrum. Before the retraction, the probe was
used to capture the coordinates of specific parts of the retrac-
tors, as shown in Step 1 of Fig. 2. The pre-retraction point
clouds of retractors were then constructed by using a com-
bination of the coordinates and the dimensions of the retrac-
tors. These coordinates could assist us in quickly locating the
pre-retraction point clouds of the retractors. With the aid of
the point clouds of retractors, elements that were cut by the
retractors and all related nodes were identified and then used
to initiate XFEM calculation.

During the brain retraction, the brain surface point clouds
including the inner V-shaped sub-surfaces of retractors can
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Fig. 2 Acquisition of retractor
point clouds before and after the
retractors are inserted. In Step 1,
the pre-retraction point cloud
can be tracked by a navigation
probe. In Step 2, the inner
V-shaped sub-surfaces of
retractors inserted into the brain
tissue were obtained by LRS
scanning. In Step 3, both pre-
and post-retractor point clouds
are transformed into the same
image space

be acquired at any time by scanning the exposed surgical
area of the tissue retraction using the LRS. Sometimes, LRS
cannot capture the whole geometric shapes of the retractors
because of partial obstruction of the laser. The point cloud
model of the retractors prepared beforehand can be rigidly
registered to the part captured by the LRS to augment the
part, as shown in Step 2 of Fig. 2.

The pre-retraction point clouds were transformed by trans-
formation matrix TRef-Img [14] from the reference frame
space to pre-retraction image space. The post-retraction point
clouds captured intra-operatively by LRS were also con-
verted from the LRS space to the pre-retraction image space
by transformation matrix TLRS-Img [14]. These two groups of
point clouds of the retractors were incorporated in the same
image space and can be used to calculate the displacement
of retractors, as shown in Step 3 of Fig. 2.

Point cloud registration

To calculate the displacement of retractors, a coherent point
drift (CPD) algorithm [34] was utilized to nonrigidly regis-
ter the post-retraction point clouds of retractors to the pre-
retraction ones. Considering the density of two point clouds,
the denser pre-retraction point clouds of retractors repre-
sented Gaussian mixture model (GMM), while the sparser
post-retraction point clouds acquired by LRS represented
sample data points of the denser point clouds. Hence, the
problem of point set registration was successfully trans-
formed into the problem of the Gaussian mixed density
estimation by estimating the probability distribution of the
denser pre-retraction point clouds on the basis of the ones of
the sparser post-retraction point clouds.

Based on the registration results, displacements of the
inner sub-surfaces of the retractors can be obtained. How-
ever, the displacements cannot be directly imposed on the
XFEM-based biomechanical model and should be moved a
distance equal to the thickness of the retractor in the direction
of retractor surface norm. Then, the displacements of nodes
in direct contact with the retractors were obtained and will
later be used in the brain biomechanical model as part of the
BCs.

Linear elastic model and solution of the XFEM equation

A linear elastic model is so far the simplest model and yet
sufficient for brain deformation estimation [8]. It treats the
brain as an isotropic tissue and defines it with a series of
partial differential equations. These differential equations are
mathematically solved by the following linear equation [14]:

Ka = P (1)

where P is the force vector, a is a nodal DOF vector, and
K is an XFEM stiffness matrix characterizing the properties
of the material. Matrix K is determined by two independent
parameters: Young’s modulus (E), which relates a material’s
response to tension or stretching, and Poisson’s ratio (ν),
which is the ratio of lateral contraction due to longitudinal
stretch.

Theoretically, FEM cannot handle discontinuity because
nodal shape functions (NSFs), which determines the biome-
chanical properties of nodes, are continuous functions [35].
XFEM improves FEM and adds extra DOFs to nodes that
are related to discontinuity. This improvement makes mesh
adaptation [36–38] or remeshing [39,40] unnecessary [41].
The XFEM displacement field is displayed as follows:
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Fig. 3 The schematic of XFEM. The nodes are shown as the red hollow
circle when elements are completely cut by the crack. When elements
are completely cut by the crack, all related nodes are shown as the red
solid square

uXFEM(x) =
∑

i∈I

ϕi (x)ui +
∑

j∈J

ϕ j (x)Hj (x)a j

+
∑

m∈M

ϕM (x)

(
4∑

l=1

Fl(x)C
l
k

)
(2)

where uXFEM is XFEM displacement. The first term on the
right-hand side represents the FEM displacement in which
I is the set of FEM nodes, ϕi are the FEM NSFs, and ui

are the FEM DOFs. Additional DOFs a j and cl
k are added to

set J and M to define discontinuity for XFEM. The set I is
composed of both nodes in set Jand set M as follows:

J,M ∈ I, J ∩ M = φ (3)

When elements are completely cut by the crack, all related
nodes shown as the red hollow circle in Fig. 3 form the set
J . To represent the discontinuous characteristics of set J ,
Heaviside step functions are added in the second term, which
are as follows:

H(x) =
{

1, (x − x∗) · en ≥ 0
−1, (x − x∗) · en ≤ 0

(4)

where x is the position of a point in set J, x∗ is the position
of the point on the crack that is closest to x, en is the outward
normal to the crack at x∗.

When elements are partially cut by the crack, the related
nodes shown as the red solid square in Fig. 3 form set M. In
the third term of Eq. (2), to represent the discontinuous char-
acteristics of M, Fl combine the radial and angular behavior
of the asymptotic linear elastic crack tip displacement, which
are as follows:

{Fl(r, θ)} =
{√

r sin
θ

2
,
√

r cos
θ

2
,

√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

}
(5)

where r and θ are the normal and direction vectors of the
position of a point x of set M , respectively.

Acquisition of BCs

To achieve a unique solution to the XFEM equations (1), two
types of BCs need to be determined and imposed. One is
the zero displacement BC, which is traction and stress free.
The zero displacement area of brain tissue is described as the
location of the brain stem and manually selected by expe-
rienced doctors. The other type of BC is the displacement
of certain crack-related nodes in the operating field where
two retractors are inserted into brain issue. This BC can be
calculated by the brain retraction surface-tracking algorithm.
These two types of BCs are imposed to the XFEM-based lin-
ear elastic model to achieve a unique solution and updated
mesh, from which the displacement of all nodes and crack-
related information can be obtained.

Biomechanical model updating

The updated mesh will be exploited by the modified back-
interpolation algorithm, which is not only able to warp
the pre-retraction images and use ray casting to visualize
them [41,42], but also able to recognize the crack gener-
ated by brain retraction. Regarding crack representation, our
modified algorithm can discriminate two level sets [41,42].
One level set ψ represents the distance from the position of
a node to the position of a point on the crack that is closest to
this node. The other level set φ represents the distance from
the position of a node to the position of a point on the crack
tip. The representation of a crack includes two level sets only
when the crack ends within the node support. This algorithm
translated them into a shape of discontinuity in the updated
images.

Evaluation

A phantom experiment similar to [31,43] was conducted to
quantify the fidelity of our XFEM-based framework and to
quantitatively validate retractor-induced brain deformation.
One brain phantom (1.5 kg) shown in Fig. 4 was made in the
University of Science and Technology Beijing (USTB).

PVA-C as polymer becomes harder with an increase in
the number of freeze–thaw cycles. It is manifold, notable for
building biological tissue-mimicking phantoms [44]. Previ-
ous PVA-C phantom studies have employed 6 % by weight
PVA and have yielded Young’s modulus values ranging from
2.5 to 5.4 kPa through changing of the number of freeze-
thaw cycles [43]. Referencing on the similar method [43],
the 6 % solution of PVA with three freeze–thaw cycles was
used to construct brain phantom. The brain phantom achieved
Young’s modulus value of 3 kPa, which is similar to elasticity
parameters of the actual brain tissue [14,17,18]. Therefore,
we use Young’s modulus value of 3 kPa in the finite element
analysis.
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Fig. 4 The brain phantom was fixed in one Plexiglas box with five
fiducial landmarks. It has a similar shape to the human brain and similar
linear elastic parameters of Young’s elasticity modulus and Poisson’s
ratio as the human brain to ensure that the phantom has the similar
elastic behavior as the brain

It is hard to seek to obtain Poisson’s ratio of soft PVA-C
materials, because soft materials have different deformation
behavior where the deforming pattern is irregular and point-
wise [45]. In earlier work, authors [46] measured Poisson’s
ratio of PVA-C under different experimental conditions and
the results indicated the Poisson’s ratio value ranges from
0.42 to 0.45. We made several experiments using different
Poisson’s ratio ranging from 0.42 to 0.45 and found that the
results were not affected by different Poisson’s ratio. Thus,
Poisson’s ratio of 0.45 was used in XFEM analysis.

This phantom has nearly a linear stress–strain curve within
deformation of <20 %, so it can model an isotropic linear
elastic material, which is characterized by two parameters:
Young’s elasticity modulus and Poisson’s ratio [35]. Dur-
ing the experiment, this phantom was fixed on its bottom
face in one Plexiglas box with five fiducial landmarks and
deformed with a uniform force distributed along the super
midline on the top face, resulting in the geometric coinci-
dence of fissure and retractors. The retractors were inserted
in the regions of the frontal and parietal lobe. To detect tis-
sue retraction, 23 stainless steel beads (1.5 mm in diameter)
were embedded into the phantom. 4, 12 and 7 beads were
placed in the frontal, parietal, and occipital lobes, respec-
tively. Twenty-one of the beads were placed in the shallow
brain tissue except that both 22nd and 23rd beads were in
deep brain tissue. These embedded beads moved together
with the brain tissue, and they worked as the sampling points
in the brain tissue when measuring the displacement from
retraction. CT images after retraction of the phantom (using
a Siemens SOMATOM Definition AS, spiral mode) and the
beads in these images could then serve as a basis of com-
parison with the model-updated images acquired from our
framework. These images were reconstructed into a spatial
resolution of 512 × 512 × 421 mm3 with a voxel size of
1×1×1 mm3. A 14-mm-wide Plexiglas retractor blade simu-

lating NA20010 (JZ Surgical Instruments, Shanghai, China)
was used to stretch out the brain phantom.

Model-updated images and the post-retraction CT images
could be registered into the same pre-retraction image space
in the IGNS system and compared together to evaluate the
accuracy of our framework. We used three quantitative crite-
ria. One was to calculate the forecast error defined in formula
(6), which is the Euclidean distance between the positions
of corresponding beads separately in these two groups of
images; the second was the correction accuracy defined in
Eq. (7).

Forecast Error = ∥∥Cmodel-updated − Cpost-retraction
∥∥

2 (6)

Correction Accuracy = (
1−∥∥Cmodel−updated−Cpre-retraction

∥∥
2

/
∥∥Cpost-retraction − Cpre-retraction

∥∥
2

)

× 100 % (7)

where Cpre-retraction,Cmodel-updated, and Cpost-retraction stands
for the beads’ coordinates in the pre-retraction, model-
updated, and post-retraction CT images, respectively.

The third criterion was used to evaluate the edge align-
ment of the brain contour by our framework morphologi-
cally. Here, the modified Hausdorff distances based on Canny
edges extracted from pre-retraction CT, post-retraction CT,
and model-updated images were computed. The modified
Hausdorff distance [47] H (A, B) between two sets of points
A and B is defined as:

H (A, B) = max (h (A, B) , h (B, A)) (8)

where h (A, B) is the directed Hausdorff distance, which is
a measure of the distance from point set A to point set B.

Results

Figure 5 is a pictorial representation of the distribution of
BCs for a volume mesh description of the phantom. It illus-
trates various zones within the model that support different
boundary data. In the region of the craniotomy in the mod-
eled fissure, the displacements of surface in contact with
the retractor are calculated by the brain retraction surface-
tracking algorithm. In the region of the bottom area of the
phantom, traction-free conditions have been prescribed with
no drainage.

Two retractors were inserted into the brain phantom and
stretched separately to the right with a maximum distance
of 7.0 mm and to the left with a maximum distance of
6.3 mm, respectively. Figure 6 briefly illustrates the work-
flow of our XFEM-based framework in three dimensions.
Figure 6b shows that the maximum displacement is found
just around the crack.

Figure 7 illustrates the displacements of the 23 beads
implanted into the brain phantom from the updated images

123



Int J CARS (2014) 9:669–681 675

Fig. 5 Graphic illustration of BCs. The orange, higher dense section of points indicates two types of BCs imposed to the XFEM-based linear
elastic model

Fig. 6 The workflow of our XFEM brain retraction correction frame-
work. a Uniform pre-retraction hexahedral mesh (10,675 nodes and
9,316 elements) with retractors on the surgical path. b Updated mesh
with color coding corresponding to different magnitudes of displace-

ment (red indicates the maximum, blue indicates the minimum). c
Three-dimensional surface rendering of updated images by ray-casting
algorithm

and post-retraction CT images. It indicates that the XFEM-
based brain deformation displacement ranges from 1.41 to
6.32 mm, and the actual deformation displacement is from
1.41 to 5.39 mm. The trend of these two displacement curves
is the same, and the red curve (our framework) can predict
the retraction deformation well.

Figure 8 shows comparisons of bead locations in the pre-
retraction CT images, measured from the post-retraction CT

images and calculated by our framework in orthogonal views.
It gives a detailed pictorial analysis about our framework’s
forecast ability and accuracy. Figure 8a indicates a coro-
nal view (X–Y plane) comparison between pre-retraction and
measured or calculated bead locations. Figure 8b compares
bead displacements from pre-retraction to measured and cal-
culated in the axial view (X–Z plane). From Fig. 8a, b; in
the left side of the retractors, beads calculated tend to move
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Fig. 7 A comparison between
the actual displacements of 23
beads implanted into the brain
phantom (from post-retraction
CT images) and the predicted
ones (from the XFEM-based
framework). The red square
indicates predicted
displacements using our
framework. The blue diamond
indicates the actual deformation
displacements
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Fig. 8 Results of 23 pre-retraction, measured and computed bead loca-
tions presented in orthogonal views. a Coronal view (X–Y plane) com-
parison between pre-retraction and measured or calculated bead trajec-
tories. Square preoperative, x measured, o calculated. b Axial view (X–Z
plane) comparison between pre-retraction and measured or calculated

bead trajectories. Square pre-retraction, x measured, o calculated. The
initial retractor position is represented by the solid line in each plane
and the direction of retraction is shown in (a) and (b). c The forecast
error. d Correction accuracy

to the left and top, while in the right side of the retractors,
beads calculated tend to move to the right and bottom. The
forecast error is not focused on specific frontal, parietal and

occipital lobe regions. Figure 8c shows that the forecast error
varies between 0.0 and 2.0 mm (mean 1.19 mm). The fore-
cast errors of the 18th, 22nd, and 23rd beads which are far
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Fig. 9 Warped images updated by a the traditional back-interpolation algorithm and b the modified back-interpolation algorithm. c Intraoperative
images acquired by CT

Fig. 10 A comparison of a phantom contour in one pre-retraction CT
image, post-retraction CT image, and updated image. a One slice of pre-
retraction CT image. b Combination of the contour of the pre-retraction
CT slice (in white) with the corresponding one of the post-retraction CT
image (in green). c One slice of actual post-retraction CT image. d The

updated image of the same slice using our framework. e Juxtaposition
of contours of the same slice from the updated image (in red) and that
from the post-retraction CT image (in green). The yellow contour rep-
resents position where the red and green contours coincide with each
other

from the retractors and located in deep brain tissue are zeros.
Figure 8d illustrates that the correction accuracy between the
forecasted and actual results varies between 52.8 and 100 %
(mean 81.4 %). From Fig. 8c, d, the forecast errors have no
connection with the regions where the beads were embedded.

When warping pre-retraction images, the modified back-
interpolation algorithm could identify both nodal displace-
ments and crack-related information. Figure 9 illustrates
the differences between warped images by the traditional
back-interpolation (see Fig. 9a) and the modified back-
interpolation algorithm (see Fig. 9b). Figure 9c illustrates
the intraoperative images acquired by CT. The crack shapes
of Fig. 9a, c are obviously different, while those in Fig. 9b, c
are similar.

The modified Hausdorff distance decreased from 1.1 mm
for the set of edges extracted from 19 pre-retraction CT
images to 0.8 mm for the set of edges extracted from 19

updated images using our framework. Figure 10a shows one
slice of pre-retraction CT images. Figure 10c shows one slice
of an actual post-retraction CT image. Figure 10b combines
a phantom contour from a pre-retraction CT image with the
one from a post-retraction CT image. Figure 10d displays one
slice of the updated images using our framework. Figure 10e
juxtaposes the phantom contour from the updated image and
the actual brain retraction CT image in Fig. 10c. In Fig. 10b,
e, the updated images by our XFEM-based framework were
in accordance with the actual CT images.

Discussion

Brain retraction usually brings a large distortion to IGNS
or even makes the navigation system totally unreliable. Most
studies employed FEM-based biomechanical models to warp
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preoperative images to reflect brain retraction. However, it
is difficult for FEM to deal with tissue discontinuity, while
XFEM may be a good alternative. BCs at the retractor blade
surface can also be improved by introducing a LRS-based
method. These advances bode well for the model and its
ability to capture tissue deformation from complicated sur-
gical procedures such as retraction. A validation experiment
of tissue retraction has been completed using a brain phan-
tom. Detailed measurements of tissue motion were compared
with model calculations. Certainly, the 81.4 % motion recap-
ture rate found in our phantom experiment would constitute
a significant improvement over not using any form of tissue
motion compensation in the OR.

Our linear elastic biomechanical model was based on
XFEM, which adds extra DOFs to nodes related to discon-
tinuity. This improvement compared with FEM makes mesh
adaptation or remeshing unnecessary. Its first application by
Vigneron et al. [6,7] has shown great potential to success-
fully correct brain retraction and brain resection for IGNS.
In our framework, this novel method combined with the
LRS-based surface-tracking system could quickly identify
the information about brain retraction. It demonstrated an
improved accuracy without engaging intraoperative imaging
facilities.

In the work presented here, the application of LRS in neu-
rosurgery can track sufficient surface points of the retrac-
tors especially for the inner sub-surface of retractors inserted
into the brain and measure intraoperative brain retraction
surfaces in an automatic and rapid fashion instead of using
iMR images. Compared with serial iMR scanning, serial LRS
scanning did not prolong operation time or change operation
schedules. LRS is easy-to-use, cost-effective, and easy to
operate for tracking brain retraction surfaces. Furthermore,
the LRS unit could readily capture the surface points of the
retractors within the surgical field in the OR.

The accuracy of the BCs directly influenced the final accu-
racy and error of the framework. From Fig. 5, two distinct
displacement trajectories could be easily identified. From
Fig. 8a, b, the calculated locations of beads in the left side tend
to be left and top, while those in the right side tend to be right
and bottom. This phenomenon, no doubt, rose by the slight
distortions of the BCs. Moreover, the locations of beads and
voxel size of framework also took effect. In this framework,
two types of BCs were employed; one was zero displacement
BCs, and the other was the displacement of certain directly
crack-related nodes. The center of two types almost lies in
the same axes (X axes in Fig. 5). Therefore, tissue along the
Z axes, from top to bottom of the phantom, moved from
maximum to zero displacement. Because the accuracy of our
biomechanical model heavily depended on the accuracy of
BCs, tissue that was near the bottom far away from the crack
moved only slightly, e.g., 0.5 mm. However, because of the
voxel size, the displacement captured by our framework was

artificially increased to 1.00 mm. The misalignment of beads
embedded in this area caused the accuracy in our framework
to decrease. Meanwhile the operator should use the probe
carefully when capturing the plane describing initial posi-
tion and orientation of the retractor to reduce the operative
error in the neurosurgical procedures.

Because the embedded beads moved together with the
brain tissue, we could numerically evaluate the effectiveness
of our framework through the displacement of these beads.
Unlike Platenik et al. [24,25], implanting beads only near
the inter-hemispheric fissure, our stainless steel beads were
embedded in a wide area including the frontal, parietal, and
occipital lobes. In addition, compared with previous in vivo
or in vitro experiments, more beads were used here. Based on
the coordinates of the beads, the forecast error indicated that
the coordinates of the same bead calculated by our frame-
work agree well with the ones measured from actual images.
The closer the distance was between two locations of the
same bead, the better accuracy was achieved by the frame-
work. However, this was not sufficient. The forecast error
did not take pre-retraction beads into account. The correc-
tion accuracy could distinctively represent the percentage of
the displacements of beads modeled by our framework to the
real situations.

Morphological evaluation is also critical for the evalua-
tion of our framework, so edge detection should be a better
choice. The modified Hausdorff distance method measured
morphological consistency based on the visual comparison
of slice contours. Similarly to Vigneron et al. [6,7], the edges
between model-updated images and post-retraction images
looked more like each other by their appearance. Moreover,
the numerical results of modified Hausdorff distances were
much smaller, which meant quantitatively that the numeri-
cal distance of these two pairs of edges decreased and our
framework showed an improved performance.

We found that the linear elastic model was not appropri-
ate when the framework was used to correct large retrac-
tion deformation (large displacement of more than 13 mm
in stretched zones near the retractor in surgery). It may be
because larger displacement results in larger discontinuity,
which is not in accordance with its theoretical foundations.
A nonlinear model such as the viscoelastic material model
may be more appropriate, and we plan to study on this model
in our future research.

We evaluated the XFEM framework by a brain phantom
experiment. Although the phantom simplified the evaluation
procedures of the experiment, it may be a little different from
a human brain retraction case. The phantom experiment has
two limitations: (1) the brain is confined to the skull, which
restricts the brain retraction deformation to some extent dur-
ing surgery, but there are no such confinements for the phan-
tom experiment; (2) the brainstem is not considered to move
during surgery, whereas the bottom area of the brain phantom
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Fig. 11 The pig experiment.
a Pig experiment scene. b The
updated mesh predicted by our
framework

fixed to the Plexiglas box has been treated as zero displace-
ment.

Our aim is to apply this framework to the clinical applica-
tion for patients. Further verification experiments have been
implemented on a few cases of pigs (shown in Fig. 11) after
being approved by the Institutional Animal Care and Use
Committee. We used intraoperative CT data to evaluate the
capability of the framework as a reference standard. The
results of pig experiments initially showed that the retrac-
tion deformations predicted by the present framework agree
well with the ones observed intraoperatively.

In the experiment, CT images used as the gold standard
had low resolution for soft tissue; therefore, it degraded our
brain segmentation performance. We plan to use iMR scan-
ning in the next experiments, which will improve the seg-
mentation algorithm.
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