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Abstract
COVID-19 epidemics exhibited multiple waves regionally and globally since 2020.
It is important to understand the insight and underlying mechanisms of the multiple
waves of COVID-19 epidemics in order to design more efficient non-pharmaceutical
interventions (NPIs) and vaccination strategies to prevent future waves. We propose a
multi-scale model by linking the behaviour change dynamics to the disease transmis-
sion dynamics to investigate the effect of behaviour dynamics onCOVID-19 epidemics
using game theory. The proposed multi-scale models are calibrated and key parame-
ters related to disease transmission dynamics and behavioural dynamics with/without
vaccination are estimated based on COVID-19 epidemic data (daily reported cases
and cumulative deaths) and vaccination data. Our modeling results demonstrate that
the feedback loop between behaviour changes and COVID-19 transmission dynamics
plays an essential role in inducing multiple epidemic waves. We find that the long
period of high-prevalence or persistent deterioration of COVID-19 epidemics could
drive almost all of the population to change their behaviours and maintain the altered
behaviours. However, the effect of behaviour changes fades out gradually along the
progress of epidemics. This suggests that it is essential to have not only persistent,
but also effective behaviour changes in order to avoid subsequent epidemic waves.
In addition, our model also suggests the importance to maintain the effective altered
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behaviours during the initial stage of vaccination, and to counteract relaxation of NPIs,
it requires quick and massive vaccination to avoid future epidemic waves.

Keywords COVID-19 epidemic · Multi-scale model · Multiple waves · Behavioural
change · Game theory

1 Introduction

The COVID-19 pandemic, a massive global health crisis, has been bringing a great
threat to global health. As of July 15, 2022, the new coronavirus (SARS-CoV-2) has
spread to over 200 countries with 557,917,904 confirmed cases and 6,358,899 deaths
(WHO 2022). The genetic variants of SARS-CoV-2, including Alpha variants, Delta
variants, Omicron variants, etc., have been altering the course of COVID-19 pandemic
(Walensky et al. 2021; Christensen et al. 2022; Abdool and de Oliveira 2021). Because
of the persistent increasing of transmissibility, newly emerged variants quickly spread
tomost part of theworld and replace the dominate strain (Shah et al. 2021; Krause et al.
2021). Furthermore, evidences were well documented to support that the continuous
variation of SARS-CoV-2 can significantly increase the risk of vaccines breakthrough
infections (Christensen et al. 2022).

During the last two years, many regions and countries experienced multiple epi-
demic waves or new outbreaks even with various non-pharmaceutical interventions
(NPIs) such as lockdown, keeping social distancing (WHO 2022) and widespread
availability of effective and safe vaccines (Krause et al. 2021). It is suspected that
the series of epidemic waves were due to the lifting of lockdown in order to revive
the economy. That is, the existing strategy is to interactively enhance and release the
NPIs, which can easily result in the resurgence of COVID-19 epidemics. Therefore,
the enhanced and persistent of the present NPIs are expected to avoid subsequent
waves (Hsiang et al. 2020; Kucharski et al. 2020; Worby et al. 2020), as which have
been demonstrated to be effective in mitigating the COVID-19 pandemic (Karatayeva
et al. 2020; Kucharski et al. 2020; Tang et al. 2020a; Du et al. 2020).

As we mentioned above, this public health crisis has required the comprehensive
NPIs and placed significant psychological burdens on individuals, which have defi-
nitely driven large-scale behaviour changes (Myers et al. 2020; Van Bavel et al. 2020;
Betsch 2020; Yin et al. 2021). Driven by the lifting or enhancing of NPIs or the shifting
of self-awareness of infection risks, human behaviour changes were proved to have
significantly influenced the transmission dynamics of infectious diseases. As pointed
out by Fergeson (2007), the prevalence or perceived risk-driven behaviour change
plays an important role in the spread of infectious diseases. In particular, the study
by Manfredi and d’Onofrio (2009) showed that human behaviour change might be a
critical explaining factor for oscillations in infectious disease endemics. A number of
models were formulated to investigate the interaction between behaviour changes and
resurgence of infections (Funk et al 2010; Verelst et al. 2016; Manfredi and d’Onofrio
2013; Poletti et al. 2009, 2012). Game theorywaswidely used to formulate the dynam-
ics of human behavioural changes, by assuming that individuals would make the best
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Fig. 1 Schematic diagram for coupling the COVID-19 transmission dynamics and behavioural change
dynamics

decisions based on a trade-off between two different strategies, adopting normal or
altered behaviours (Poletti et al. 2009, 2012; Jentsch et al. 2021).

Recently, there are several studies that examined the impact of behavioural changes
on COVID-19 epidemics, by assuming a constant proportion of the population choos-
ing to change their behaviours (Buonomo andDellaMarca 2020; Acuña-Zegarra et al.
2020), or including the reduced contact rate and/or the increased quarantine rate (Zhou
et al. 2020). In the study (Moyles et al. 2021), by dividing the population into three sta-
tuses with different level of social distancing, the authors presented many interesting
results on how the shifting of social distancing, driven by the measured active and total
cases as well as the perceived cost of isolating, affects the transmission dynamics of
COVID-19 in Ontario, Canada. In this study, we propose a new multi-scale model to
quantify the co-evolution of behaviour changes and COVID-19 epidemics to reveal the
insight and underlying mechanisms of multiple epidemic waves. Using the concept of
game theory for cost-benefit consideration of alternative decisions, we further identify
the key factors of behaviour change to mitigate the epidemics, and finally provide the
quantitative guidance for relieving NPIs with continuous vaccination.

2 Method

2.1 Model Formulation

We propose a co-evolution model linking the behavioural change dynamics to the
disease transmission dynamics (Fig. 1), which extends the model presented by Poletti
et al. (2009, 2012) and Jentsch et al. (2021). TheSEIRmodel ismodified to anSEIAHR

123



106 Page 4 of 31 B. Tang et al.

model to describe the transmission dynamics of COVID-19 considering that infective
individuals may suffer symptoms or no symptoms. In details, the total population N
is divided into susceptible individuals (S), exposed individuals (E), infectives with
symptoms (I ), asymptomatic infectives (A), confirmed and isolated individuals (H )
and symptomatic recovered individuals (RI ) and asymptomatic recovered individuals
(RA). As the confirmed population have limited social activities, we assume that they
immediately become isolated once confirmed, hence cannot transmit SARS-CoV-2
further during their infectious period. Because the asymptomatically infected individ-
uals show no symptoms, a large ratio of them weren’t tested and confirmed (Weitz
et al. 2020a; Subramanian et al. 2021). Therefore, we assume that the asymptomat-
ically infected individuals do not move to the confirmed and isolated class (H ) and
will recover directly (Weitz et al. 2020a; Subramanian et al. 2021).

Though only susceptible individuals are exposed to the risk of COVID-19 infection,
asymptomatically infected and recovered individuals who did not suffer symptoms
have no awareness of their infection, thus would behave similarly as suscepti-
ble individuals. Thus, in this study, we assume that the self-protection behaviours
can be adopted by not only susceptible individuals, but also asymptomatic infec-
tives and recovered individuals who did not experience symptoms. In contrast, we
assume that all symptomatic infected individuals would take the same actions (i.e.,
no behavioural changes in this class). Thus, in our model, individuals suffering no
symptoms (S, E, A, RA) are supposed to be able to reduce their susceptibility or infec-
tivity by changing behaviours in response to COVID-19 outbreaks. Thus, reduction of
contact rates or transmission probability (i.e., transmission rate) can be achieved by
adopting self-protective behaviours, such as limiting travels, keeping social distancing,
wearing masks, washing hands, etc.

Basically, an individual’s behaviour change is assumed to be driven by the evalu-
ation and comparison of payoffs between the two behaviours. With the cost-benefit
consideration, individuals are supposed to change their behaviours when they realize
that the other behaviour is more beneficial with low cost. The integrated co-evolution
model is the result of coupling two dynamic processes: the disease transmission pro-
cess and the behavioural change process, as illustrated in Fig. 1. The two processes
were modelled in two different time scales since the contacts related to the transmis-
sion of virus are physical person-to-person interactions, which is less frequently than
the contacts related to the spread of information, which could be accessed by tele-
phone, media and online, etc. Thus, we introduce two time-units: t as the time unit of
disease transmission and τ as the time unit of behavioural changes, and assume that
t = ετ , where ε is a scaling parameter. In this study, given the transmission dynamics
of COVID-19, we take the time unit t as day.

Disease Transmission Dynamics With the above assumptions, the susceptible,
exposed, asymptomatic infected and asymptomatic recovered individuals are divided
into two subclasses: individuals adopting the normal behaviour (Sn, En, An, RAn )
and individuals adopting the altered behaviour (Sa, Ea, Aa, RAa ). Then the model of
disease transmission process is given as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
n(t) = −λSn,
S′
a(t) = −qλSa,
E ′
n(t) = λSn − σ En,

E ′
a(t) = qλSa − σ Ea,

I ′(t) = �σ En + �σ Ea − (δI (t) + γI ) I ,
A′
n(t) = (1 − �) σ En − γA An,

A′
a(t) = (1 − �) σ Ea − γA Aa,

H ′(t) = δI (t)I − (α(t) + γH ) H ,

R′
I (t) = γI I + γH H ,

R′
An

(t) = γA An,

R′
Aa

(t) = γA Aa,

(1)

where λ = (βI I + βA An + qβA Aa)/N is the force of infection, which is com-
posed of three parts: the infection by symptomatic infected individuals (βI I/N ),
the infection by asymptomatic infected individuals adopting the normal behaviour
(βA An/N ), and the infection by asymptomatic infected individuals adopting the
altered behaviour (qβA Aa/N ). (βI , βA) are the transmission rates of symptomatic
infected and asymptomatic infected individuals, respectively. As behaviour changed,
the infectivity of asymptomatic infected individuals and the susceptibility of suscep-
tible individuals could be reduced. That is, the transmission rate related to the humans
with altered behaviours is lower than thosewith normal behaviours, where the parame-
terq(0 ≤ q ≤ 1) is the correspondingmultiplier factor of the reduction of transmission
rate due to alternative behaviours. 1/σ is the incubation period and � is the proba-
bility with symptoms after being infected. δI (t) is the time-varying diagnosis rate
of symptomatic infected individuals and α(t) is the time-dependent disease-induced
death rate. (γI , γA, γH ) are the recovery rates of symptomatic infected, asymptomatic
infected and confirmed individuals, respectively.

Behavioural Change Dynamics Models by integrating disease transmission
dynamics and behavioural change dynamics have been proposed to study the spread of
infectious diseases, including COVID-19 (Funk et al 2010; Verelst et al. 2016; Man-
fredi and d’Onofrio 2013; Poletti et al. 2009, 2012; Jentsch et al. 2021). The modeling
framework and concept of game theory were used to explain the behavioural change
dynamics during an outbreak of infectious diseases and their effects on the disease epi-
demics. Here we review and use these modeling frameworks and concepts to develop
our multi-scale models for COVID-19 epidemics.

Perceived Infection The perceived risk of infection contributes to the evolution
of human behavioural changes in response to the scare of being infected, which is
a comprehensive index describing the perceived information of the epidemic risk.
Usually, human behavioural changes appear to be compelled largely due to the lifting
and enhancing of NPIs. Therefore, the perceived infection (or information index) is
assumed to be stimulated by the self-awareness of the epidemic state and indirectly
stimulated by the NPIs implemented by the government. It is reasonable to assume
that the intensity of self-awareness is proportional to the number of daily reported
cases, with a response rate η1. The response function of the perceived infection to the
shifting of NPIs can be various forms following the patterns of the implementation
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of NPIs. For simplicity, we assume that it’s also proportional to the daily reported
cases with a response rate η2. And, the perceived infection (or information index) is
assumed to be faded through an exponentially memory fading mechanism. Thus, we
have the following equation:

M ′(t) = ηδI (t)I − νM, (2)

where M(t) is an information variable governing the signal available to individuals
as a function of daily reported cases, and η = η1 + η2 denotes the response rate of
self-awareness and NPIs on the number of newly confirmed cases. ν is the decay rate
of the perceived infection (or information index).

Payoffs The expected payoffs to adopt two different behaviours: normal behaviour
and alteredbehaviour,which canbe recognized as the negative of the costs, are assumed
to be linearly dependent on the perceived infection. In addition to the cost for the
risk of infection (which is assumed to be higher for normal behaviour), individuals
adopting altered behaviour pay an extra constant cost. Thus, the payoffs with the
normal behaviour and the altered behaviour are respectively:

Pn(t) = −mnM(t), Pa(t) = −k − maM(t) (3)

with mn > ma , where mn and ma are parameters related to the risk of infection by
adopting two different strategies and k is the extra cost of changing behaviours.

Imitation Process The dynamics of behavioural changes can be described by the
imitation dynamics, which is a learning process. Expected payoffs of two different
behavioural strategies are compared with each other and individuals may change strat-
egy when they become aware that their payoff can be increased if adopting another
behaviour. Denote 
P = Pn − Pa , then the imitation dynamics in a two-strategy
game can be described by

x ′ = ϑx(1 − x)φ
P = ωx(1 − x)
P, (4)

where x and 1 − x are the fractions of population performing the two strategies. � is
the rate at which individuals communicate with each other and φ is the probability of
changing decision. Then the sign of x ′ is determined by 
P , illustrating the changing
direction of behaviours (from normal to altered or from altered to normal). The imi-
tation process has no concern with the transition among epidemiological classes, but
only drives behaviour changing. Hence encounters between individuals in the imita-
tion process would only result in migration between (Sn and Sa), (En and Ea), (An

and Aa), and (RAn and RAa ). In particular, when susceptible individuals with the nor-
mal behaviour (Sn) compare their payoff with those adopting the altered behaviour
(Sa, Ea, Aa, RAa ), and find that 
P < 0, then Sn will migrate to Sa , and vice versa.
The migration between (En and Ea), (An and Aa), and (RAn and RAa ) are similar.
Thus, we can model the imitation dynamics in the population with two alternative
behaviours as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
n (τ ) = ωSa (Sn+En+An+Rn )1PH(1P)

N + ωSn
(
S′
a+Ea+Aa+Ra

)
1PH(−1P)

N ,

S′
a (τ ) = − ωSa (Sn+En+An+Rn )1PH(1P)

N − ωSn (Sa+Ea+Aa+Ra )1PH(−1P)
N ,

E ′
n (τ ) = ωEa (Sn+En+An+Rn )1PH(1P)

N + ωEn (Sa+Ea+Aa+Ra )1PH(−1P)
N ,

E ′
a (τ ) = − ωEa (Sn+En+An+Rn )1PH(1P)

N − ωEn (Sa+Ea+Aa+Ra )1PH(−1P)
N ,

A′
n (τ ) = ωAa (Sn+En+An+Rn )1PH(1P)

N + ωAn (Sa+Ea+Aa+Ra )1PH(−1P)
N ,

A′
a (τ ) = − ωAa (Sn+En+An+Rn )1PH(1P)

N − ωAn (Sa+Ea+Aa+Ra )1PH(−1P)
N ,

R′
n (τ ) = ωRa (Sn+En+An+Rn )1PH(1P)

N + ωRn (Sa+Ea+Aa+Ra )1PH(−1P)
N ,

R′
a (τ ) = − ωRa (Sn+En+An+Rn )1PH(1P)

N − ωRn (Sa+Ea+Aa+Ra )1PH(−1P)
N .

(5)

Co-evolution Model by Coupling Two Dynamic Processes Coupling the trans-
mission model (1) and the imitation model (5), then we have

S′
n (t) = −λSn + 1

α[
ωSa (Sn+En+An+Rn )1PH(1P)

N + ωSn (Sa+Ea+Aa+Ra )1PH(−1P)
N

]
, (6a)

S′
a (t) = −qλSa − 1

α[
ωSa (Sn+En+An+Rn )1PH(1P)

N + ωSn (Sa+Ea+Aa+Ra )1PH(−1P)
N

]
, (6b)

E ′
n (t) = λSn − σ En + 1

α[
ωEa (Sn+En+An+Rn )1PH(1P)

N + ωEn (Sa+Ea+Aa+Ra )1PH(−1P)
N

]
, (6c)

E ′
a (t) = qλSa − σ Ea − 1

α[
ωEa (Sn+En+An+Rn )1PH(1P)

N + ωEn (Sa+Ea+Aa+Ra )1PH(−1P)
N

]
, (6d)

I ′(t) = �σ En + �σ Ea − (δI (t) + γI ) I , (6e)
A′
n (t) = (1 − �) σ En − γA An + 1

α[
ωAa (Sn+En+An+Rn )1PH(1P)

N + ωAn (Sa+Ea+Aa+Ra )1PH(−1P)
N

]
, (6 f )

A′
a (t) = (1 − �) σ Ea − γA Aa − 1

α[
ωAa (Sn+En+An+Rn )1PH(1P)

N + ωAn (Sa+Ea+Aa+Ra )1PH(−1P)
N

]
, (6g)

H ′(t) = δI (t)I − (α(t) + γH ) H , (6h)

R′
I (t) = γI I + γH H , (6i)

R′
n (t) = γA An + 1

α[
ωRa (Sn+En+An+Rn )1PH(1P)

N + ωRn (Sa+Ea+Aa+Ra )1PH(−1P)
N

]
, (6 j)

R′
a (t) = γA Aa − 1

α[
ωRa (Sn+En+An+Rn )1PH(1P)

N + ωRn (Sa+Ea+Aa+Ra )1PH(−1P)
N

]
, (6k)

M ′(t) = ηδI (t)I − νM . (6l)

(6)

where H(·) is the Heaviside function. H(
P) = 1 when 
P ≥ 0 and H(
P) = 0
when 
P < 0. Define B = (Sn + En + An + Rn)/(S + E + A + RA), where
S = Sn + Sa, E = En + Ea, A = An + Aa, RA = Rn + Ra . B(t) (1− B(t)) denotes
the ratio of humans with normal behaviours (altered behaviours) in the corresponding
population with potential shifting of behaviours at time t . Then by taking derivative of
both sides of (Sn + En + An + Rn) = B(S + E + A+ RA) with respect to time t , we
have that (Sn +En + An + Rn)

′ = B ′(S+E+ A+ RA)+ B(S+E+ A+ RA)′, where
(Sn + En + An + Rn)

′ can be obtained by adding equations (6a), (6c), (6f) and (6j) of
model (6) and (S+ E + A+ RA)′ can also be obtained by adding Eqs. (6a)–(6d), (6f),
(6g), (6j), (6k) in model (6). Assuming that Sn/S = En/E = An/A = Rn/RA = B,
the above equation can be significantly reduced and the equation of B ′ can be derived.
Further, by adding the equations of En and Ea , we can obtain the equation of E ,
similarly, we have the equations for the rest compartments. Through the above process,
model (6) can be reduced to the following co-evolution model of the transmission
dynamics and the behavioural change dynamics:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′ = −λ [B + q (1 − B)] S,

E ′ = λ [B + q (1 − B)] S − σ E,

I ′ = �σ E − (δI (t) + γI ) I ,
A′ = (1 − �) σ E − γA A,

H ′ = δI (t)I − (α(t) + γH ) H ,

R′
I = γI I + γH H ,

R′
A = γA A,

M ′ = ηδI (t)I − νM,

B ′ = ρB(1−B)(1−mM)(S+E+A+RA)
N ,

(7)

where ρ = kω/ε,m = (mn − ma)/k and λ = (βI I + [B + q(1 − B)]βA A)/N .
1−mM represents the balance between payoffs associated with two behaviours, and
1/m defines a threshold determining which behaviour is more beneficial, and ρ can
be recognized as the speed of spontaneous behavioural changes with respect to trans-
mission dynamics. The definitions and values of parameters are given in Table 1.
There are four key factors related to the behavioural change dynamics: m, the sensi-
tivity of individuals to perceived infection (a higher value of m indicating the higher
sensitivity); η, the speed of raising the risk awareness; ν, the persistence to maintain
the risk awareness; ρ, the spread rate of the behaviour changes among individuals.
In our model framework, there are two aspects of behaviour changes affecting the
transmission dynamics of COVID-19: one is the ratio of the population with altered
behaviour (1− B(t)), and the other aspect is the reduction factor q in the transmission.
Note further that the NPIs can also drive the behavioural changes. Therefore, due to
the difference and the shifting of NPIs, the efficacy of the altered behaviours in the
reduction of transmission rate can be different in different regions and can also shift
over time in the fixed region. We will therefore deeply analyze how the two aspects
determine the development trend of COVID-19 epidemics, and identify the key role
in generating the different patterns of multiple epidemic waves.

Basic Reproduction Number When all individuals are adopting the normal
behaviour, i.e., B = 1, the basic reproduction number can be obtained as

Rn
0 = �βI

δI + γI
+ (1 − �)βA

γA
. (8)

When all individuals are adopting the altered behaviours, i.e., B = 0, the basic repro-
duction number can be derived as

Ra
0 = q�βI

δI + γI
+ q2(1 − �)βA

γA
. (9)

Considering the co-evolution of behavioural changes and the disease transmission
dynamics (B �= 0 and B �= 1), the proportion of individuals adopting altered
behaviours and the number of susceptible individuals are time-varying, under which
we could obtain the time-varying reproduction number R(t), referring to as the effec-
tive reproduction number,
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R(t) = �βI

δI + γI
[B + q (1 − B)] + (1 − �) βA

γA
[B + q (1 − B)]2 . (10)

This is a combination of the above two basic reproduction numbers.
Model Extension by InvolvingVaccinationConsidering a continuous vaccination

regime, we can extend model (7) to the following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′ = −λ [B + q (1 − B)] S − pμ(t)S,

E ′ = λ [B + q (1 − B)] S − σ E,

I ′ = �σ E − (δI (t) + γI ) I ,
A′ = (1 − �) σ E − γA A,

H ′ = δI (t)I − (α(t) + γH ) H ,

R′
I = γI I + γH H ,

R′
A = γA A,

V ′ = pμ(t)S,

M ′ = ηδI (t)I − νM,

B ′ = ρB(1−B)(1−mM)(S+E+A+RA)
N ,

(11)

where μ(t) is the time-dependent vaccination rate, as it should be small initially
since the availability of the number of vaccine doses was limited at the beginning
in December 2020, and then exponentially increase as the production of COVID-19
vaccineswas accelerated, andfinally it could be plateaued to a constant level depending
on the daily vaccination capacity. Thus, wemodelμ(t) as a logistic increasing function
of time t with the following form:

μ(t) = μ0μb

μ0 + (μb − μ0) e−rμt
, (12)

whereμ0 (μb) is the initial (maximum) vaccination rate, rμ is the exponential increas-
ing rate of the vaccination. The vaccination efficacy is denoted by p with p = 95% in
the USA (CDC 2021a, b) and the effectively vaccinated population is assumed to be
immune to COVID-19 and moved to the class V (the effectively vaccinated compart-
ment). Consequently, the time-dependent vaccination coverage can be defined as:

VC(t) =
∫ t
t0

μ(t)S(t)dt

N (t)
, (13)

where t0 is the starting time of vaccination, which was set as December 20th, 2020
for USA.

2.2 Data

The COVID-19 epidemic data were obtained from the Johns Hopkins University Cen-
ter for Systems Science and Engineering (JHUCCSE) and the data are available on the
Github and the Humanitarian Data Exchange (Github 2021; HDE 2021). We used the
data of daily COVID-19 confirmed cases and accumulative death cases in Hongkong,

123



106 Page 10 of 31 B. Tang et al.

Ta
bl
e
1

Pa
ra
m
et
er

de
fin

iti
on

an
d
es
tim

at
io
n

V
al
ue
s(
SD

)

Pa
ra
m
et
er
s

D
efi
ni
tio

n
U
ni
ts

So
ur
ce

H
K

Ja
pa
n

U
SA

G
lo
ba
l

β
I

T
ra
ns
m
is
si
on

ra
te
of

sy
m
pt
om

at
ic
in
fe
ct
ed

in
di
vi
du

al
s

1.
50

5
(0
.2
51

)
1.
40

3
(0
.0
52

)
2.
02

5
(0
.0
57

)
1.
55

9
(0
.1
37

)
da
y−

1
E
st
im

at
ed

β
A

T
ra
ns
m
is
si
on

ra
te
of

as
ym

pt
om

at
ic
in
fe
ct
ed

in
di
vi
du

al
s

0.
62

5
(0
.1
9)

0.
22

6
(0
.0
28

)
0.
60

0
(0
.0
26

)
0.
60

3
(0
.0
51

)
da
y−

1
E
st
im

at
ed

q
C
on
st
an
tm

ul
tip

lie
r
fa
ct
or

of
th
e
re
du

ct
io
n
of

tr
an
sm

is
si
on

ra
te

0.
33

(0
.0
7)

–
–

0.
37

(0
.0
32

)
–

E
st
im

at
ed

q
(t

)
q 1

M
ul
tip

lie
r
fa
ct
or

of
th
e

re
du

ct
io
n
of

tr
an
sm

is
si
on

ra
te
in

Ph
as
e
1

–
0.
08

95
(0
.0
58

)
0.
30

6
(0
.0
1)

–
–

E
st
im

at
ed

q 2
M
ul
tip

lie
r
fa
ct
or

of
th
e

re
du

ct
io
n
of

tr
an
sm

is
si
on

ra
te
in

Ph
as
e
2

–
0.
49

3
(0
.0
22

)
0.
35

1
(0
.0
08

)
–

–
E
st
im

at
ed

q 3
M
ul
tip

lie
r
fa
ct
or

of
th
e

re
du

ct
io
n
of

tr
an
sm

is
si
on

ra
te
in

Ph
as
e
3

–
0.
67

4
(0
.0
19

)
0.
39

26
(0
.0
08

)
–

–
E
st
im

at
ed

123



Controlling Multiple COVID-19 Epidemic Waves: An Insight… Page 11 of 31 106

Ta
bl
e
1

co
nt
in
ue
d

V
al
ue
s(
SD

)

Pa
ra
m
et
er
s

D
efi
ni
tio

n
U
ni
ts

So
ur
ce

H
K

Ja
pa
n

U
SA

G
lo
ba
l

σ
T
ra
ns
iti
on

ra
te
of

ex
po
se
d

in
di
vi
du

al
s
to

th
e

in
fe
ct
ed

cl
as
s

1/
5.
2

da
y−

1
C
PM

A
20

20

δ
I(
t)

δ
I0

D
ia
gn
os
is
ra
te
of

sy
m
pt
om

at
ic
in
fe
ct
ed

in
di
vi
du
al
s
in
iti
al
ly

0.
00

48
(0
.0
04

)
0.
00

8
(0
.0
01

5)
0.
00

79
(0

.0
00

8)
0.
00

84
(0
.0
01

)
da
y−

1
E
st
im

at
ed

r
E
xp
on
en
tia
li
nc
re
as
in
g

ra
te
of

th
e
di
ag
no
si
s
ra
te

0.
23

38
(0
.2
12

)
0.
41

27
(0
.1
29

7)
0.
44

64
(0
.2
19

7)
0.
65

53
(0
.4
42

)
da
y−

1
E
st
im

at
ed

δ
Im

M
ax
im

um
di
ag
no
si
s
ra
te

of
sy
m
pt
om

at
ic

in
fe
ct
io
ns

0.
73

9
(0
.0
92

)
0.
52

43
(0
.0
24

2)
0.
39

9
(0
.0
13

)
0.
28

6
(0
.0
21

)
da
y−

1
E
st
im

at
ed

ρ
Pr
op

or
tio

n
of

sy
m
pt
om

at
ic
in
fe
ct
io
n

0.
71

4
(0
.0
77

)
0.
75

2
(0
.0
2)

0.
81

1
(0
.0
04

8)
0.
80

7
(0
.0
15

3)
–

E
st
im

at
ed

α
(t

)
α
1

D
is
ea
se

in
du
ce
d
de
at
h

ra
te
in

Ph
as
e
1

0.
00

01
3
(0

.0
00

3)
0.
00

63
(0

.0
00

6)
0.
00

9
(0

.0
00

2)
0.
00

68
(0
.0
02

)
da
y−

1
E
st
im

at
ed

α
2

D
is
ea
se

in
du
ce
d
de
at
h

ra
te
in

Ph
as
e
2

0.
00

33
(0
.0
01

3)
0.
00

14
(0

.0
00

1)
0.
00

36
(0

.0
00

1)
0.
00

44
(0

.0
00

5)
da
y−

1
E
st
im

at
ed

α
3

D
is
ea
se

in
du
ce
d
de
at
h

ra
te
in

Ph
as
e
3

0.
00

14
(0
.0
01

7)
0.
00

09
(0

.0
00

08
)

0.
00

14
(0

.0
00

4)
0.
00

19
(0

.0
00

2)
da
y−

1
E
st
im

at
ed

123



106 Page 12 of 31 B. Tang et al.

Ta
bl
e
1

co
nt
in
ue
d

V
al
ue
s(
SD

)

Pa
ra
m
et
er
s

D
efi
ni
tio

n
U
ni
ts

So
ur
ce

H
K

Ja
pa
n

U
SA

G
lo
ba
l

γ
I

R
ec
ov
er
y
ra
te
of

in
fe
ct
io
ns

0.
19

5
da
y−

1
Ta
ng

et
al
.2
02

0c

γ
A

R
ec
ov
er
y
ra
te
of

as
ym

pt
om

at
ic
in
fe
ct
ed

in
di
vi
du

al
s

0.
13

9
da
y−

1
Ta
ng

et
al
.2
02

0b

γ
H

R
ec
ov
er
y
ra
te
of

co
nfi

rm
ed

ca
se
s

0.
08

3
(0
.0
29

)
0.
08

34
(0
.0
09

8)
0.
09

7
(0
.0
07

4)
0.
10

1
(0
.0
16

)
da
y−

1
E
st
im

at
ed

η
C
on

st
an
tr
es
po

ns
e
ra
te
of

pe
rc
ei
ve
d
in
fe
ct
io
n

pr
ev
al
en
ce

on
th
e
ne
w
ly

co
nfi

rm
ed

ca
se
s

0.
38

6
(0
.0
65

)
–

–
0.
01

1
(0
.0
03

)
–

E
st
im

at
ed

η
(t

)
η
1

R
es
po

ns
e
ra
te
of

pe
rc
ei
ve
d
in
fe
ct
io
n

pr
ev
al
en
ce

on
th
e
ne
w
ly

co
nfi

rm
ed

ca
se
s
in

Ph
as
e
1

–
0.
08

1
(0
.0
09

)
0.
04

44
(0
.0
03

)
–

–
E
st
im

at
ed

η
2

R
es
po

ns
e
ra
te
of

pe
rc
ei
ve
d
in
fe
ct
io
n

pr
ev
al
en
ce

on
th
e
ne
w
ly

co
nfi

rm
ed

ca
se
s
in

Ph
as
e
2

–
0.
04

4
(0
.0
12

)
0.
28

9
(0
.0
27

)
–

–
E
st
im

at
ed

123



Controlling Multiple COVID-19 Epidemic Waves: An Insight… Page 13 of 31 106

Ta
bl
e
1

co
nt
in
ue
d

V
al
ue
s(
SD

)

Pa
ra
m
et
er
s

D
efi
ni
tio

n
U
ni
ts

So
ur
ce

H
K

Ja
pa
n

U
SA

G
lo
ba
l

η
3

R
es
po

ns
e
ra
te
of

pe
rc
ei
ve
d
in
fe
ct
io
n

pr
ev
al
en
ce

on
th
e
ne
w
ly

co
nfi

rm
ed

ca
se
s
in

Ph
as
e
3

–
0.
08

51
(0
.1
90

6)
0.
49

25
(0
.0
72

4)
–

–
E
st
im

at
ed

v
D
ec
ay

ra
te
of

pe
rc
ei
ve
d

ri
sk

0.
96

2
(0
.0
48

)
0.
85

1
(0
.0
13

)
0.
85

0
(0
.0
00

4)
0.
65

7
(0
.1
31

)
da
y−

1
E
st
im

at
ed

ρ
C
on

st
an
ts
pr
ea
di
ng

ra
te
of

be
ha
vi
ou

r
ch
an
ge
s

0.
46

0
(0
.0
85

)
–

–
0.
01

0
(0
.0
04

)
da
y−

1
E
st
im

at
ed

ρ
(t

)
ρ
1

Sp
re
ad
in
g
ra
te
of

be
ha
vi
ou

r
ch
an
ge
s
in

Ph
as
e
1

–
0.
18

4
(0
.0
54

)
0.
00

78
(0

.0
00

9)
–

da
y−

1
E
st
im

at
ed

ρ
2

Sp
re
ad
in
g
ra
te
of

be
ha
vi
ou

r
ch
an
ge
s
in

Ph
as
e
2

–
0.
39

62
(0
.0
52

3)
0.
01

6
(0
.0
32

)
–

da
y−

1
E
st
im

at
ed

ρ
3

Sp
re
ad
in
g
ra
te
of

be
ha
vi
ou

r
ch
an
ge
s
in

Ph
as
e
3

–
0.
26

3(
0.
28

)
0.
05

9
(0
.1
02

)
–

da
y−

1
E
st
im

at
ed

123



106 Page 14 of 31 B. Tang et al.

Ta
bl
e
1

co
nt
in
ue
d

V
al
ue
s(
SD

)

Pa
ra
m
et
er
s

D
efi
ni
tio

n
U
ni
ts

So
ur
ce

H
K

Ja
pa
n

U
SA

G
lo
ba
l

1/
m

T
hr
es
ho

ld
fo
r
pe
rc
ei
ve
d

in
fe
ct
io
n

8.
48

9
(1
.2
73

)
9.
57

1
(0
.5
12

)
15

.9
88

(1
.0
5)

11
.6
56

(3
.5
28

)
–

E
st
im

at
ed

V
al
ue
s
(S
D
)

V
ar
ia
bl
es

D
efi
ni
tio

ns
So

ur
ce

H
K

Ja
pa
n

U
SA

G
lo
ba
l

S(
0)

In
iti
al
su
sc
ep
tib

le
po
pu
la
tio

n
7.
5

×
10

6
1.
27

×
10

8
3.
3

×
10

8
7

×
10

9
U
N
(2
02

1)

E
(0

)
In
iti
al
ex
po

se
d
po

pu
la
tio

n
22

(9
.8
1)

26
(1
1.
79

)
14

3(
82

)
62

5(
70

6)
E
st
im

at
ed

I(
0)

In
iti
al
in
fe
ct
ed

sy
m
pt
om

at
ic
po

pu
la
tio

n
9.
35

(1
0.
1)

4
(0
.6
1)

12
3
(6
0)

25
5
(4
16

)
E
st
im

at
ed

A
(0

)
In
iti
al
in
fe
ct
ed

as
ym

pt
om

at
ic
po

pu
la
tio

n
18

(1
1)

25
(1
4)

25
(1
3)

26
5
(2
88

)
E
st
im

at
ed

H
(0

)
In
iti
al
co
nfi

rm
ed

an
d
is
ol
at
ed

po
pu

la
tio

n
16

18
17

61
5

G
ith

ub
(2
02

1)
,H

D
E
(2
02

1)

R
A
(0

)
In
iti
al
re
co
ve
re
d
po
pu
la
tio

n
fr
om

as
ym

pt
om

at
ic
in
fe
ct
io
ns

0
A
ss
um

ed

R
I(
0)

In
iti
al
re
co
ve
re
d
po

pu
la
tio

n
fr
om

sy
m
pt
om

at
ic
in
fe
ct
io
ns

0
9

7
32

G
ith

ub
(2
02

1)
,
H
D
E
(2
02

1)

M
(0

)
In
iti
al
pe
rc
ei
ve

pr
ev
al
en
ce

10
.3
7(
9)

6.
23

(0
.9
3)

29
.7
(3
1)

41
5(
36

2)
E
st
im

at
ed

B
(0

)
In
iti
al
ra
tio

of
hu

m
an
s
w
ith

no
rm

al
be
ha
vi
ou

r
0.
00

04
7
(0
.0
01

7)
0.
46

5
(0
.0
58

)
0.
82

5
(0
.0
19

)
0.
89

6
(0
.0
42

)
E
st
im

at
ed

123



Controlling Multiple COVID-19 Epidemic Waves: An Insight… Page 15 of 31 106

Japan, USA, and the world (including 273 countries or regions), as shown in Fig. 2.
We assumed that the local community transmission began when there were continu-
ously reported cases for 5 days. Consequently, the data collected in Hongkong, Japan,
USA, and the whole world started on February 4th, 11th, 29th, and January 23rd, 2020
respectively. As we can see from the epidemic data, Hongkong, Japan and USA have
experienced multiple epidemic waves during 2020, and the last wave was much more
serious with a much higher peak in Japan and USA than that of the first two waves.
We obtained the data of daily vaccinated population in USA (who received two doses)
from the US Centers for Disease Control and Prevention (CDC 2021c). The data were
released and analyzed anonymously.

2.3 Model Fitting and Parameter EstimationMethods

Wefixed someparameters inmodel (7) including the incubation period (1/σ ), recovery
rate of asymptomatic infections (γA) and symptomatic infections (γI ), based on the
existing literatures as listed in Table 1. The initial total population was fixed as the
whole population in the corresponding regions or countries, and the initial confirmed
and isolated, and recovered populations were obtained from the database (Table 1).
Considering the continuous improvement of testing capacity, the diagnosis rate is set
to be an increasing function of time t with the following form (Tang et al. 2020d,
2022):

δI (t) = (δI0 − δIm) e−r t + δIm, (14)

where δI0 is the initial diagnosis rate while δIm is the maximum diagnosis rate, and r
is the corresponding exponential increasing rate. As reported in several studies (Fan
et al. 2020; Rajgor et al. 2020), the COVID-19 fatality rate is varying overtime. Hence,
the disease-induced death rate α is set to be a piecewise function of time t with three
phases:

α(t) =
⎧
⎨

⎩

α1, 0 < t < Td1,
α2, Td1 < t < Td2,
α3, Td2 < t .

(15)

Here, we assume that Td1 = 150, 100, 80, 80 (day) and Td2 = 250, 220, 200, 200
(day) in Hongkong, Japan, USA, and global area, respectively. Correspondingly, till
December 20th, 2020,we name the time period 0 < t < Td1 as Phase 1, Td1 < t < Td2
Phase 2, and Td2 < t Phase 3.

It follows from the epidemic data that Hongkong experienced three apparent epi-
demic waves till December, 2020 (see Fig. 2). And, the three epidemic waves of
Hongkong have a very similar pattern in terms of the peak value and outbreak period.
This means that the feedback between the reported cases and the ratio of humans
with altered behaviours is similar during the three epidemic waves. Consequently, we
assume that all the behaviour changes dynamics-related parameters (m, ν, ρ, η) and
the reduction of the transmission by the altered behaviours (q) are constants when
we fit model (7) to the epidemic data in Hongkong. Similarly, the global epidemic
of COVID-19 only experienced one epidemic wave (still in the increasing phase) till
December 20th, 2020, we set these parameters as constants for the global epidemic. In
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Fig. 2 COVID-19 epidemic data, including the daily reported cases and accumulative death cases for
Hongkong, Japan, USA and the world from the Johns Hopkins University Center for Systems Science and
Engineering (JHU CCSE) and the data are available on the Github and the Humanitarian Data Exchange
(Github 2021; HDE 2021)

contrast, we find it difficult to fit the data of Japan and USA well by fixing q as a con-
stant. The potential reason is that the daily reported cases in USA (or in the third wave
of Japan) experienced a continued increasing trend before decreasing to a low level
(see Fig. 2). That is, the shifting of daily reported cases may not drive the population
resume to normal behaviours but maintain altered behaviours, hence no fluctuation of
B(t). Therefore, the reduction of the transmission rate by altered behaviours should be
the key driver to the significant increasing of daily reported cases under this situation.
Because of a long-term of maintaining altered behaviours, the epidemic fatigue can
result in the weak adherence to NPIs. Consequently, the reduction of the transmission
rate by the altered behaviours q is set to be a piecewise function of time t in USA and
Japan.

We then generate 500 bootstrap samples of the time series data of daily reported
cases and accumulative death cases based on Poisson distributions (Chowell and Luo
2021). That is, for each data point we assume that the number of daily reported cases
and the number of daily death cases follow a Poisson distribution with the mean
being assumed as the observed counts. Based on this assumption, we then sample 500
times of numbers of daily reported cases and death cases in the preset distributions,
consequently, obtain 500 samples of the time series data. We firstly fit model (7) to
each time series of the 500 bootstrap samples of daily reported cases and accumulative
death cases using the least squared (LS) method. We then fit model (11) to each of the
500 bootstrap samples of daily reported cases and the daily vaccinated population in
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USA by fixing the parameters in model (7), except the behaviour change related and
vaccination related parameters. Note that, the 500 fittings can produce 500 parameter
sets, consequently, generate 500 solutions of daily or accumulative reported cases. We
then calculate the 2.5% and 97.5% percentiles of the 500 solutions to generate the
95% confidence interval (CI) for quantile of the fitting results.

In more details, we use the least square method with a priori distribution for each
parameter to fit the model to the data using the software of MATLAB, where the ODE
system is solved by the “ODE45” function while the “fmincon” function is used to
search the optimal solutions of the objective function. It should be mentioned that
the unknown initial conditions, including the initial values for exposed, asymptomat-
ically/symptomatically infected individuals, perceive prevalence, and the ratio with
normal behaviour, are also taken as unknown parameters when carrying out the fitting
process. Therefore, a priori distribution is also provided for each initial value for the
unknown variables.

3 Main Results

3.1 Model Fitting

The best fitting results are shown in Fig. 3, and the estimated parameter values and their
standard deviations are listed in Table 1. In particular, the empirical distributions of the
estimated key parameters for behavioural changes, (q, ρ, η, ν,m), for Hongkong and
the world from the bootstrap method (500 bootstrap samples), are shown in Fig. 4. We
also obtained the estimate of the effective reproduction numbers and their confidence
intervals for the three regions/countries (Hongkong, Japan, USA) and the world based
on the bootstrap method (Fig. 3). It follows from the estimation results that the initial
ratio of humans with altered behaviours highly depends on the initial time of the
epidemics. The COVID-19 epidemic of Hongkong starts relatively quick and early
compared with those in USA, Japan and the globe. This results in a quick increasing
of the awareness of infection risks, hence almost all the population in Hongkong
altered their behaviour already at the initial time. On the other hand, the estimated
diagnosis rate can reach its maximum value in a short period. This is in line with the
fact that the testing ability can be highly improved quickly all over the world (Sung
et al. 2020). One interesting issue arising from this observation is whether we can
just set the diagnosis rate as a constant instead of a function of time t , and how will
this assumption affect the estimation of other parameters and the fitting results, which
requires more works. The multi-scale model is proposed to capture the transmission
dynamics ofCOVID-19 epidemics aswell as the evolution of behavioural changes, and
the model was calibrated based on COVID-19 epidemic data from multiple sources,
and then used to evaluate the impact of enhancing/relieving NPIs upon vaccination.
More details are available in Sect. 2.3.
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Fig. 3 Model fitting results for model (7): The blue curves are the estimated curves with the shadow areas
as the corresponding 95% confidence band. The red cycles are the observed data of the daily reported cases
and the accumulative death cases

Fig. 4 Empirical distributions of the estimated behavioural dynamic parameters by fitting model (7) to the
observed epidemic data from Hongkong and the world based on 500 bootstrap samples
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Fig. 5 Estimated behavioural dynamics: 1 − B(t) and M(t). The solid curves are the estimated dynamic
curves with the shadow areas as the corresponding 95% confidence intervals based on the bootstrap method.
The black dash curves are the estimated daily reported cases from model (7)

3.2 Evolution of Behavioural Changes andMultiple EpidemicWaves

Based on the model fitting results, we obtained the estimate of evolution of perceived
infection (M(t)) and the dynamics of proportion of the humans with behavioural
changes (1− B(t)) for three regions/countries and the world, as shown in Fig. 5. It is
worth noting that the estimated perceived infection and its corresponding behavioural
change oscillate, in particular, for Japan andHongkong,whichmight be themain factor
to induce multiple epidemic waves in these two regions/countries. Taking Hongkong
as an example, as the epidemic initially increased quickly, the individuals consciously
or compulsively chose to change their behaviours to reduce the risk of being infected
and the proportion of the population with behavioural changes quickly increased close
to 100% around the time of the first epidemic peak. A change in behaviour caused the
epidemic to decline swiftly and the daily reported cases reduced to almost zero. This
in turn drove individuals to return back to normal behaviours, and consequently the
susceptible population size rebounded back to a higher level, which induced another
epidemic wave. This feedback loop, epidemic increasing → behaviour changing →
epidemic declining → behaviour changing back → epidemic resurging, could repeat
multiple times to drive multiple COVID-19 epidemic waves as observed in Hongkong
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or Japan (Figs. 3 and 5). FromFig. 3, we can see that by integrating behavioural change
dynamics and the disease transmission dynamics, our proposed model can capture the
observed multiple waves of COVID-19 epidemics very well.

To further analyze the mechanism on how our model can generate oscillations,
we plotted the population of symptomatic infections (I (t)) and the ratio of humans
with normal behaviours (B(t)) in Fig. 6 by fixing all the parameters as constants. In
Fig. 6A, we observed the oscillations of symptomatically infected individuals and the
fluctuations of the ratio of humans with normal behaviours. In comparison, by fixing
the parameter values as the same as those in Fig. 6A, we plotted the daily reported
cases without the shifting of human behaviours, that is, let B(t) = 0 and B(t) = 1
in Fig. 6C, D, respectively. We find that the oscillations vanished in Fig. 6C, D. This
means that behaviour change in themodelling frameworkwith game theory can indeed
drive the epidemic oscillations. Moreover, the oscillation is sensitive to parameter q,
and Fig. 6B shows that an increase in the value of parameter q leads to the oscillation
vanished.

On the other hand, we observe the third epidemic wave in Japan that lasted longer
and peaked higher than the first two waves, although most people chose to change
their behaviours during the third wave. Similar phenomenon was observed in USA
and the global COVID-19 epidemics (Fig. 5). As we can see from Fig. 5, B(t) of
USA quickly decreases to and maintains around zero. It’s not surprised to observe
the result since human beings prefer to adopting altered behaviours according to the
game theory when the perceived risk exceeds the threshold. As the number of daily
reported cases is of an increasing trend, the perceived risk will continuously increase
as well, consequently, maintain above the threshold in USA, hence B(t) maintained
around zero. Then, the interesting question is why the behavioural change did not
significantly induce the epidemic to decline in the laterwaves. To address this question,
we further examine the evolution of key parameters related to behavioural changes.
The estimates of behaviour-related dynamic parameters, the reduced transmission rate
due to alternative behaviours (q), the response rate of perceived infection prevalence
(η), and the spreading rate of behaviour changes (ρ) for Japan and USA are shown
in Fig. 7. We can see that the parameter q(t), the reduced transmission rate due to
alternative behaviours, exhibited an increasing trend during the multiple waves for
USA and Japan. This suggests that the effect of behavioural changes in terms of
reduction in transmission rate significantly decreased in later waves either due to
waning of adherence to the NPIs or pandemic fatigue (i.e., fatigue of risk awareness
of self-protection). Therefore, not only the proportion of the population, but also the
effectiveness of alternative behaviours to reduce the risk of being infected is critical
to prevent the epidemic from continuously surging.

3.3 Effect of Behavioural Changes on ControllingMultiple COVID-19 Epidemic
Waves

We further evaluate whether the subsequent epidemic waves could be avoided if the
effectiveness of behavioural changes was enhanced after the first wave. If the adher-
ence of NPIs and awareness of self-protection were enhanced so that the reduced
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Fig. 6 Solutions of model (7) by fixing all the parameters as constants with δI = 0.7, α = 0.008. Particu-
larly, q = 0.33 in A, q = 0.85 in B, B(0) = 1 in C, and B(0) = 0 in D. The other parameters and initial
conditions are fixed as those of Hongkong listed in Table 1

transmission rate due to the alternative behaviours (q) during the second and third
waves was the same as that during the first wave, the simulated daily new cases in
USA and Japan are shown in Fig. 8A, B, from which we can see that the magni-
tude of second and third waves could be significantly reduced or completely avoided.
This suggests that even though almost all the population have altered their behaviours
(i.e. B(t) maintains at around zero), it’s important to promote and maintain the high
awareness of self-protection and well adherence to the NPIs in order to avoid subse-
quent epidemic waves. This is in line with the results in the existing studies (Giordano
et al. 2020; Buckner et al. 2021) that the transmission rate is usually the most sensitive
parameter in affecting the outcomes of COVID-19 outbreaks. Similarly, by controlling
other behavioural change parameters, (η, ρ,m, ν), it could also mitigate COVID-19
epidemics, which is demonstrated for the case of Hongkong in Fig. 8C–F. That is,
when the reduction of the transmission rate by the altered behaviours is fixed, the
peak magnitude of subsequent waves could be reduced by accelerating the risk aware-
ness, spreading of behavioural changes and increasing the sensitivity of individuals to
perceived infection (i.e., increasing the values of (η, ρ,m) as well as prolonging the
period of higher risk awareness (reducing the value of ν).

3.4 Relaxation of NPIs Under Vaccination

The COVID-19 vaccines started to be available from December 2020. With vacci-
nation, people’s perceived risk of infection might be changed and this may affect
the behavioural changes. To investigate the evolution of behavioural changes under
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Fig. 7 Evolution of the estimated values of the three key parameters related to behavioural changes in Japan
and USA

vaccination and the trade-off effect between relaxation of NPIs and vaccination
on COVID-19 epidemics, we extend model (7) to include the effect of vaccina-
tion, i.e. model (11). We re-estimate the parameters related to behavioural changes,
(q, ρ, η,m, ν) and other vaccination-related parameters by fitting model (11) to the
observed epidemicdata (daily newcases) anddaily vaccinatedpopulationdata between
December 21st, 2020 to February 14th, 2021 (Phase 4) in the USAwhere the COVID-
19 vaccination was implemented during this period. We fixed other model parameters
as those in model (7) before vaccination started. The model fitting results are shown in
Fig. 9. The updated estimates of behavioural change-related parametersq4, ρ4, η4,m4,

and ν4 in Phase 4 (i.e., the phase with vaccination) and the estimated values of vac-
cination rates μ0, rμ, and μb, are listed in Table 2. From Tables 1 and 2, we can see
that the reduced transmission rate due to alternative behaviours q is less than that in
the previous two phases (i.e., q4 < q2 < q3), which indicates the enhanced imple-
mentation of NPIs and/or the greater adherence to NPIs during Phase 4. We can also
see from Fig. 9C that the vaccination coverage (received two doses of vaccines) only
reached around 5% by February 14th, 2020, which was still far from enough.

The number of daily reported cases in USA has been declining since December
20th, 2020. To identify which factor mainly contribute to the declining trend, we
did simulations for the epidemic from December 20th to June 30th, 2021 using the
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Fig. 8 Simulated daily reported cases based onmodel (7)with different assumptions of behavioural dynamic
parameters.A, BDaily reported cases in USA and Japan under different scenarios by decreasing the values
of q in Phases 2 and 3. C–F Daily reported cases in Hongkong by varying the four parameters related to
behavioural change dynamics. The subscript ‘e’ indicates the estimated value from the observed data. The
values of all other parameters were set as those listed in Table 1

established model (11) by considering two scenarios of the reduced transmission rate
due to alternative behaviours q: one as the estimated values for Phase 4 and another
as returning to the higher level of Phase 3, under the condition with and without
vaccination (the vaccination rate μ0 was set as the estimated values for Phase 4). The
simulated results for the four cases are shown in Fig. 10A, from which we can see
that the epidemic curves with and without vaccination are very close to each other
during the period between December 20th, 2020 to February 14th, 2021. This means
that in this phase vaccination plays a very limited role in mitigating the epidemic
as the vaccination coverage is small (about 5%). Note that the ratio of humans with
altered behaviours has reached and maintained around 1 during this period. Based
on these facts, incorporating that the daily reported cases can decrease greatly as q
decreases, the key factor for the significant decline of observed daily cases during
this period is more likely due to the reduction of the transmission rate by adopting the
altered behaviours, instead of vaccination effect.While, as the vaccination persistently
continues, it starts to play its role in mitigating the epidemic, which could be seen by
a big divergence between the two epidemic curves with and without vaccination in
later times.

123



106 Page 24 of 31 B. Tang et al.

It is expected that the widespread availability of COVID-19 vaccines would lead to
less adherence of NPIs of the altered behaviours, corresponding to a bigger value of q,
due to the perceived immunity from the vaccine among the population. We performed
simulations to predict the COVID-19 epidemic trend from February 14th to June
30th, 2021 (Phase 5) using the established model (11) by assuming q to increase from
q4, q3 and 10% to 20%higher than q3. The two cases with andwithout vaccination (the
vaccination rate μ0 was set as the estimated value for Phase 4) were simulated and the
results are shown in Fig. 10C, E, respectively. The predicted results show that a higher
value of q due to relaxation of NPIs could induce another big epidemic wave in USA
during Phase 5 without vaccination (Fig. 10E); but fortunately, continued vaccination
could flatten the new wave significantly (Fig. 10C). To further evaluate the effect of
accelerated vaccination during Phase 5, we simulate the scenario that the maximum
vaccination rate would be tripled during Phase 5 under the worst condition of reduced
transmission rate due to alternative behaviours, q = 1.2q3. The results are shown in
Fig. 10B, D and F, indicating that the accelerated vaccination could effectively flatten
or even avoid the subsequent epidemic waves due to relaxation of NPIs.

4 Discussion and Conclusion

Multiple waves were clearly observed from many local and nationwide COVID-19
epidemic data since early 2020 (Fig. 2). It is critical to understand the underlying
mechanism and identify the main drivers for multiple epidemic waves in order to
prevent future COVID-19 waves and outbreaks (Kaxiras and Neofotistos 2020; Weitz
et al. 2020b; Tkachenko et al. 2021). In this study, using the modelling idea by game
theory (Poletti et al. 2009, 2012; Jentsch et al. 2021), we extended the SEIAHR
transmission dynamic model of COVID-19, and proposed a multi-scale model by
linking the behavioural change dynamics to the disease transmission dynamics (Poletti
et al. 2009, 2012; Jentsch et al. 2021). We explicitly modeled the perceived infection
(M(t)) and the proportion of individuals who have altered their behaviours (1 −
B(t)), with key behavioural change parameters such as the sensitivity to the infection
risk, the speed of raising the risk awareness, the persistence to maintain the risk
awareness, and the spreading rate of behavioural changes among individuals. The
effect of vaccination was also considered in the model. The game theory based on the
feedback loop between behavioural changes and COVID-19 transmission dynamics
could be used to explain the observedmultiple epidemicwaves.Basedon the developed
model with the estimated behavioural dynamic parameters and vaccination-related
parameters, we investigated the interplays among vaccine uptake, behavioural change
and relaxation of NPIs as well as their effects on future COVID-19 epidemics.

The main modeling results reveal that the behavioural change dynamics, driven
by the perceived COVID-19 epidemic and its effect on adherence of NPIs, play an
essential role in inducing multiple epidemic waves. By comparing the epidemics in
Hongkong and USA, we found that two aspects of behaviour changes (concluded
in Sect. 2.1) can lead to different patterns of the epidemics. In details, Hongkong
experienced three epidemic waves, with the number of daily reported cases fluctuating
(increase and decrease) apparently. This drives the fluctuations of the choice of human
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Fig. 9 A, B Model fitting results for the vaccination model (model (11)) to the data between December
20th, 2020 to February 14th, 2021 in USA. C The estimated time-varying vaccination coverage in USA.
The red cycles are the observed data, the blue curves are the estimated curves with the shadows as the
corresponding 95% confidence interval from the bootstrap method

behaviours, resulting in the oscillations of the ratio of humans with altered behaviours
(see Fig. 5). In return, the shifting of the ratio can affect the transmission of COVID-19
pandemic. This generates a feedback loop between the behaviour change dynamics and
transmission dynamics, and this feedback loop is the key to drive themultiple epidemic
waves in Hongkong. Note that, we also showed that the behavioural dynamic-related
parameters, the sensitivity to the infection risk (m), persistence of maintaining the
risk awareness (ν), and speed of raising risk awareness (η) play more important roles
in mitigating the COVID-19 epidemics and avoiding the subsequent waves (Fig. 8).
In contrast, for USA, the continued high level in daily reported cases results in a
high level of perceived infection in the population, which lead to a higher payoff of
the altered behaviours for a long time period. Thus, based on our model framework
with game theory, almost all population altered their behaviours and maintained the
altered behaviours (see Fig. 5), i.e. no fluctuation of the ratio of humans with altered
behaviour. In such situation, the persistent promotion of NPIs in a long time period
could result in the effect of behavioural changes onmitigating the epidemic weakened,
corresponding to the increases of q as shown in Fig. 7. This is presumably because of
pandemic fatigue and lower adherence to theNPIs.As a result,much higher subsequent
epidemic waves occurred, as shown in Fig. 3.
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Fig. 10 Simulation and prediction results from the vaccination model (model (11)) for USA.A Two scenar-
ios of the reduced transmission rate due to alternative behaviours (q): one as the estimated values for Phase
4 (q4 = q4e ) and another as returning to the higher level of Phase 3 (q4 = q3e ), under the condition with
vaccination (the vaccination rate μ0 was set as the estimated values for Phase 4, μ0 = μ0e) and without
vaccination (μ0 = 0). C and E q increased from February 14th, 2021, where the vaccination rate was set
as the estimated value from the data in C and no vaccination was used in E. q increased to 20% higher than
that in Phase 3 from February 14th, 2021 and the different vaccination rates were used in B, D and F. The
vaccination coverage can reach around 40% till the end of June 2021 under the estimated vaccination rate
from the current data, while the coverage could increase to over 60% by tripling the maximum vaccination
rate μb . The subscript ‘e’ indicating the estimated value from the data

Given the availability of COVID-19 vaccines at the end of 2020, it is expected
to gradually lift the NPIs to restore to normal life. However, our modeling results
show that it should be cautious to avoid relaxing NPIs prematurely. During the early
stage of vaccination, relaxation of NPIs may induce another big epidemic wave. With
continuous vaccination when a significant proportion of the population are vaccinated,
the vaccine effect could counteract the relaxing of NPIs to avoid a new epidemic wave
as expected. Thus, accelerated vaccination could allow to lift NPIs and restore normal
life earlier. But the interplay between vaccine uptake and relaxation of NPIs should be
carefully evaluated and the caution should be taken before relaxing NPIs. In summary,
we fitted the proposed model to the COVID-19 epidemic data with multiple waves in
different regions/countries, from which the extended SEIR model, coupled with the
model of behavioural change dynamics, could fit the data well and flexibly capture the
asymmetric dynamics with multiple waves by considering pandemic fatigue (waning
of adherence to the NPIs). This supports that our model framework based on the game
theory can well capture the behaviour change characters in these countries/regions,
and identify the key role of behaviour changes in driving the multiple epidemic waves
with different patterns. As the impact of NPIs is involved in the behavioural change
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dynamics of our model, the main results can also provide the important guidance
to balance the vaccine uptake and relaxation of NPIs, aiming at controlling the new
epidemic waves.

We finally state the limitations in the current study. We ignored the mutations
of SARS-CoV-2 in our model, the high transmission ability can definitely increase
and accelerate the spread of COVID-19. On the other hand, the high transmissibility,
incorporating the reports of vaccines breakthrough cases of new variants, may also
raise risk awareness and consequently induce a new round of behavioural changes.
Complicated behavioural dynamics, driven by multiple factors including efficacy and
coverage of COVID-19 vaccines, transmission properties of the mutated strains, may
need to be considered in the future work. When fitting the daily reported cases in
Japan and USA, we set a piecewise function of q. Note that, a different degree of the
reduction of transmission rate (corresponding to different values of q) would change
the cost of altered behaviours, hence the extra cost k should be a function of q instead
of a constant. When fitting the vaccination data, we assumed that only the susceptible
population is vaccinated, which can lead to the over estimation of the vaccination
rate. In reality, the exposed and asymptomatically infected individuals may also be
vaccinated, taking these factors can improve the vaccination function.Whenmodelling
the response function of perceived infection to the shifting of NPIs, we assumed that
it’s proportional to the daily reported cases. Human behavioural changes appear to
be compelled largely due to different levels of NPIs at different phases. This means
that the response term can be a piecewise continuous function. One interesting issue
is how this non-smooth function affects the transmission dynamics of the COVID-19,
which is left for our future works. It is not trivial to estimate the behavioural dynamic
parameters based on the observed epidemic data only, especially the identifiability
of nonlinear differential equation models is a fundamental and challenging problem
(Miao et al. 2021). Collection and use of behavioural data during the epidemic period
could fill the gap to further refine the proposed model in the future.
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