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Abstract
The dynamic nature of the COVID-19 pandemic has demanded a public health
response that is constantly evolving due to the novelty of the virus. Many jurisdictions
in the USA, Canada, and across the world have adopted social distancing and recom-
mended the use of face masks. Considering these measures, it is prudent to understand
the contributions of subpopulations—such as “silent spreaders”—to disease transmis-
sion dynamics in order to inform public health strategies in a jurisdiction-dependent
manner. Additionally, we and others have shown that demographic and environmental
stochasticity in transmission rates can play an important role in shaping disease dynam-
ics. Here, we create a model for the COVID-19 pandemic by including two classes
of individuals: silent spreaders, who either never experience a symptomatic phase or
remain undetected throughout their disease course; and symptomatic spreaders, who
experience symptoms and are detected. We fit the model to real-time COVID-19 con-
firmed cases and deaths to derive the transmission rates, death rates, and other relevant
parameters for multiple phases of outbreaks in British Columbia (BC), Canada. We
determine the extent to which SilS contributed to BC’s early wave of disease trans-
mission as well as the impact of public health interventions on reducing transmission
from both SilS and SymS. To do this, we validate our model against an existing
COVID-19 parameterized framework and then fit our model to clinical data to esti-
mate key parameter values for different stages of BC’s disease dynamics. We then use
these parameters to construct a hybrid stochastic model that leverages the strengths of
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both a time-nonhomogeneous discrete process and a stochastic differential equation
model. By combining these previously established approaches, we explore the impact
of demographic and environmental variability on disease dynamics by simulating var-
ious scenarios in which a COVID-19 outbreak is initiated. Our results demonstrate
that variability in disease transmission rate impacts the probability and severity of
COVID-19 outbreaks differently in high- versus low-transmission scenarios.

Keywords Silent spreader · COVID-19 · Parameter estimation · Environmental
variability · Stochastic models

1 Introduction

Infectious diseases are a significant threat to public health and the global economy
(Jones et al. 2008). Some of the most well-known infectious diseases originate from
coronaviruses, which are enveloped, positive single-strand RNA viruses in the Coro-
naviridae family that can infect both humans and other mammals (Huang et al. 2020).
The majority of human coronavirus infections are mild, but in the past two decades,
the epidemics of severe acute respiratory syndrome (SARS) and Middle East respira-
tory syndrome (MERS) have caused more than 10,000 cumulative cases (Huang et al.
2020). More recently, the Coronavirus disease 2019 (COVID-19) global pandemic has
led to the loss of over 4,000,000 lives and has caused unprecedented disruptions to the
economies, societies, and health systems worldwide (WHO 2021).

COVID-19 resembles viral pneumonia, with common symptoms such as fever, dry
cough, and fatigue (Huang et al. 2020). Due to the drastic impacts of COVID-19 on
global public health, there has been increasing interest in identifying the differing
contributions of silent spreaders (SilS) and symptomatic spreaders (SymS) to disease
transmission. SilS are individuals who are undiagnosed or never develop symptoms
throughout the entire course of an infection, which makes them incapable of experi-
encing disease-induced mortality. SymS display recognizable clinical symptoms, are
diagnosed, and may experience disease-induced mortality in severe cases. Due to the
absence of symptoms, SilS transmit the infection unknowingly and are less likely to
seek medical attention or self-isolate compared to SymS (Gao et al. 2020).

Transmission heterogeneity has been analyzed in stochastic epidemic models, par-
ticularly in relation to the impact of superspreaders (SS) versus nonsuperspreaders
(NS) (Althouse et al. 2020; Edholm et al. 2018; Garske and Rhodes 2008; James et al.
2007; Lloyd-Smith et al. 2005; Shakiba et al. 2021). The term “superspreader” refers
to those who are capable of transmitting an infection to a disproportionately large
number of individuals, whereas the majority of the population would only transmit to
a few or none (Stein 2011). This discrepancy can be attributed to behavioral, immuno-
logical, and physiological differences in the host, as well as environmental factors
such as crowding events (Stein 2011). Many of these stochastic modeling approaches
with SS have studied transmission heterogeneity using branching processes (Althouse
et al. 2020; Garske and Rhodes 2008; James et al. 2007; Lloyd-Smith et al. 2005). In
our previous work, we explore the effects of SS on disease dynamics in MERS and
Ebola, using a combination of deterministic and stochasticmodeling approaches based
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on the SEAIR (susceptible, exposed, asymptomatic, infectious, recovered) framework
(Edholm et al. 2018; Shakiba et al. 2021). A continuous-time Markov chain (CTMC)
model with discrete random variables allowed us to identify the influence of demo-
graphic variability, ormore specifically, the variability in transitions between states due
to disease transmission, recovery, and disease-related deaths (as opposed to environ-
mental variability) (Edholm et al. 2018). Specifically, the increased prevalence of SS in
the population is associated with an increased possibility of outbreak and a decrease in
the time to outbreak (Edholm et al. 2018). We incorporated time-dependent environ-
mental variability into the disease transmission, developing two alternative models:
a time-nonhomogeneous stochastic process (NHP) model with discrete random vari-
ables (extension of the CTMC model), and a stochastic differential equation (SDE)
modelwith continuous randomvariables (Shakiba et al. 2021). Through these previous
works, we demonstrated the importance of incorporating stochasticity to more realis-
tically capture the epidemiological dynamics. From the NHP and SDE, we found that
increased environmental variability results in more severe, but less frequent outbreaks
(Shakiba et al. 2021).

SilS are related to SS in their underestimated potential in disease transmission.
The estimated proportion of SilS greatly vary across existing models, depending on
the strategies used and the location of interest. Earlier studies in Japan estimated the
asymptomatic proportion to range from 17.9 to 30.8% (Mizumoto et al. 2020; Nishiura
et al. 2020). In Italy, Giordano et al. have divided the detected and undetected cases
across different illness severity levels and estimated the proportion of undetected cases
to be 35% (Giordano et al. 2020). Buitrago-Garcia et al., through a systematic review,
estimate that 29% of cases remain asymptomatic (95%CI: 23–37%) (Buitrago-Garcia
et al. 2020). Despite these existing studies, there has yet to be a model designed to
identify the contributions of SilS in British Columbia (BC), Canada. It is important to
note that our definition for SilS encapsulates both the undiagnosed and asymptomatic
individuals.

Building upon our previous models, we investigate the contributions of SilS versus
SymS in BC’s COVID-19 disease dynamics. We seek to determine the extent to which
SilS contributed to BC’s early wave of disease transmission as well as the impact that
public health interventions had on reducing transmission from both SilS and SymS. To
do this, we begin by validating ourmodel against an existingCOVID-19 parameterized
model to check the degree of similarity between the model outputs. We then split BC’s
COVID-19 timeline into two phases based on the public health measures in place,
such as the degree of social distancing. With these defined phases, we fit our SEAIR
model to clinical data of the number of confirmed infections and deaths over time and
estimate key parameter values for different stages of BC’s disease dynamics. These
parameters are used to construct stochastic models that help us explore the impacts
of demographic and environmental variability on disease dynamics. Importantly, the
new stochastic model is a hybrid of the NHP and SDE, which was developed to find a
balance between model accuracy and efficiency based on the number of infections in
the population at any given time. The new model is applied to the SEAIR framework
and includes environmental heterogeneity through a separate time-nonhomogeneous
SDE for the disease transmission parameters. While this latter approach has been
used by us and others (Allen 2016; Cai et al. 2018; Marion et al. 2000; Shakiba et al.
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2021; Truscott and Gilligan 2003; Varughese and Fatti 2008), our hybrid model differs
from some of the existing hybrid models with CTMCs and SDEs as these are time-
homogeneous processes with constant parameters, and they are often restricted to the
SIR framework (Rebuli et al. 2017; Safta et al. 2015; Sazonov et al. 2011). In our
new hybrid model, we study the effect of variability in disease transmission as well
as the rate at which variations in transmission are returned to their mean value, which
is a proxy for the degree of public health policing. We find that variability impacts
the probability and severity of COVID-19 outbreaks differently in high- versus low-
transmission scenarios.

2 Methods

3 Mathematical Models

3.1 Deterministic Epidemic Model

First, we model the dynamics of SilS and SymS with a system of ordinary differ-
ential equations (ODEs). We parameterize the system of ODEs with COVID-19 data
in Sect. 4.2. The compartmental diagram for the ODEs can be seen in Fig. 1. The
population is divided into two groups, SilS and SymS, according to their response to
COVID-19 infection. When individuals in group 1, SilS, become infected, they do
not exhibit symptoms (they remain asymptomatic) and the infection is mild, whereas
individuals in group 2, SymS, exhibit symptoms and the infection is more serious
(possibly resulting in death). The disease stages for both groups include susceptible
Si , exposed Ei , asymptomatic Ai , and recovered Ri , where the subscript i = 1 denotes
SilS and i = 2 denotes SymS. The additional infectious stage I2 is included for SymS.
An asymptomatic individual does not have symptoms but can transmit the infection,
whereas an infectious individual has symptoms and transmits the infection. Therefore,
COVID-19 can be transmitted to susceptible individuals in the population from either
SymS or SilS during the asymptotic stages, A1 and A2, or from SymS during the
infectious stage I2. Demographic variations unrelated to COVID-19 such as natural
births and deaths are excluded from our ODE model and are not expected to play a
significant role in population dynamics in this short time.

The explicit form of the ODEs is

dSi
dt

= −
(

β1A1

N
+ β2A2

N
+ β3 I2

N

)
Si , i = 1, 2,

dEi

dt
=

(
β1A1

N
+ β2A2

N
+ β3 I2

N

)
Si − αi Ei , i = 1, 2,

d Ai

dt
= αi Ei − δi Ai , i = 1, 2,

d I2
dt

= δ2A2 − γ I2 − μI2,
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Fig. 1 a Compartmental diagram outlining the ODE dynamics. SilS (i = 1) and SymS (i = 2) are sub-
divided into several stages: susceptible, exposed, asymptomatic, infectious, recovered (Si , Ei , Ai , Ii , Ri ).
The I stage is absent from SilS. Solid arrows denote transitions between stages. Dashed arrows represent the
transmission of disease from the A and I stages to the susceptible population, which induces the transition
from Si to Ei . Parameters are defined in Table 3. b Our classification of SilS and SymS is based on both
diagnosis and symptom development. On the left are SilS individuals who are undetected and possibly never
develop symptoms. Meanwhile, on the right are SymS individuals who are detected and develop symptoms

dR1

dt
= δ1A1,

dR2

dt
= γ I2.

Parameter β1 is the transmission rate from A1, β2 from A2, and β3 from I2. The total
population size is N = N1 + N2, where N1 = S1 + E1 + A1 + R1 is the population
size of SilS and N2 = S2 + A2 + E2 + I2 + R2 is the size of SymS.

Disease-related deaths in SymS result in a decrease in the population size of the
SymS over time, dN2/dt = −μI2 but the population size of SilS remains constant,
N1(t) = N1(0). The initial conditions are nonnegative with R1(0) = 0 = R2(0).

For constant parameter values, a simple expression can be computed for the basic
reproduction number in the ODE model by applying the next generation matrix
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approach (van denDriessche andWatmough 2002;Diekmann et al. 1990). Let p1(t) =
S1(t)/N (t) be the proportion of susceptible SilS (group 1) and p2(t) = S2(t)/N (t)
the proportion of susceptible SymS (group 2) at time t . At the beginning of an epi-
demic, when the population is at the disease-free equilibrium (DFE), S1(0) = N1(0)
and S2(0) = N2(0) with remaining states zero, the basic reproduction number can be
defined in terms of the proportions,

R0 = p1(0)
β1

δ1︸ ︷︷ ︸
SilS

+ p2(0)

(
β2

δ2
+ β3

γ + μ

)
︸ ︷︷ ︸

SymS

. (1)

For constant parameters,R0 is the sum of two terms, the number of secondary infec-
tions generated from SilS and from SymS. The stability of the DFE is achieved if the
proportion of the susceptible population in each group reaches a sufficiently small
fraction of the population. That is, if the effective reproduction number is reduced to
a value less than one,

Rt = p1(t)
β1

δ1
+ p2(t)

(
β2

δ2
+ β3

γ + μ

)
. (2)

3.2 Stochastic Epidemic Models

To account for demographic and environmental variability in the epidemic process, we
develop two time-nonhomogeneous stochastic processes. The first model is a Markov
chain model with discrete random variables. The discrete changes in the populations
at the initiation of an epidemic accurately account for the small numbers of exposed,
asymptomatic, and infectious individuals. We refer to this time-nonhomogeneous pro-
cess as theNHPmodel. The secondmodel is a systemof SDEswith continuous random
variables, an approximation of the NHP model when the numbers of exposed, asymp-
tomatic, and infectious individuals are large. We refer to this model as the SDEmodel.
These two models are coupled in a hybrid model that switches from the NHP to the
SDE model when infected population sizes are large and has the reverse switch when
population sizes are small. The use of a hybrid model incorporates the accuracy of the
NHP when population sizes are small and the computational efficiency of the SDE
model when sizes are large.

For simplicity, we use the same notation for the random variables in the NHP
and SDE models as in the ODE model, i.e., Si , Ei , Ai , I2, and Ri . To account for
demographic variability and to ensure a close relationship to the ODEmodel, we apply
the transition rates in the ODE model to define infinitesimal transition probabilities
and the corresponding changes in the NHP random variables. Table 1 outlines all of
the changes that occur in the NHP model. In particular, the COVID-19 NHP model is
based on the 8 discrete changes in Table 1 and their associated transition probabilities.
An underlying assumption in the stochastic model with constant parameters is that the
time spent in each stage is exponentially distributed.
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Table 1 State transitions and rates for the COVID-19NHPmodelwith Poisson probabilities a(t)Δt+o(Δt)

Event Description Transition Rate, a(t)

Infection of Si Si → Si − 1

1,2 Ei → Ei + 1
Si
N

(β1(t)A1 + β2(t)A2 + β3(t)I2)

Transition of Ei Ei → Ei − 1

3,4 Ai → Ai + 1 αi Ei
Transition of A2 A2 → A2 − 1

5 I2 → I2 + 1 δ2A2
Recovery of A1 A1 → A1 − 1

6 R1 → R1 + 1 δ1A1
Recovery of I2 I2 → I2 − 1

7 R2 → R2 + 1 γ I2
8 Death of I2 I2 → I2 − 1 μI2

The transition probabilities in Table 1 are used to derive an Itô SDE model with the
general form:

dX(t) = F(X(t), t)︸ ︷︷ ︸
drift

dt + G(X(t), t)︸ ︷︷ ︸
diffusion

dW (t), X(0) ≥ 0, (3)

where F is the drift vector, G is the diffusion matrix, andW is a vector of independent
Wiener processes (Allen et al. 2020, 2008; Shakiba et al. 2021). The diffusion matrix
is a 9×8 block diagonal matrix with two matrices associated with SilS or SymS along
the diagonal,

G =
(
CSilS O
O CSymS

)
,

where matrices CSilS and CSymS are, respectively,

⎛
⎜⎜⎝

−√
B1 0 0√
B1 −√

α1E1 0
0

√
α1E1 −√

δ1A1

0 0
√

δ1A1

⎞
⎟⎟⎠ and

⎛
⎜⎜⎜⎜⎝

−√
B2 0 0 0 0√
B2 −√

α2E2 0 0 0
0

√
α2E2 −√

δ2A2 0 0
0 0

√
δ2A2 −√

μI2 −√
γ I2

0 0 0 0
√

γ I2

⎞
⎟⎟⎟⎟⎠ .

The expressions Bi ≡ Bi (t) = Si
N

(β1(t)A1 + β2(t)A2 + β3(t)I2), i = 1, 2.
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The explicit form of the Itô SDEmodel with demographic variability has the form:

dS1 = −
(

β1(t)A1

N
+ β2(t)A2

N
+ β3(t)I2

N

)
S1dt − √

B1 dW11(t),

dE1 =
((

β1(t)A1

N
+ β2(t)A2

N
+ β3(t)I2

N

)
S1 − α1E1

)
dt

+√
B1 dW11(t) − √

α1E1 dW12(t),

d A1 = (α1E1 − δ1A1)dt + √
α1E1 dW12(t) − √

δ1A1 dW13(t),

dR1 = δ1A1dt + √
δ1A1 dW13(t),

dS2 = −
(

β1(t)A1

N
+ β2(t)A2

N
+ β3(t)I2

N

)
S2dt − √

B2 dW21(t), (4)

dE2 =
((

β1(t)A1

N
+ β2(t)A2

N
+ β3(t)I2

N

)
S2 − α2E2

)
dt

+√
B2 dW21(t) − √

α2E2 dW22(t),

d A2 = (α2E2 − δ2A2)dt + √
α2E2 dW22(t) − √

δ2A2 dW23(t),

d I2 = (δ2A2 − γ I2 − μI2)dt + √
δ2A2 dW23(t) − √

μI2 dW24(t) − √
γ I2 dW25(t),

dR2 = γ I2dt + √
γ I2 dW25(t).

The 9 SDEs have a total 8 independent Wiener processes, W1 j , j = 1, 2, 3 and W2 j ,
j = 1, 2, 3, 4, 5, corresponding to the number of events in Table 1.
Environmental variability is included in the stochasticmodels through the transmis-

sion rates, βi (t). Environmental variability may be a result of contacts or behavior of
the population due to government restrictions imposed on social distancing or on face
mask use or from external factors such as temperature or humidity that directly impact
transmission. Therefore, environmental variability ismodeled by time-dependent, con-
tinuous random variables βi (t), i = 1, 2, 3, through the Itô SDE as

dβi (t) = r(β̄i − βi (t)) + σi
√

βi (t) dW (t), βi (0) = β̄i , i = 1, 2, 3. (5)

The values of β̄i , i = 1, 2, 3 are the estimated constant transmission rates from the
ODEmodel in Sect. 4.2. Parameter r is the rate of return to the value β̄i and parameter
σi is the amount of variability about this value. The Itô SDE (5) is known as a Cox–
Ingersoll–Ross (CIR) process (Iacus 2009). The CIR process has nonnegative sample
paths and an asymptotic gamma distribution with constant mean β̄i and variance
β̄iσ

2
i /(2r) (Allen 2016; Shakiba et al. 2021). The coefficient of variation (CV ) of the

asymptotic gamma probability density function equals

CV = σi√
2r β̄i

and σi = CV
√
2r β̄i . (6)

The effects of environmental variability on several COVID-19 epidemic outcomes are
explored in Sect. 4.4 through a range of values for the two parameters r and CV .
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If r = CV = 0, then there is no environmental variability. Therefore, we chose
CV = 0.5, 1, 1.25 to encompass a large range of environmental variability and values
of r = 0.1, 0.2, 0.5, 1 days−1 to measure the response rate for return to the mean. For
example, r = 0.1 is an average return of 10 days, whereas r = 1 is 1 day.

The NHP model accurately records the discrete events in the random variables
when population sizes are small. However, as population sizes increase, so does the
frequency of the discrete events, resulting in large computational times. To alleviate
these computational issues, we develop a hybrid model to ensure the accuracy of the
NHP model for small population sizes and the computational expediency of the SDE
model for large population sizes (2). A hybrid approach has often been used in practice
in epidemic models and in chemical reaction models, where in the latter models the
SDE formulation is referred to as the chemical Langevin equation (Duncan et al. 2016;
Gillespie 2000; Rebuli et al. 2017; Safta et al. 2015; Salis andKaznessis 2005; Sazonov
et al. 2011). When consistently formulated, the SDE model (4)–(5) approximates the
NHP dynamics for large population sizes (Allen et al. 2020; Allen 2017; Allen and
Allen 2003). To ensure the SDE dynamics follow closely those of the NHP, the SDE
model is modified slightly so that the transition rates and the sample paths of the SDE
are nonnegative (Allen et al. 2020; Cresson and Sonner 2018) (Appendix B).

For r > 0 and CV > 0, the transmission parameters βi , i = 1, 2, 3 are continuous
random variables modeled by the SDE Cox–Ingersoll–Ross (CIR) process. The βi
CIR process can be accurately modeled by the Euler–Maruyama method, a discrete-
time method. The standard Gillespie algorithm no longer applies to the NHP when
parameters βi are modeled by the CIR process. Therefore, to be consistent with the
discrete-time method used for the βi CIR process, we use a Monte Carlo method
with the same discrete-time step as in the NHP epidemic model. The value of Δt is
chosen sufficiently small such that the sum of all transition probabilities α(t)Δt in
Table 1 is less than one and that the time step yields a good approximation for the
NHP model and the CIR process. If these criteria do not hold, there is a break in the
computed simulations and the simulations are redone with a smaller time-step until
the criteria are satisfied. In particular, the change in time,Δt , is chosen as 0.0005. The
Euler–Maruyama method with the same time step is then applied to the SDE epidemic
model. The use of a discrete-timemethod in the time-nonhomogeneous NHP and SDE
epidemic models provides a seamless transition in the hybrid model, when switching
between NHP and SDE.

We validated our Monte Carlo method by comparing the model outputs to that of
the CTMC using the Gillespie algorithm, with r = 0 = CV , which we previously
developed and published (Edholm et al. 2018). Also, in Shakiba et al. (2021), we have
shown that our Monte Carlo discrete-time method and Gillespie algorithm are in good
agreement in terms of mean, standard deviation, and other outcome measures.

To numerically implement the hybrid model, we define a switch from NHP
to SDE when the sum of the infected random variables I2 + ∑

i=1,2(Ei + Ai )

reaches a threshold value, Thresh1 = 100 and a reverse switch, SDE to NHP, when
Thresh2 = 50. We tested various threshold values to ensure accuracy of the outcomes.
For Thresh1 = 100, 500, 1000, it was found that the values are not statistically dif-
ferent via one-way ANOVA and t-test comparing 100 versus 1000 (p-value 0.01). All
code for this paper is available at Hwang et al. (2022)
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Fig. 2 An outline of our modeling workflow, which involves validation, phase definition, ODE parameter
fitting, and stochastic modeling

4 Results

4.1 Validating our Model Through Comparison to Established Italy Dynamics and
Data

Before applying our parameter estimation strategy to BC data, we conduct an exten-
sive literature search to identify published models that have taken a similar approach
to model COVID-19 in regions with high case counts in early 2020. We select the
SIDARTHE model developed by Giordano et al. for COVID-19 in Italy as a source
of validation for our model (Giordano et al. 2020). SIDARTHE is a compartmental
model that captures individuals in the susceptible, infected, diagnosed, ailing, recog-
nized, threatened, extinct, and healed classes (Giordano et al. 2020). This model is
selected for use in our validation step based on the high degree of overlap between the
established classes seen in the SIDARTHE and our SEAIRmodel. However, since our
model parameters differ and cannot be directly compared across models, we use R0
as a baseline for comparison in the model validation process. We perform parameter
estimation with the dataset of the SIDARTHE model provided by the Italian Ministry
of Health/Civil Protection, which contains the number of cases, deaths, and recoveries
in Italy (Giordano et al. 2020).

We limit our fitting to days 1–22 of the initial outbreak in Italy, which began on
February 20, 2020. Day 22 is approximately two weeks after the first announcement
of public health measures, which recommended citizens to perform basic social dis-
tancing. A two-week lag period is chosen since a peak in infections occurred after
14–18 days of lockdown, which reflects the time needed for a population to respond
to changes in public health regulations (Vinceti et al. 2020). This period is obtained
through analyzing changes in cellphone mobility caused by nationally imposed regu-
lations relating to COVID-19 in Italy (Vinceti et al. 2020). A similar strategy is used
to define phases of the pandemic in BC. To parameterize the model, we utilize an
extensive literature search and techniques of numerical parameter estimation. First,
from the literature we define measurable parameters: latent period, duration for the
asymptomatic stage, and total population size. Parameters that are unavailable in the
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Table 2 Description of the parameter values for the beginning of the COVID-19 outbreak in Italy (Days 1–
22). Parametersmarkedby* are obtained throughmethods inSect. 4.1. Parameter p = p1(0) = S1(0)/N (0)

Parameter Definition Italy Units Reference

β̄∗
1 SilS mean asymptomatic transmission rate 0.498 Days−1 –

β̄∗
2 SymS mean asymptomatic transmission rate 0.729 Days−1 –

β̄∗
3 SymS mean symptomatic transmission rate 0.0209 Days−1 –

α−1
1 SilS latent period 3.2 Days Lauer et al. (2020)

α−1
2 SymS latent period 3.2 Days Lauer et al. (2020)

δ−1∗
1 SilS duration of asymptomatic stage 18.8 Days –

δ−1
2 SymS duration of asymptomatic stage 2.3 Days Bi et al. (2020)

μ∗ Disease-induced death rate 0.0149 Days−1 –

γ ∗ Recovery rate 0.0217 Days−1 –

N Total population size 60000000 Individuals Giordano et al. (2020)

p∗ SilS initial fraction in population 0.2018 - –

Cumulative cases in 
Italy

C
um

ul
at

iv
e 

ca
se

s

C
um

ul
at

iv
e 

de
at

hs

0 5 10 15 20
0

500

1000

1500
C

um
ul

at
iv

e 
re

co
ve

re
d

0 10 20
0

5000

10000

15000

0 10 20
0

200

400

600

800

1000

1200

Italy days 1 - 22

Days after first case

Fig. 3 Scatter plot of data from Italy for days 1–22 and our corresponding model-predicted trend lines for
cumulative cases, deaths, and recovered

literature are obtained through parameter estimation (marked by asterisks in Table 2).
We then useMultistart and fmincon programs inMATLAB to get the model-predicted
outputs to match with data through nonlinear least squares fitting (Burton et al. 2021;
Edholm et al. 2019; Levy et al. 2017). We want to emphasize that our construction of
a deterministic ODE model is formulated to capture the underlying behavior of the
pandemic rather than exact parameter values. Given the constraints of the pandemic
and our focus on exploring the stochastic nature of the model, we used an established
approach to estimate the parameters in our model using data. Day 1 describes the day
when the first infected symptomatic person is introduced to the population, which
corresponds to an initial condition of I2(0) = 1. Once we find the best fit, the associ-
ated output parameters are taken as our estimations. Figure 3 shows the best fit. The
number of people in each phase can be seen in Fig. 11. After parameter estimation,
we obtain anR0 of 2.06, which is in close agreement toR0 = 2.38 found by Giordano
et al. (2020). This validation gives us confidence to apply our SEAIR model strategy
with BC’s data.
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4.2 Uncovering the Contributions of Silent and Symptomatic Spreaders to BC
Outbreak Dynamics

Based on our preliminary analysis of the BC data and policy shifts in reaction to
COVID-19, we divide the data into two phases that capture the change in disease
dynamics associated with introduction of strict provincial regulations (Alyse 2021).
Phase I marks the beginning of the outbreak where few regulations are put in place,
while Phase II captures a period of strict social distancing (Fig. 4a). The division
between the two phases is based on fluctuations in population behavior caused by
social distancing guidelines imposed in March 2020. These trends are captured in the
Citymapper Mobility Index, which is a mobile application that tracks a city’s public
transit activity when compared to a historic baseline (Citymapper 2020). Specifically,
we define the end of Phase I to be March 31, 2020, which is two weeks after BC
officials declared a provincial state of emergency over the COVID-19 pandemic on
March 17th. This can be seen in the sudden drop in transit activity (Fig. 5b), which
remains below 20 percent after March 31, 2020 (Fig. 4b) (Citymapper 2020). After
the phases are defined, we continue with parameter estimation in BC, allowing certain
parameters to change values based on the particular phase (Burton et al. 2021).

Using the same strategy as we did for Italy, we estimate the Phase I transmission
rates (β1, β2, β3), SymSdurationof asymptomatic stage (δ−1

1 ), death rate (μ), recovery
rate (γ ), and the SilS fraction (p) with an initial condition of I2 = 1. To account
for continuation between the two phases, the endpoints for Phase I are used as the
initial conditions of Phase II and disease-induced deaths from Phase I were removed
from the population. Parameters that were assumed to be independent of time were
carried over from Phase I to Phase II (δ−1

1 , μ, and γ (marked by a single asterisk
in Table 3)). Due to the large number of unrecorded cases in BC, we modified the
model to minimize deaths in Phase II (Skowronski et al. 2020). Deaths would only
result from the severe SymS cases, which are accurately recorded in official data. To
account for unrecorded cases, all valid model estimations are greater than or equal to
recorded data. The results for fitting Phases I and II in BC are shown in Figs. 4c and
12. There is close agreement between the estimated and actual number of deaths in
Phase II, while cases and recoveries are greater than the recorded data due to under-
reporting. The number of people in each stage over time during Phase I (13a) and
Phase II (13b) can be seen in Fig. 13. Figure 5 summarizes the transmission rates and
population fractions in Phases I and II. In both phases, asymptomatic transmission
contributes more than symptomatic transmission. Due to the imposed restrictions
in Phase II, β3 nearly reaches zero. In addition, SilS makes up the majority of the
population. Interestingly, our model predicts a drastic increase in the SilS proportion
when we transition phases. This trend could be associated with under-testing in the
population, causing more people to be classified as SilS. It is noteworthy that at this
early phase of the pandemic, provincial public health guidelines only recommended
testing of individuals showing symptoms associated with COVID-19 infection and
testing was not widespread (British Columbia Centre for Disease Control 2021). On
average, the number of tests performed daily during Phases I and II capture 0.03% of
the population (British Columbia Centre for Disease Control 2021). Analyzing the
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Fig. 4 a Visualization of the two phases of the BC disease dynamics, with Phase I starting at the emergence
of COVID-19. We switch to Phase II at Day 60 until Day 109. b Citymapper Mobility Index data for BC,
which reports a shift in behavior around March 31st 2020, day 60 in a. c Scatter plots of data from BC
for Phases I and II, along with the model-predicted cumulative number of cases, deaths, and recovered
individuals. Deaths are minimized in the Phase II fitting strategy which are expected be a more accurate
measure of the disease dynamics than cumulative cases when testing rates are low
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Fig. 5 Model-predicted
parameterizations of our SEAIR
model for Phases I and II of the
BC COVID-19 dynamics. Pie
charts show the initial
proportions of the total
population that are SilS versus
SymS and the three values for
the transmission rates, β1, β2
and β3. Note, in Phase II β3 is
close to zero

average daily testing rates for the same date range one year later, we find that the daily
tested population has increased to 0.2%. All of our parameter values are recorded in
Table 3. For Phase I, we estimate a R0 = 2.75 using Eq. (1) and parameter values in
Table 3. For Phase II, we estimate aR60 = 0.94 at the start of Phase II (day 60) using
Eq. (2) and parameter values in Table 3.

4.3 Hybrid Model Numerical Formulation and Comparison

The parameter estimations from our ODEmodel are used as the baseline for our hybrid
stochastic model, which allows us to explore the contributions of demographic and
environmental variation to disease dynamics, as in our previous work (Edholm et al.
2018; Shakiba et al. 2021). Figure 7 illustrates the workflow of our hybrid stochastic
model, designed to take advantage of the accuracy of the NHP at small population
sizes and the efficiency of the SDE at large population sizes.

We previously showed that the SDE is inaccurate at low initial conditions (Shakiba
et al. 2021). Therefore, with an initial condition of I2(0) = 1, the hybrid model starts
by using the NHP. Once the number of infections reaches 100, the hybrid model
switches to the SDE until the number of infections drops back below 50, in which
case, the hybrid model returns to the NHP. We set the thresholds of 100 and 50 based
on repeated errors in the NHP model code when the number of infected individuals
increases beyond these points. In particular, we observed errors in the NHP code when
the total number of infected individuals reached high levels, as the total sum of all
probabilities a(t) Δ t in Table 1 exceeded one, making the NHP code invalid. The
hybrid model’s threshold for switching back from SDE to NHP (a value of 50) is
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Table 3 Description of the parameter values for Phase I and Phase II of the COVID-19 SEAIR model in
BC. Parameters marked by ** were fitted separately in Phases I and II, which were found through methods
in Sect. 4.2. Parameters marked by * were fitted in Phase I but assumed to remain the same over time.
Parameter p = p1(0) = S1(0)/N (0) in Phase I, Eq. (1) or p = p1(60) = S1(60)/N (60) in Phase II,
Eq. (2)

Parameter Definition Phase I Phase II Units Reference

β̄∗∗
1 SilS mean asymptomatic transmission rate 0.600 0.306 Days−1 –

β̄∗∗
2 SymS mean asymptomatic transmission rate 0.519 0.995 Days−1 –

β̄∗∗
3 SymS mean symptomatic transmission rate 0.3 0.000362 Days−1 –

α−1
1 SilS latent period 3.2 3.2 Days Lauer et al. (2020)

α−1
2 SymS latent period 3.2 3.2 Days Lauer et al. (2020)

δ−1∗
1 SilS duration of asymptomatic stage 2.8 2.8 Days –

δ−1
2 SymS duration of asymptomatic stage 2.3 2.3 Days Bi et al. (2020)

μ∗∗ Disease-induced death rate 0.004 0.00314 Days−1 –

γ ∗ Recovery rate 0.075 0.075 Days−1 –

N Total population size 5110917 5110894 Individuals [37]

p∗∗ SilS initial fraction in population 0.6754 0.9379 – –

set to be lower than that of switching from NHP to SDE (value of 100) to prevent
continuous and unnecessary oscillations between the NHP and SDE models. Other
thresholds were explored and did not visibly impact model outcomes. The model exits
the loop if cases drop to zero (signifying the end of the pandemic), or if the pandemic
lasts beyond our maximum anticipated timeline of 1000 days. After establishing our
hybrid model, we compared it to both the NHP and SDE models run separately, using
a wide range of initial conditions. The hybrid model code remains error free in cases
where the NHP experiences errors, see Fig. 14 in Appendix C.

Limitations in the NHP and SDE as standalone models are overcome by combining
the two into our hybrid model, which makes use of the advantages of each model.
To evaluate the accuracy of the hybrid model, we overlay the sample paths from our
model on data and see close alignment between the two (Fig. 6). Using the hybrid
stochastic model, we predict the probability and severity of outbreak, which provide
valuable insights for public health. Specifically, we estimate the time to outbreak and
peak infections, total and peak number of infections, probabilities of outbreak and ICU
overload, and the number of death (Fig. 7). By examining how these model-simulated
outputs change based on parameters obtained in each phase, we gain valuable insight
into how public health policies impact the duration and severity of BC’s COVID-19
pandemic.

4.4 Exploring the Effect of Demographic and Environmental Stochasticity on
Phase I and II BC COVID-19 Dynamics

We introduce environmental variability to the hybrid stochastic model through the
coefficient of variation (CV ) and rate of return (r ) (Shakiba et al. 2021). These
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Fig. 6 Sample paths from the hybrid model outputs overlaid on Phase I (a) and II (b) datasets to confirm
validity. Each color indicates one sample path

parameters impact the frequency and amplitude of fluctuations in transmission rates
relative to the mean, respectively. The mean transmission rates, which were obtained
through parameter fitting in Phases I and II, are expected to changes with public health
guidelines imposed on the entire population, including social distancing and masking
measures. With relation to disease dynamics, CV impacts the degree to which trans-
mission rates deviate from the mean and can be interpreted as the change in adherence
to public health policies associated with time and geographic variability. For exam-
ple, changes in temperature, humidity, and weather conditions in different seasons
or across BC cities may lead to changes in adherence levels. On the contrary, r is
analogous to response time and captures how quickly the transmission rate is pulled
back to the mean value. For example, r = 0.1 implies an average of 10 days to return
to the mean and r = 1 implies an average return time of one day. This response time
is impacted by the strictness by which public health regulations (e.g., mask mandates,
social distancing, etc.) are policed and enforced. Examples of transmission rates for
changing CV and r values are shown in Fig. 15 in Appendix C. While increasing CV
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moves βi away from the mean, r helps to pull βi back to its mean value. As a result, a
high r increases the number of times βi crosses the mean while a high CV increases
the distance of βi from the mean at each time point (Fig. 15b). When CV is high and
r is low, βi swings dramatically, which increases the time required to return to the
mean. However, when CV and r are both high, r creates a strong pull that keeps βi
close to the mean (Fig. 15b).

To identify how environmental variability contributes to trends in pandemic out-
comes, we explored various combinations of CV and r (Fig. 8). In Phase I,R0 and βi

are high due to the absence of public health regulations. After the implementation of
policies in Phase II, we obtain lower R60 and βi from the ODE model. The unequal
baselines lead to differences in the probability and severity of an outbreak; therefore,
the impacts of CV and r can be expected to be different in the two regimes.

The hybrid model predicts the probabilities of outbreak, defined in our model
as over 50 cases of COVID-19 within the population, as well as the probability of
ICU overload, which is calculated based on BC’s ICU capacity. In BC, there are
313 COVID-designated ICU beds (British Columbia Ministry of Health 2020). It is
estimated that 1.32% of COVID-19 cases in BC end up in the ICU BC Centre for
Disease Control (2021). We calculate the probability of ICU overload by estimating
whether the province reaches ICU capacity and find that these probabilities drop with
an increase in CV but slightly rise with an increase in r during Phase I. The reduction
in probability of outbreak is greatest with large CV and small r . Interestingly, in all

Fig. 7 Outline of our hybrid stochastic model’s overall process. We parameterize the model and run the
hybrid stochastic model that switches between the NHP and SDE models based on threshold conditions.
Model-generated simulations are then used to calculate output measures that capture the probability and
severity of COVID-19 outbreak
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Fig. 8 Output measures of the hybrid stochastic model averaged over 2500 iterations in Phases I and II,
with various combinations of CV and r . Since the population is already in an outbreak during Phase II, the
probability of outbreak is 100% and time to outbreak is 0 days for all combinations ofCV and r . Therefore,
bar graphs for the output measures above are excluded from the figure

cases, the probability of outbreak is greatest when there is no environmental variability
(r = 0 = CV ). In particular, for Phase I, the branching process analytical estimate for
probability of outbreak when r = 0 = CV equals Poutbreak = 0.70, which is in good
agreement with the computational estimate shown in Fig. 8 (Appendix A). In Phase
II, the probability of ICU overload increases slightly with an increase in CV , and
decreases significantly with an increase in r , which is opposite of the trend observed
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in Phase I. Importantly, probability of outbreak is not computed for Phase II since the
population is already in a state of outbreak at the outset of this phase.

Once an outbreak occurs, the hybridmodel also predicts the severity of the outbreak.
Severity increases as the number of deaths, number of infections, number of silent
infections, and peak number of infections rise. On the other hand, severity is reduced
as the time to outbreak and time to peak infection decrease, signifying faster disease
dynamics. From Fig. 8, we can see that the number of deaths, number of infections,
number of silent infections, and peak number of infections follow a similar trend in
Phase I. Increasing CV leads to an increase in these metrics when r is low, but has
little impact when r is high. In all cases, increasing r results in a slight decrease in
these metrics. In Phase I, the time to outbreak and time to peak infection appear to
increase with higher CV for most values of r . However, when r is very low, having a
high CV decreases the times to outbreak and peak infection.

In Phase II, there is a common trend in the number of deaths, infections, and silent
infections, but these metrics have an opposite trend compared to what we observe
in Phase I. In other words, increasing CV leads to a decrease in these metrics when
r is low, but has less impact when r is high. On the other hand, the peak number
of infections in Phase II continues to follow a similar trend as in Phase I. For all
of the above measures, uncertainty decreases with an increase in r during Phase II.
Interestingly, the time to peak infections significantly increases when CV = 0.5 and
r = 0.05 but are nearly the same for all other combinations of CV and r .

Overall, increasing CV decreases the chance of outbreak or ICU overload in Phase
I. Due to the higher volatility associated with a high level of transmission, there is
a greater chance that fluctuations will effectively bring the transmission rate below
the baseline. However, if an outbreak does happen, the outbreak severity (number
of deaths, number of infections, time to outbreak) will be worse. These trends are
consistent with our previous findings (Shakiba et al. 2021). As r increases, there
is stricter enforcement of public health regulations that causes outbreak severity to
decrease accordingly.

4.5 Exploring the Effect of Demographic and Environmental Stochasticity with
Changing Disease Dynamics

Next, we used our stochastic model to push the boundaries of our simulations and
explore the impact of variability in transmission rates across different disease scenar-
ios. Specifically, we are interested in how varying the r and CV values will affect
our output measures. To create different disease scenarios, we change the mean trans-
mission rates and fraction of silent spreaders to give rise to different R0 values in
simulated disease scenarios (Fig. 16 in Appendix C). All other parameter values used
for these simulations are taken from Phase I and a single infected individual is used to
initiate the disease dynamics to ensure thatR0 is the correct measure for our numeri-
cal experiments. Once we established the various disease scenarios, we ran numerical
simulations varying the r and CV for each scenario and analyzing the output mea-
sures. For our analysis, we will refer to the different disease scenarios based on their
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R0 value, with the results displayed in Figs. 9 and 10. Included in these figures is a
comparison to the baseline R0 for Phase I and R60 for Phase II.

From Figs. 9 and 10, we see a similar trend in the number of deaths, number
of infections, and number of silent infections for R0 > 1.19. In the listed output
measures, there is a peak when CV = 1.25 and r = 0.05, which tapers down with an
increase in r or decrease inCV . However, the observed trend no longer holds truewhen
R0 ≤ 1.19. At R0 = 1.19, the peak shifts to the CV = 0.5 and r = 0.05 condition,
and all three output measures decrease significantly when R0 = 0.94. The identified
trends also hold true for the peak number of infections (Fig. 17 in Appendix C).

Contrary to the number of deaths and number of infections, the trends observed for
the time to outbreak and probability of ICU overload experience key shifts at other
points in the R0 spectrum. From our model outputs, it appears that the peak time to
outbreak occurs when CV = 1.25 and r = 0.05 for R0 ≥ 5.28. Interestingly, when
R0 ≤ 3.38, the same combination of CV and r yields the lowest time to outbreak.
The same trends can be seen for the time to peak infection (Fig. 17 in Appendix C ).
When it comes to the probability of ICU overload, we see a dip when CV = 1.25 and
r = 0.05 for high values ofR0, but the probabilities for all combinations of CV and r
suddenly drop at the transition between R0 = 1.78 and R0 = 1.35. This pattern can
also be seen in the probability of outbreak (Fig. 18 in Appendix C). The sudden trend
shifts suggest critical R0 values between the few scenarios that we explored, which
serve as tipping points that lead to consistent behaviors on either side.

5 Discussion

Our new hybrid model has allowed us to explore the impacts of both demographic and
environmental stochasticity, captured by CV and r , on the probability and severity
of COVID-19 disease outbreaks in BC. From a public health perspective, CV relates
to the fluctuating levels of COVID-19 transmission due to changing adherence to
public health rules over time as well as environmental factors (such as differences
in contacts, sanitation, temperature, and humidity over time as well as and between
cities within BC). Parameter r can be interpreted as the response time in adjusting
transmission rates back to the mean value, which is impacted by the strictness by
which adherence to public health policies is policed within the population (e.g., how
frequent the population is monitored, repercussions put in place for lack of adherence,
etc.). Our modeling results have revealed trends associated with changing CV and r
in both high (Phase I) and low (Phase II) transmission situations. In Phase I, COVID-
19 had just arrived in BC and had undergone transmission without public health
intervention. In this scenario, an increase in transmission rate variability (high CV )
reduces the probability of outbreak as well as ICU overload. This aligns with our
previous observations of similar results for Ebola and MERS epidemics, which both
displayed high mean transmission rates (Shakiba et al. 2021). However, if an outbreak
were to occur, its severity (number of resultant deaths and the speed with which it
starts) is increased with CV . Both of these effects can be mitigated with increasing r ,
likely due to the fact that high degrees of policing mitigate the effects of fluctuating
transmission rates by returning them back to baseline. When policing is low, it takes
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Fig. 9 Outputs for the predicted measures of severity (number of deaths, time to outbreak, and probability
of ICU overload) from the hybrid stochastic model, averaged over 2500 iterations with carefully chosen
combinations of the fraction of silent spreaders and transmission rates to yield R0 values that range from
5.66 to 0.94. R0 values are paired with varying combinations of CV and r. For all combinations, α−1

1 =

3.2, δ−1
1 = 2.8, δ−1

2 = 2.3, μ = 0.004, and γ = 0.075. The far right (gray) column includes the results from
Fig. 8 for a comparison of results. Note for Phase II, we use theR60 calculated fromRt in Eq. (2)

longer to respond with social distancing and to get back to mean transmission rates.
As a result, increases in noise (causing larger swings in βi ) speed up transmission.
In Phase II, we see an opposite trend, where increases in CV increase the chance of
outbreak or ICU overload, given the all-or-none nature of these outcomes. Spikes in
transmission rates drive increases in infections, crossing the threshold of ICU capacity.
This suggests that low transmission scenarios may have more to lose from fluctuations
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Fig. 10 Outputs for the number of infections and number of silent infections from the hybrid stochastic
model, averaged over 2500 iterations with carefully chosen combinations of the fraction of silent spreaders
and transmission rates to yield R0 values that range from 5.66 to 0.94. R0 values are paired with varying
combinations of CV and r. For all combinations, α−1

1 = 3.2, δ−1
1 = 2.8, δ−1

2 = 2.3,μ = 0.004, and γ = 0.075.
Outputs obtained from Phase I and Phase II parameters are included in the far right column. Note for Phase
II, we use the R60 calculated fromRt in Eq. (2)

in βi , which increases the probability of overwhelming the medical system. On the
other hand, policing has little effect on outbreak severity during Phase II. In fact, poor
policing may even lead to better outcomes, although the noisiness of key metrics such
as number of deaths and infections also increases. In general, our results suggest that
for low transmission scenarios in which an outbreak has not yet occurred, policing is
effective for reducing the risk of outbreak and ICU overload, and delaying the onset of
these outcomes. However, once an outbreak occurs, aggressive policing does not have
as dramatic an effect on reducing outbreak severity as it does for high transmission
scenarios. In this case, policing offers the advantage of reducing noisiness in outcomes.
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Many of the observed trends associated with CV and r continue to hold true across
a large range of R0, which we uncovered by exploring of varied disease scenarios.
In general, when R0 is high, noise can dramatically reduce the probability of an
outbreak, while policing serves to delay the time to outbreak and reduce severity. In
low R0 scenarios, however, noise increases the probability of infection. Critical R0
values span across various output measures that act as tipping points associated with
a clear shift in behavior. Interestingly, these tipping points are all above anR0 of one,
suggesting that maintaining theR0 within certain ranges can visibly change outbreak
behaviors, even when R0 > 1. Unfortunately, there is no definite R0 threshold that
will keep the pandemic under control in terms of every output measure. Nonetheless,
being aware of the behavioral changes associated with different levels ofR0 can allow
public health officials to adjust pandemic response strategies related to disparate output
measures.

Useful insights about COVID-19 and SilS individuals have been gained through
incorporation of demographic and environmental stochasticity, enabled by a hybrid
model that offers speed and efficiency. Expansion of the stochastic hybrid framework
to additional epidemics will be beneficial to the public health sector. We plan on
expanding upon this work by exploring spatiotemporal heterogeneity and building
upon our prior results.
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Appendix A: Probability of Outbreak

For the case r = 0 = CV , an analytical estimate for the probability of an outbreak,
Poutbreak, can be obtained using techniques frommultitype branching processes (Allen
2017; Allen and Lahodny Jr 2012). In a time-homogeneous Markov chain, where the
parameters are constant, the probability of disease extinction Pext is a fixed point of the
offspring probability generating functions (pgfs),where “offspring" refers to infections
generated in a small period of time. Then, Poutbreak = 1 − Pext. An offspring pgf is
defined for each of the infection states, A1, A2, I2, at the DFE, referred to as type 1, 2,
3, respectively. The generating function is a polynomial function of u = (u1, u2, u3),
where the powers towhich each of the u j are raised are the number of type j individuals
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generated by one individual of type A1, A2, or I2 in a small period of time. For the
CTMC model, defined in Table 1, the offspring pgfs are

f1(u) =
β1
N

(
N1u21 + N2u1u2

) + δ1

β1 + δ1

f2(u) =
β2
N

(
N1u1u2 + N2u22

) + δ2u3
β2 + δ2

f3(u) =
β3
N (N1u1u3 + N2u2u3) + γ + μ

β3 + γ + μ
,

where u j ∈ [0, 1], j = 1, 2, 3, Ni = Ni (0), i = 1, 2 and N = N1 + N2. There
exists a unique fixed point in (0, 1)3 when R0 > 1. This fixed point is calculated for
parameter values in Figs. 8 and 18 for r = 0 = CV . The fixed point x = (x1, x2, x3)
of f j (x) = x j , j = 1, 2, 3 yields an analytical estimate for the probability of an
outbreak when I2(0) = 1, i.e., Poutbreak = 1 − x3.

Appendix B: SDEModel

The SDE model (3) is modified slightly to ensure the transition rates and the sample
paths are nonnegative (Allen et al. 2020). The transition rates a(tn) at time tn , defined
in Table 1, are replaced by

â(tn) =
{
a(tn), if a(tn) ≥ 0,
0, if a(tn) < 0.

With this modification, the SDE model has the form dX(t) = F̂(X(t), t) dt +
G̃(X(t), t) dW (t). To ensure nonnegative sample paths, we also require the following

condition hold: G̃i j

∣∣∣
Xi=0

= 0 Cresson and Sonner (2018). When this condition is not

satisfied, the SDE term G̃i j is modified as follows:

Ĝi j =
{
G̃i j , if Xi ≥ ε,

G̃i j
√
Xi/ε, if 0 ≤ Xi < ε,

for 0 < ε ≤ 1 (Allen et al. 2020). A value ε = 0.05 was chosen after testing the
numerical code to ensure smaller values of ε gave the same results. The modified SDE
model, applied in the numerical simulations, has the form: dX(t) = F̂(X(t), t) dt +
Ĝ(X(t), t) dW (t).
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Appendix C: Supplementary Figures

See Figs. 11, 12, 13, 14, 15, 16, 17, and 18.
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Fig. 11 The ODE solution for each variable is plotted, based on best fit parameters for Days 1–22 of Italy
COVID-19 dynamics. (Fits to data are shown in Fig. 3)

Fig. 12 Log scale scatter plots of data fromBCforPhases I and II, alongwith themodel-predicted cumulative
number of cases, deaths, and recovered individuals. Deaths are minimized in the Phase II fitting strategy
which are expected be a more accurate measure of the disease dynamics than cumulative cases when testing
rates are low
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Fig. 13 The ODE solution for each variable is plotted, based on best fit parameters for a Phase I and b
Phase II of BC COVID-19 dynamics. (Fits to data are shown in Fig. 4c)

Fig. 14 Fraction of runs that output an error for the NHP, SDE, and hybrid stochastic models with number
of infections ranging from 1 to 100. The number of initial infected individuals in the population lead to
errors in the NHP, but does not effect the SDE or hybrid models
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Fig. 15 a Plots outlining the change in β1 over time with various r and CV combinations for one iteration
of the hybrid stochastic model. The mean value of β1(t) is β̄1 = 0.306, indicated by the black dotted line.
This value was obtained through SEAIR model fitting. The effects of r and CV on β1 can be seen in the
amplitudes as well as how frequent β1 crosses the mean. b Bar graphs quantifying the fraction of time
points β1 crosses the mean, and the distance from mean beta at each time point for the combinations of r
and CV explored in a, averaged over 100 runs
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Fig. 17 Outputs for the peak number of infections and time to peak infections from the hybrid stochastic
model, averaged over 2500 iterations with carefully chosen combinations of the fraction of silent spreaders
and transmission rates to yield R0 values that range from 5.66 to 0.94. R0 values are paired with varying
combinations of CV and r . For all combinations, α−1

1 = 3.2, δ−1
1 = 2.8, δ−1

2 = 2.3, μ = 0.004, and γ =
0.075. The far right (gray) column includes the results from Fig. 8 for a comparison of results. Note for
Phase II, we use theR60 calculated fromRt in Eq. (2)
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Fig. 18 Outputs for the probability of outbreak from the hybrid stochastic model, averaged over 2500
iterations with carefully chosen combinations of the fraction of silent spreaders and transmission rates to
yield R0 values that range from 5.66 to 0.94. R0 values are paired with varying combinations of CV and
r . For all combinations, α−1

1 = 3.2, δ−1
1 = 2.8, δ−1

2 = 2.3, μ = 0.004, and γ = 0.075. The far right (gray)
column includes the results from Fig. 8 for a comparison of results. Since the population is already in an
outbreak during Phase II, no probabilities are shown. Note for Phase II, we use the R60 calculated from
Rt in Eq. (2)
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