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In the mid-1960s, after a distinguished early career in fluid dynamics, Jim Murray
realised how important it was for mathematicians to become involved in biology,
where the term is used in its broadest sense to also include medicine, epidemiology
and ecology. Thus, he became one of the founders of modern mathematical biology,
tackling an astonishingly diverse range of subjects with vision, originality and cre-
ativity. Here, we select a few examples that illustrate his great versatility.

In 1983, Murray proposed a new model for self-organisation in biological pattern
formation. The prevailing model at the time was the coupled system of reaction–
diffusion equations proposed byTuringwhohypothesized that spatial pattern arose due
to cells responding to chemical pre-patterns, set up by the phenomenon of diffusion-
driven instability (Turing 1952). It was known that mesenchymal cells generate large
contractile forces that deform the extracellular environment. This observation formed
the new model proposed by Murray and colleagues (Oster et al. 1983; Murray et al.
1983) in which it was hypothesized that these forces led to cells aggregating into
self-organised patterns. This was a completely new way of looking at the problem
of self-organisation in tissues and they showed how the resultant system of highly
nonlinear partial differential equations led to patterns that were consistent with those
observed in two well-studied examples, namely, skin-organ primordia (specifically
feather germs) and skeletal patterning in the vertebrate limb. Murray was one of
the very first people to combine mechanics with biochemistry, developing what is
now known as the mechanochemical theory of pattern formation. This theory found
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application in a range of areas, including the propagation of post-fertilization waves
on eggs (Lane et al. 1987).

In parallel with this new approach to pattern formation, Murray extended the clas-
sical pre-pattern reaction–diffusion theory to study the effects of domain size and
growth. A particularly striking application of this theory is to animal coat markings
(Murray 1981, 1988). He further developed this approach to address the issue of how
patterns evolved in the context of evolution (Oster et al. 1988). Using a chemotaxis
model, he showed that the sex-dependent stripe patterns exhibited by the alligator
Alligator mississippiensis could be explained by incubation temperature, and did not
necessarily have to be genetically sex-linked (Murray et al. 1990). A similar modelling
framework was proposed to account for the diverse pigmentation patterning observed
on snakes (Murray and Myerscough 1991).

Both mechanochemical and reaction–diffusion mechanisms were then combined
to study the initiation and sequential positioning of teeth in Alligator mississippiensis
(Sneyd et al. 1993). Thismodel also accounts for jaw growth, age structure of epithelial
cells, and age-dependent production of cell adhesion molecules, and shows that these
added complexities are necessary to account for the observed patterning.

Murray also explored cellmovement in a different context, namely that of epidermal
wound healing, in a series of papers that proposed that the biochemical regulation
of mitosis is key to the healing of wounds (Sherratt and Murray 1990). The model
was then used to make predictions on the effects on wound closure of regulating
mitosis and wound shape (Sherratt and Murray 1992). While the aforementioned
papers addressed adult epithelial wound healing, Murray also investigated epithelial
wound healing in embryos, where the mechanism is quite different, involving the
contraction of actin cables at the wound edge (Sherratt et al. 1992). Further work
involved deriving a mechanical model for dermal wound healing which allowed for
a study of how mechanical effects on, and remodelling of, extracellular matrix could
affect the extent of scar tissue formation (Tracqui et al. 1995a, b).

Murray proposed a number ofmodels in epidemiology to investigate disease spread.
For example, Murray et al. (1986) uses a simple model for the transmission of rabies
among foxes to quantify its spread should the disease be introduced to England. Param-
eter values were determined from the literature (and calculated from data) and the
model used to investigate the effectiveness of different control strategies (for exam-
ple, vaccination versus culling). Bentil and Murray (1993) used age-structured and
non-age-structured models to investigate the spread of bovine tuberculosis infection
in badgers. The model was analysed using a logical parameter search method to deter-
mine the values the model parameters must take to exhibit key types of observed
behaviours. The values are then shown to be in good agreement with those from the
literature. Nelson et al. (2000) presents a model for HIV AIDS which includes a delay
in virus production when a cell is infected, as well as accounting for the fact that
drugs are not 100% efficent. A detailed analysis of this model improves upon previous
estimates of infected cell loss rates.

In ecology, the papers of Lewis and Murray (1993) and White et al. (1996a, b)
developed and analysed novel models for wolf pack territory formation that took
into account movement, scent marking, and predator–prey interactions. Analyses of
these models revealed, amongst other results, steady states that contained buffer zones
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devoid of large numbers of wolves. Not only did this agree with field observations,
it also suggested a mechanism for how prey, such as deer and moose, may survive in
areas next to their main predator. This work has implications more generally and, in
particular, for the social organization of humans. Indeed, in Volume II of his book,
Mathematical Biology, Murray extends these ideas in the context of intertribal warfare
(Murry 2003).

In the mid-1990s Murray began work on modelling the growth of brain tumours
(glioma) in a series of highly influential papers upon which, some 25 years on, much
ongoing research is still building. Tracqui et al. (1995a, b) considered a simple model
of glioma cell proliferation and infiltration. Fitting model simulations to computer-
ized tomography (CT) scans using optimization techniques allowed the model to be
parametrised and then used to predict the effect of chemotherapy on the spread of
the tumour, accounting for sensitive and resistant cell populations. Woodward et al.
(1996) used a similar model to explore different surgical resection strategies. While
these papers investigated the model on two-dimensional cross-sections of the brain,
Burgess et al. (1997) extended themodelling to three spatial dimensions. An important
model prediction here is that cell diffusion was actually a more important component
of glioma growth than proliferation rate.

A further significant extension involved taking into account for the first time, to
our knowledge, spatial heterogeneity within the brain. Specifically, Swanson et al.
(2000) extended the model to incorporate the enhanced rate of cell motility in white
matter as compared to that in greymatter. This paper usedmagnetic resonance imaging
(MRI) and CT imaging data to simulate tumour growth on an anatomically accurate
brain domain. The inclusion of grey andwhitematter then allowed themodel to predict
pathways of probable tumour infiltration, thus identifying areas of the brain thatmay be
more susceptible to invasion and should therefore be targeted for treatment. Moreover,
the model was used to predict how much of an expanding tumour could be missed due
to the limitations of image detection methods and how this then allows us to begin
to determine the true extent of invasion, which has important surgical implications.
The importance of using mathematical models as virtual tumours to complement
and enhance information gained from imaging and inform therapy is highlighted in
Swanson et al. (2002) and the review article Swanson et al. (2003).

In the social sciences, aswell as addressing intertribal conflict (asmentioned above),
Murray has also proposed a mathematical model for the dynamics of marital inter-
action. Couples were observed and their interactions described via a Rapid Couples
Interaction Scoring System (RCISS). A mathematical model, consisting of a coupled
system of nonlinear discrete (in time) equations, was then developed to account for
how various interactions contributed to each partner’s RCISS score (Cook et al. 1995).
Analysis of the model revealed a number of steady states, each of which describes a
certain type of marriage. By parametrising the model from data on a particular cou-
ple’s interactions, the model was found to be able to predict the probability of divorce,
in a fixed period of time, to a very high degree of accuracy. The model was also used
to predict how changing specific aspects of a couple’s behaviour would affect their
relationship (Gottman et al. 2002, Murray 2003).

The above is just a small sample of Murray’s ground-breaking research and, while
his personal research has been hugely influential on the development of mathematical
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biology, it is only one part of his contribution. Right from the start of his work on
biological applications, he collaborated with experimental biologists. In doing so, he
helped to establish a yardstick for genuinely applied mathematics in the life sciences
that now permeates the thinking and policy-making in the field. Murray has also been
extremely successful in attracting people from other areas of applied mathematics into
mathematical biology. His infectious enthusiasm for the subject is an important part
of this, coupled with the wide range of exciting biological problems he has at hand,
and his incredible ability to get to the core of the problem, seek out the key question,
and find a way to answer it.

In 1983 Murray established the Oxford Centre for Mathematical Biology, through
which he organised a wide-ranging visitor programme. A high proportion of today’s
senior figures in mathematical biology spent time at the Centre in the 1980s, and were
strongly influenced by its interdisciplinary ethos and collaborative spirit. Furthermore,
he has trained and mentored a generation of mathematical biologists as graduate stu-
dents and postdocs, inspiring creativity and originality in their work. Many of these
trainees now hold influential positions in academic departments around the world.

Murray’s book Mathematical Biology, first published in 1989 and then updated
to the present version comprising two volumes (Murry 2002, 2003), is one of the
most influential books published in the field. It forms the essential text for most high
level mathematical biology courses taught worldwide and has been translated into
several different languages. It is one of the reasonswhymathematical biology has been
transformed from a niche subject to an established part of most university mathematics
courses.

Murray has received many deserved accolades during his career. He is a Fellow
of the Royal Society, a Fellow of the Royal Society of Edinburgh, and a Foreign
Member of the French Academy. He was awarded the London Mathematical Society
(LMS) Naylor Prize (1988–1990), the Society of Mathematical Biology (SMB) Akira
Okubo prize (2005), the Royal Society Bakerian Medal and Prize Lecture (2009), the
Institute ofMathematics and its Applications (IMA)GoldMedal (2009), the European
Academy of Sciences Leonardo da Vinci Medal (2011) and the William Benter Prize
in Applied Mathematics (2012). He has also been awarded honorary doctorates by
several universities, and, in 2006, the University of Washington created the James D,
Murray Chair of Neuropathology, a donor endowed chair in perpetuity.

This Special Collection celebrates the diversity of Jim Murray’s contribution to
the field of mathematical biology. It contains 17 invited articles and, here, we briefly
outline what is in each article.

While Murray’s work investigated certain areas of tumour growth and therapy,
mathematical modelling is now being used to address many different aspects of can-
cer treatment. Cassidy et al. (2020) addresses the problem of the toxic side-effects of
cytotoxic chemotherapy treatment for cancer. Building on previous work that pro-
posed strategies to reduce chemotherapy-induced neutropenia (lack of circulating
neutrophils), this paper extends the model to include monocyte production. Using
clinical data to determine model parameters, it is shown that monocytopenia precedes
neutropenia and hence that monocytropenia can be used as a clinical marker to facil-
itate the delivery of an optimal dosing strategy to reduce, or completely eliminate,
neutropenia.
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Murray’s ground-breaking work on glioma has been extended in many different
directions as advances in experimental technology reveal new observations. Curtin
et al. (2020) extends a previous model of glioblastoma (GBM) to investigate clinical
observations that suggest that distal tumour recurrence was more likely to occur in
cases of ischemia following surgery. A nutrient-transport equation is added to the
original model, and is parametrized using glucose uptake rates in GBM. The model is
then used to determine which mechanisms are most likely to result in distal recurrence
and it is found that tumours with faster migration and slower proliferation rates are
more likely to recur in response to ischemia. A detailed simulation study is carried
out to investigate different recurrence scenarios.

Murray’swork on spatial disease spread andhow it can be controlled,most famously
on rabies in foxes, has inspired many researchers to ask similar questions for different
disease systems. Anita et al. (2021) ask how bacterial disease spreads spatially in
olive trees via insects and how this can be controlled via management strategies such
as weed cut, treated nets and resistant cultivars. They find that a “containment band”,
where control measures are judiciously applied, is sufficient to prevent overall spread
of the disease. This is in some ways similar to the earlier discovery by Murray and
colleagues that a vaccination band ahead of the rabies front could be sufficient to
contain its spread.

Murray’s work on pattern formation highlighted how important domain geometry
is for pattern selection. While his work in this area was primarily at the tissue level,
Seirin-Lee (2021) shows that geometry may also play a role at the cell level. This
paper develops a partial differential equation model for cytoplasmic polarity within
a cell in the context of asymmetric cell division. The model describes the interaction
of key membrane proteins with those in the bulk of the cell. A detailed numerical
simulation study illustrates how cell geometry can affect the observed behaviour of
the model and shows that to understand how cell polarity is established in asymmetric
cell division, geometry must be taken into account.

Kulesa et al. (2021) highlights how Murray’s approach to mathematical modelling
“offers a practical template for constructing clear, logical, direct and verifiable models
that help to explain complex cell behaviors and direct new experiments” by presenting
a brief review of how this approach, used by the authors, has led to new insights into
neural crest cell biology and cancer. The paper shows how mathematical models have
been used to test and generate hypotheses on the mechanisms that underly collective
cell movement in neural crest. In particular, it illustrates how a cell-based mechanistic
model identified a number of phenotypic traits thatmust be possessed by cells, and how
these were then validated using gene sequencing and bioinformatics. Furthermore, it
is shown how understanding normal development, in the context of neural crest cell
migration, can help us understand key aspects of cancer cell metastasis.

While Murray’s work on HIV AIDS investigated aspects of within-host dynamics,
the paper by Levy et al. (2021) focuses on population spread and investigates the effect
of stigma. A mechanistic model for stigma is proposed and incorporated into a model
for infection dynamics. The models are parameterised by fitting to data from Kenya
and then the full model is used to make predictions on how different components
of stigma affect the spread of the disease. The study highlights the importance of
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gathering data on sociological processes when investigating the spread of infectious
diseases.

Murray has worked extensively on the biochemical regulation of cell behaviour in
a wide range of physiological contexts. Sneyd et al. (2021) reviews work of this type
for the specific case of saliva secretion by acinar cells in the salivary glands. The paper
paints a picture of a continual interplay between experiments and modelling, high-
lighting the effectiveness of models in modifying and enhancing our understanding
of saliva generation. The paper concludes with a discussion of the new generation of
models currently being developed to utilise the most recent empirical data.

Woolley et al. (2021) addresses the issue of complex spatial pattern formation by
building not only onMurray’swork but, literally, onMurray himself (see Figure 10 and
Figure 11). This paper shows how a two-morphogen reaction–diffusion Turing model
can be built so that the parameter space in which patterning occurs, the morphogen
phases, and the resulting pattern (up to spatial dimension of two) can all be determined.
Moreover, by incorporating spatial and temporal heterogeneities, it is shown how
mixed mode patterns can be generated, allowing for arbitrarily complex patterns to be
produced. The implications of these results are then discussed in the light of linking
theory and experiment.

Much of Murray’s pioneering work features multi-stable systems, where nonlinear
dynamics can drive multiple possible outcomes. Koch et al. (2021) analyse a classi-
cal multi-stable system, mountain pine beetle populations, which can jump between
endemic and outbreak states. However, this work develops a new perspective on such
systems by incorporating spatial autocorrelation in dispersal dynamics for the beetles.
The resulting dynamical system is then fit to detailed outbreak data, shedding light on
how outbreaks can sporadically arise across the landscape.

The hallmark of Murray’s work on disease dynamics, such as HIV, has been to gain
insight from realistic models, tailored to the specific details that can so often affect
outcomes. Britton and White (2021) show how the inclusion of multiple infection
classes in a honey-bee-mite-virus system is key to our understanding of spontaneous
transitions between disease states as bees and mites move from covertly to overtly
infected states. These distinct infection classes then play a key role in governing
disease outcomes. Nick Britton very sadly passed away in December 2020, while this
paper was still in the review stage. On his request, JaneWhite, his long-time colleague
and friend at the University of Bath, revised and finalised the manuscript in response
to reviewer comments.

A unifying feature of Murray’s varied research work is the use of simple mod-
els to explain complex biological phenomena. He showed that low order systems of
ordinary and partial differential equations can capture the essence of processes such
as embryonic development, tumour growth and disease spread. Kempes et al. (2021)
applies this philosophy to the field of astrobiology. The paper uses a simple ordinary
differential equation model coupled with previously established scaling relationships
of the main macromolecular components of cells. This approach enables prediction of
potential biosignatures of life, via variation of elemental ratios in a range of terrestrial
biological environments.

Villa et al. (2021) re-examines a key aspect of the Murray–Oster mechanochemical
theory of pattern formation, namely that of the role of the constitutive equation. In
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the original theory the main assumption of the modelling regarding the biomechanical
properties of tissue was that it was a linear viscoelastic material governed by the so-
called Kelvin-Voigt model. This linear stress-strain relationship permits an equation to
be derived for the displacement of the tissue (cell-extracellular matrix system) which,
in turn, is used to derive a dispersion relation, whence a prediction of pattern formation.
The results of the current paper show that pattern formation is critically dependent
upon the constitutive equation chosen and that fluid-like constitutive models have a
higher potential for generating patterns than solid-like constitutive models.

As mentioned above, Murray’s work explored the idea that, in the context of devel-
opmental pattern formation, evolution can be captured by movement, on a vastly
different timescale, through parameter space. Of course, at the macroscale level,
parameters are largely a model construct as they really describe processes occurring
on different length and/or timescales. How to link processes across different scales
is now a major change in the field of mathematical biology. Stotsky et al. (2021)
use multiscale continuous time random walks and generalised master equations to go
from the microscale to the macroscale in the context of transport processes in tis-
sues. It is shown, using signalling in the Drosophila wing disc as a case study, how
the framework developed can be employed to directly link experimentally observ-
able macroscale properties, such as transport coefficients, to the detailed underlying
microscale level tissue properties.

A very importantweapon in the armoury of the appliedmathematician is asymptotic
analysis, a subject which formed the basis for Murray’s first book (Murray 1974) and
which also plays a role in Efendiev et al. (2021). This paper investigates high intensity
focussed ultrasound (HIFU), which is being increasingly used as a promising cancer
treatment, without the side effects of more standard treatments. This paper investigates
the long-time dynamics of a previously proposed partial differential equation system
that aims to model energy deposition in biological tissue due to HIFU. Specifically,
a number of theoretical results are derived on the attractors shown to exist for this
system.

Pattern formation has been a central component of Murray’s work. He primar-
ily studied patterns in embryonic development, but his ideas have subsequently been
exported to a wide range of other biological contexts. Sherratt et al. (2021) consid-
ers pattern formation in intertidal mussel beds, where the patterning occurs at the
scale of the whole ecosystem. The paper makes a detailed comparison between two
different hypothesised mechanisms for patterning, and demonstrates important differ-
ences between the resulting patterns for both biomass distribution and resilience to
disturbances.

Lui andMyerscough (2021) address one of the few research areas in which Murray
has notworked, namely, heart disease. This paper proposes amodel for the composition
of atherosclerotic plaques,which can cause heart attacks and strokes.More specifically,
it develops an ordinary differential equation model for time evolution of macrophage
cells and lipids. It is shown that the model is amenable to a multiple timescale analysis
and the contribution of key cell processes to plaque lipid accumulation is explored in
detail.

Fowler (2021) extends the aforementioned work of Murray et al. (1986) on rabid
foxes to address the issue of extinction, which is a general problem faced by con-
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tinuous models of population dynamics, whose applicability is called into question
at low numbers of individuals. A number of ways to address/resolve these problems
is presented in this paper, and illustrated through application to foxes approaching
extinction; oscillatory dynamics with extremely small minima, explored in the con-
text of immune dynamics and microbial growth models; and finally frogspawn, where
an age-structured model is proposed and analysed.

The articles in this Special Collection illustrate the synergy between the fields of
mathematics and biology (in its broadest sense) that J.D. Murray has demonstrated
countless times thoroughout his amazing career: biology inspires new mathematics,
while mathematics leads to new biology.
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